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Abstract 14 

The nature of soil stiffness at small strains remains poorly understood. The relationship between soil 15 

stiffness (e.g. shear stiffness, G0) and isotropic confining pressure (p′) can be described using a power 16 

function with exponent (b), i.e. G0 = A (p′/pr)b, where A is a constant and pr is an arbitrary reference 17 

pressure. Experimentally determined values of b are usually around 0.5 and these are higher than the 18 

value of 0.33 that can be analytically determined using Hertzian theory. Hertzian theory considers 19 

contact between two smooth, elastic spheres, however, in reality, inter-particle contacts in soil are 20 

complex with particle shape and surface roughness affecting the interaction. Thus Hertzian theory is 21 

not directly applicable to predict real soil stiffness. It has, however, provided a useful basis to develop 22 

an analytical framework that can consider the influence of particle surface roughness on small-strain 23 

soil stiffness. Here, earlier contributions using this framework are extended and improved by paying 24 

particular attention to roughness and the tangential contact stiffness. Stiffness values calculated using 25 

the newly-derived analytical expressions were compared with the results of bender element tests on 26 

samples of borosilicate glass beads (ballotini) whose surface roughness was quantified using an optical 27 

interferometer. The analytical expression captures the experimentally observed sensitivity of the 28 

small-strain shear modulus to surface roughness. 29 

  30 
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1. Introduction 31 

In the case of soil under isotropic loading, the relationship between the soil shear modulus at small 32 

strains (G0) and the isotropic confining pressure (p′) is generally believed to follow a power function 33 

having a coefficient of exponent (b), i.e. G0 = A (p′/pr)b, where pr is an arbitrary reference pressure. 34 

McDowell & Bolton (2001) highlighted that the analytical estimate of b = 0.33, which can be obtained 35 

using Hertzian theory for spheres (Hertz, 1882), is smaller than that usually obtained from experiments, 36 

where b ≈ 0.5. Goddard (1990) showed that particle geometry plays a role: a value of b = 0.5 can be 37 

analytically expected by considering contacts to be conical instead of spherical. The surface asperities 38 

that exist on the rough surface of real sand grains may also affect the b value. 39 

 40 

Experimental research that quantitatively relates particle roughness to soil stiffness has rarely been 41 

reported due to the difficulty in accurately measuring roughness (Otsubo et al., 2014). Santamarina & 42 

Cascante (1998) conducted resonant column tests using rough (rusted) and smooth steel spheres. They 43 

found greater wave velocity in the smooth spheres, which is in agreement with the earlier findings of 44 

Duffy & Mindlin (1956). Sharifipour & Dano (2006) also found similar results when smooth and 45 

rough (corroded by hydrofluoric acid) ballotini were compared. The magnitude of the surface 46 

roughness was not quantified in either of those papers.  47 

 48 

Yimsiri & Soga (2000) presented a useful approach to quantify the influence of roughness on small 49 

strain stiffness based upon contact mechanics for rough surfaces (Greenwood & Trip, 1967; Johnson, 50 

1985) and a micro-mechanics based constitutive model (Chang & Liao, 1994). This model has the 51 

disadvantage of giving a physically unfeasible negative Poisson’s ratio for apparently reasonable ratios 52 

of normal stiffness to tangential stiffness. In their model Yimsiri & Soga assumed that the tangential 53 

contact stiffness is not influenced by surface roughness. Recent tribology research has shown that the 54 

surface roughness reduces both the normal and tangential contact stiffness (e.g. Gonzalez-Valadez et 55 

al., 2010). The current contribution demonstrates that inclusion of this more recent research finding 56 

enables a refinement of the expressions proposed by Yimsiri & Soga to establish a more accurate 57 

analytical framework. 58 

 59 

This contribution firstly revisits the analytical study presented by Yimsiri & Soga (2000) and 60 

demonstrates how recent tribological research can be used to modify the expression for tangential 61 

contact stiffness in developing their model. In the second part of the paper, the results of wave 62 

velocities measured in bender element tests on isotropically loaded ballotini samples, whose roughness 63 

was quantified using optical interferometry, are presented to validate the newly derived analytical 64 

expressions that relate overall (macro-scale) stiffness to the contact stiffness parameters. 65 

 66 

2. Theoretical derivation of shear modulus for smooth elastic contacts 67 

Hertz (1882) developed expressions to describe contact between smooth elastic surfaces. Hertzian 68 

theory has been used as a basis to explain the relationship between soil shear modulus and confining 69 

pressure (e.g. McDowell & Bolton, 2001). According to Hertzian theory (Johnson, 1985) the normal 70 

contact stiffness (KN) between two identical smooth spheres, is given by:  71 
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where Gp = particle shear modulus; νp = particle Poisson’s ratio; a = circular (smooth)contact area 74 

radius; r = radius of the identical contacting spheres; and FN = normal inter-particle contact force. 75 

Mindlin (1949) described the tangential contact stiffness (KT) between smooth spheres using Hertzian 76 

theory. This model was extended to general cases which consider various loading histories by Mindlin 77 

& Deresiewicz (1953) who give the following expression of the tangential contact stiffness for virgin 78 

(initial) inter-particle tangential loading, FT: 79 
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where μ = coefficient of inter-particle friction. Eqs. 1 and 3 lead to the following expression for the 81 

contact stiffness ratio (RK) for smooth contacts: 82 
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Chang & Liao (1994) used a micromechanics based model to relate the shear modulus (G0) of an 84 

assembly of randomly packed identical spheres to KN and KT. Using kinematic and static hypotheses 85 

which assume uniform strain and uniform stress respectively, expressions for upper and lower bound 86 

estimates of the elastic modulus were proposed: 87 
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where N = the total number of particle contacts in the sample of volume V. The ratio N/V can be 90 

obtained from the particle radius (r), the sample void ratio (e) and the mean coordination number (NC) 91 

as expressed in Yimsiri & Soga (2000) as follows: 92 
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 94 

3. Theoretical derivation of shear modulus for rough elastic contacts 95 

3.1 Influence of surface roughness on normal contact stiffness 96 

Greenwood et al. (1984) and Johnson (1985) proposed a non-dimensional roughness parameter (α) to 97 

extend Hertzian theory to rough contacts:  98 

N

qS


                                           (8) 99 

where Sq = root mean square (RMS) roughness; and δN = overlap of contacting spheres as used in 100 

Hertzian theory. The RMS roughness is defined as (Thomas, 1982): 101 

 



n

i

iq Z
n

S
1

21
                             (9) 102 

where n is the number of measured data points; and Zi is the elevation of data point i relative to the 103 

reference surface. 104 

 105 

When two rough surfaces having Sq1 and Sq2 are considered, Sq in Eq. 8 can be replaced by a combined 106 

roughness, i.e. Sq
2 = Sq1

2+ Sq2
2 (Greenwood et al., 1984; Johnson, 1985). Yimsiri & Soga (2000) used 107 



4 

 

 to relate the radius of circular contact area between two rough surfaces (aRough) to the smooth 108 

equivalent (aSmooth) as follows: 109 

Sm oothRough
aa 






 




 4.2
2

8.2


                      (10) 110 

At an extremely large normal load, α approaches zero and aRough → aSmooth. Assuming that Hertzian 111 

theory of r δN = 2a2 is still applicable to rough contacts, the overlap of rough spheres can be analysed 112 

as: 113 
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Yimsiri & Soga (2000) derived the normal contact stiffness for rough contacts by differentiating FN 115 

with respect to δN 116 
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3.2 Influence of surface roughness on tangential contact stiffness 118 

The effect of surface roughness on the tangential contact stiffness is complex. Yimsiri & Soga (2000) 119 

referred to an experimental study by O’Connor & Johnson (1963) and assumed that KT
Rough equals 120 

KT
Smooth. However, this assumption results in the Poisson’s ratio of the assembly becoming negative 121 

when KT
Rough > KN

Rough (i.e. RK
Rough > 1) according to the following equations proposed by Chang & 122 

Liao (1994):  123 
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where νs, Kinematic and νs, Static are the Poisson’s ratios obtained using the kinematic and static 126 

assumptions. To overcome this drawback, it is essential to select an appropriate value for KT
Rough. 127 

Knowing RK and KN
Rough, KT

Rough can be obtained using Eq. 4. The influence of the surface roughness 128 

on RK has been reported in recent tribology research; Campañá et al. (2011) and Medina et al. (2013) 129 

assumed the same RK for both smooth and rough contacts. In contrast, a lower RK for rough contacts 130 

was reported by Gonzalez-Valadez et al. (2010), whose ultrasound tests showed that  RK
Rough < 131 

RK
Smooth, and RK

Rough increases as the normal contact force increases. Here it is assumed that RK
Rough = 132 

RK
Smooth.  133 

 134 

The coefficient of inter-particle friction, μ, for rough contacts is needed to calculate Eq. 4. Cavarretta 135 

et al. (2010) and Senetakis et al. (2013) obtained the inter-particle friction by shearing one particle 136 

over another. Cavarretta et al. (2010) observed a higher friction for rough contacts than smooth ones. 137 

Note that this type of experiment is non-trivial and very challenging to interpret. In contrast, plastic 138 

theory predicts lower friction coefficient with larger roughness due to yielding of asperities (Chang et 139 

al., 1988; Kogut & Etsion, 2004; Chang & Zhang, 2005).  140 

 141 

Rough contacts can be modelled as a system of multiple micro-contacts, each being a smooth spherical 142 

surface. Referring to Fig. 1, the inter-particle forces of FN and FT can be decomposed into normal (fN, i) 143 

and tangential contact forces (fT, i) that act on an individual micro-contact i. The magnitude of fT, i / fN, i 144 

depends upon the micro-contact orientation. Summing this ratio over all the micro-contacts, gives: 145 
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Thus, Eq. 4 can be applied to rough contacts using RK
Rough = RK

Smooth. The resultant expressions for 147 

KT
Rough are given in Table 1. Substitution of KN

Rough and KT
Rough into Eqs. 5 and 6 gives the shear 148 

modulus of the assembly. 149 

 150 

4. Experiments 151 

4.1 Tested materials 152 

The material tested comprised of borosilicate ballotini spheres with diameters between 2.4 mm and 2.7 153 

mm. (shear modulus, Gp = 25 GPa, specific gravity = 2.23, particle Poisson’s ratio, νp = 0.2). Typical 154 

microscope images and optical interferometry surface topographies of these particles are shown in Fig. 155 

2. The rough ballotini were made by milling the smooth ballotini as described by Cavarretta et al. 156 

(2012). Forty surface roughness measurements were conducted on each material using a Fogale 157 

Microsurf 3D (Fogale, 2005). The effects of surface curvature were considered in the roughness 158 

measurements, and Fig. 2 summarises the roughness values as-measured and after-flattening using a 159 

built-in motif analysis function available in the Fogale software (Fogale, 2005).  160 

 161 

4.2 Cubical cell apparatus and sample preparation 162 

A cubical cell apparatus was used, whereby pressures are applied to a cubical sample using flexible 163 

air-filled cushions (Ko & Scott, 1967; Sadek & Lings, 2007). The cubical samples (100x100x100 164 

mm3) were prepared using a pluviation device that maintains a constant drop height (Camenen et al., 165 

2013). The measured void ratios were 0.632 and 0.679 and the measured relative densities were 42% 166 

(emin = 0.557 and emax = 0.698) and 47% (emin = 0.585 and emax = 0.746), for the smooth and rough 167 

ballotini samples respectively. Note that the size of the tested materials exceeds the maximum 168 

recommended particle size for which this test is applied (up to 2.00 mm in diameter; JGS 0161, 2009). 169 

A vacuum confinement of 50 kPa was applied while the sample was gently moved into the cubical cell 170 

apparatus (O’Donovan et al., 2014). 171 

 172 

 173 

4.3 Bender element testing 174 

Bender element testing was initially developed by Shirley (1978) and Shirley & Hampton (1978). 175 

Bender/extender (BE) elements which are able to generate shear waves (S wave) and compression 176 

waves (P wave) were used in this research (Lings & Greening, 2001). Details of the installation of the 177 

bender elements using the cubical cell apparatus are described by O’Donovan et al. (2014). The bender 178 

elements were inserted into the faces of the cubical sample, while it was still subject to vacuum 179 

confinement of about 50 kPa; then the vacuum confinement was systematically reduced as the cushion 180 

pressure was increased, initially to an isotropic cell pressure of 50 kPa. Bender element tests were 181 

carried out at discrete confining pressures (50, 100, 200, 300, 400 and 500 kPa) both during loading 182 

and unloading. After increasing the confining pressure to next level, a pause of at least 1 hour was 183 

applied to allow for creep of the sample. 184 

 185 

At each confining pressure a sinusoidal wave with a frequency of 15 kHz and 270 degrees of phase 186 

delay was transmitted. The high frequency chosen should minimise the near field effects in received 187 

signal (Arroyo et al., 2003). The importance of choosing a sensible method to identify the wave arrival 188 

has been discussed extensively (e.g. Yamashita et al., 2007 & 2009). This research uses a peak to peak 189 

method in which the time delay between the peaks of the transmitted and received waves is considered 190 

to be the travel time. 191 
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4.4 Test results 192 

A typical series of the received S-wave voltages in one direction for smooth and rough samples at 193 

various confining pressures is illustrated in Fig. 3. The vertical axis gives transmitted and received 194 

voltages normalised by their maximum values; the relevant test confining pressure is indicated on each 195 

voltage trace. Arrows show the first and second peaks in received waves. As the confining pressure 196 

increases, the first peaks of the received waves appeared earlier, indicating higher velocities. 197 

Comparing Fig. 3(a) and (b) the differences in response are due to the combined effects of differences 198 

in surface stiffness and differences in sample void ratio. 199 

 200 

The relationships between the elastic moduli and the elastic wave velocities are assumed to be 201 

applicable here, i.e.: 202 

2
0 PVM                                     (16) 203 

2
0 SVG                                       (17) 204 

where M0 and G0 = constrained and shear moduli, respectively; ρ = sample bulk density; VP and VS = 205 

compression and shear wave velocities, respectively. The Poisson’s ratio of the sample (νs) can be 206 

calculated by assuming applicability of elastic theory for homogeneous and isotropic materials (Kumar 207 

& Madhusudhan, 2010). 208 
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The calculated moduli include the efffects of soil density. A correction factor based on a void ratio 210 

function of the form proposed by Hardin & Richart (1963)  211 
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 214 

was applied to G0 for both smooth and rough assemblies. Regression analyses were used to fit 215 

functions through the experimental data of Vs-pʹ and e-pʹ to interpolate values of Vs and e at additional 216 

values pʹ. Best surface fitting through the larger interpolated dataset showed that B is approximately 217 

2.9 and that this value is equally valid for both materials. A value of 2.17, derived for rounded sand 218 

particles (Hardin, 1965), has previously been used by Kuwano & Jardine (2002) and Yang & Gu 219 

(2013) for data on glass ballotini.  220 

 221 

The normalised shear modulus G0/F(e) in XY (X wave propagation direction, Y wave polarisation) and 222 

YX (Y wave propagation direction, X wave polarisation) directions are plotted against the isotropic 223 

confining pressure in Fig 4. Here, only data for the loading case are presented. As the confining 224 

pressure increases the difference between smooth and rough samples gradually reduced, as reported in 225 

the analytical study by Yimsiri & Soga (2000). The power coefficients for the smooth ballotini sample 226 

ranged from 0.35 to 0.37, while those for rough ballotini sample ranged from 0.53 to 0.66. Note that 227 

with the exception of one measurement point at low confinement pressure that could have affected the 228 

quality of the contacts, there is very good agreement between the measurements in both directions for 229 

both smooth and rough samples.  230 

 231 

 232 

 233 
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5. Discussion and comparison between analysis and experiments 234 

In order to use experimental data to validate the newly derived analytical expressions of stiffness, a 235 

number of particle-scale parameters were needed. Referring to Eqs. 4-7, the normal and tangential 236 

contact forces (FN and FT), the void ratio (e) and the mean coordination number (NC) were obtained 237 

from DEM simulations which considered similar cubical samples (O’Donovan, 2013) and similar 238 

particle size distributions. These data gave 0.0665 ≤ FT/FN ≤ 0.0687, 0.697 ≥ e ≥ 0.677 and 5.38 ≤ NC 239 

≤ 5.63 as pʹ increased from 0.1 MPa to 1 MPa. The friction coefficient for the ballotini (μ) was taken as 240 

0.0805 based on Cavarretta et al. (2012). Referring to Fig. 5 there is a good agreement between the 241 

experimental data and the analytical predictions using the static assumption. The kinematic assumption 242 

overestimates the shear modulus in both cases; however, it does capture the experimental trend, i.e. the 243 

rough particles are softer than the smooth particles and the difference in stiffness between the rough 244 

and the smooth materials decreases with increasing pʹ. 245 

 246 

The evolution of the Poisson’s ratio (νs) at different confining pressures is compared in Fig. 6. The 247 

analytical values derived from Eqs. 13 and 14 gave lower estimates for ν over the range of examined 248 

confining pressures when compared with the experiments. However, the analytical expression for ν 249 

does not depend on the surface roughness. The static hypothesis was again in better agreement with the 250 

experimental results for smooth particles. It is interesting that the experimental value for rough 251 

particles decreased as the confining pressure increased, while the opposite trend was observed for the 252 

smooth particles. Similar experimental results were reported by Sharifipour & Dano (2006) where 253 

smooth and rough (corroded) ballotini were compared. It is worth mentioning that Suwal & Kuwano 254 

(2013) compared the Poisson’s ratio obtained in static and dynamic tests and found that the dynamic 255 

tests gave a larger value. 256 

 257 

6. Conclusions 258 

This contribution has revisited the analytical model proposed by Yimsiri & Soga (2000) that relates 259 

elastic stiffness of an assembly of particles to particle scale parameters. Drawing on recent 260 

experimental research, the model was extended to include a reduction in the inter-particle tangential 261 

stiffness with surface roughness. Incorporation of this feature results in more realistic values of shear 262 

modulus and Poisson’s ratio, in particular the negative Poisson’s ratio values which were obtained 263 

when the original model was used with (plausible) contact stiffness ratios exceeding 1 are now avoided. 264 

To validate the new model, bender element tests on smooth and artificially roughened ballotini were 265 

performed in a cubical cell. The particle surface roughnesses were quantified using an optical 266 

interferometer, to enable direct comparison with the modified analytical expression. Additional 267 

particle-scale data needed for the analytical expression were obtained from an equivalent DEM 268 

simulation. The estimates of small-strain shear modulus obtained using the new analytical model were 269 

in good agreement with the experimental data when the static hypothesis was used, while the 270 

expression derived using the kinematic hypothesis was qualitatively similar. Both the analytical model 271 

and the experimental data show that increasing particle surface roughness reduces the shear modulus at 272 

small strains, and the magnitude of this reduction reduces with increasing isotropic confining pressure. 273 

The analytical and experimental data both indicate that the power coefficient (b) increases with surface 274 

roughness.  The analytical expression for Poisson’s ratio does not consider surface roughness, and the 275 

expression from the static hypothesis gave a better match to the experimental data than that obtained 276 

using the kinematic hypothesis. 277 

 278 

 279 

 280 

 281 
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Table 1. Summary of contact model presented by Yimsiri & Soga (2000) and a suggested 384 

modification. (Tangential contact stiffness is for a virgin tangential load). 385 
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 388 

Figure 1. (a) Inclined contact planes at asperities between rough-rough surfaces and (b) 389 

smooth-smooth surfaces. 390 

 391 

  392 

a) b) 



12 

 

 393 

 394 

 395 

unit: nm Smooth ballotini Rough ballotini  

Sq Ave Max Min Std Ave Max Min Std 

as-measured  335  402  263  35  1568  2252  1087  264  

flattened 36 63 18 12 661 975 538 111 

 396 

Figure 2. Microscope images and surface topographies of tested materials. (a) smooth ballotini, 397 

(b) rough ballotini. 398 

  399 

a) 

b) 
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400 

 401 

Figure 3. S-wave response in (a) smooth assembly and (b) rough assembly in XY direction at 402 

various mean confining pressures. (Arrows indicate the first and second peaks in received 403 

waves). 404 

  405 

a) b) 
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406 

 407 

Figure 4. Pressure dependency of shear stiffness in isotropic loading for smooth and rough 408 

ballotini samples based on shear wave velocity measurements of waves propagated and polarised 409 

in the horizontal plane XY of the cubical sample (in the legend, b is the power coefficient of 410 

stiffness – pressure relation, while Sq is the root mean square of roughness). 411 
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 413 

 414 

Figure 5. Comparison between analytical model and experimental results on relationship 415 

between shear modulus and isotropic confining pressure.  416 

  417 



16 

 

 418 

 419 

Figure 6. Evolution of Poisson’s ratio at various isotropic confining pressures. 420 
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