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Abstract

The nature of soil stiffness at small strains remains poorly understood. The relationship between soil
stiffness (e.g. shear stiffness, Go) and isotropic confining pressure (p') can be described using a power
function with exponent (b), i.e. Go= A (p"/p,)’, where A is a constant and p, is an arbitrary reference
pressure. Experimentally determined values of b are usually around 0.5 and these are higher than the
value of 0.33 that can be analytically determined using Hertzian theory. Hertzian theory considers
contact between two smooth, elastic spheres, however, in reality, inter-particle contacts in soil are
complex with particle shape and surface roughness affecting the interaction. Thus Hertzian theory is
not directly applicable to predict real soil stiffness. It has, however, provided a useful basis to develop
an analytical framework that can consider the influence of particle surface roughness on small-strain
soil stiffness. Here, earlier contributions using this framework are extended and improved by paying
particular attention to roughness and the tangential contact stiffness. Stiffness values calculated using
the newly-derived analytical expressions were compared with the results of bender element tests on
samples of borosilicate glass beads (ballotini) whose surface roughness was quantified using an optical
interferometer. The analytical expression captures the experimentally observed sensitivity of the
small-strain shear modulus to surface roughness.
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1. Introduction

In the case of soil under isotropic loading, the relationship between the soil shear modulus at small
strains (Go) and the isotropic confining pressure (p’) is generally believed to follow a power function
having a coefficient of exponent (b), i.e. Go = A (p/p,)’, where p, is an arbitrary reference pressure.
McDowell & Bolton (2001) highlighted that the analytical estimate of » = 0.33, which can be obtained
using Hertzian theory for spheres (Hertz, 1882), is smaller than that usually obtained from experiments,
where b = 0.5. Goddard (1990) showed that particle geometry plays a role: a value of b = 0.5 can be
analytically expected by considering contacts to be conical instead of spherical. The surface asperities
that exist on the rough surface of real sand grains may also affect the b value.

Experimental research that quantitatively relates particle roughness to soil stiffness has rarely been
reported due to the difficulty in accurately measuring roughness (Otsubo et al., 2014). Santamarina &
Cascante (1998) conducted resonant column tests using rough (rusted) and smooth steel spheres. They
found greater wave velocity in the smooth spheres, which is in agreement with the earlier findings of
Duffy & Mindlin (1956). Sharifipour & Dano (2006) also found similar results when smooth and
rough (corroded by hydrofluoric acid) ballotini were compared. The magnitude of the surface
roughness was not quantified in either of those papers.

Yimsiri & Soga (2000) presented a useful approach to quantify the influence of roughness on small
strain stiffness based upon contact mechanics for rough surfaces (Greenwood & Trip, 1967; Johnson,
1985) and a micro-mechanics based constitutive model (Chang & Liao, 1994). This model has the
disadvantage of giving a physically unfeasible negative Poisson’s ratio for apparently reasonable ratios
of normal stiffness to tangential stiffness. In their model Yimsiri & Soga assumed that the tangential
contact stiffness is not influenced by surface roughness. Recent tribology research has shown that the
surface roughness reduces both the normal and tangential contact stiffness (e.g. Gonzalez-Valadez et
al., 2010). The current contribution demonstrates that inclusion of this more recent research finding
enables a refinement of the expressions proposed by Yimsiri & Soga to establish a more accurate
analytical framework.

This contribution firstly revisits the analytical study presented by Yimsiri & Soga (2000) and
demonstrates how recent tribological research can be used to modify the expression for tangential
contact stiffness in developing their model. In the second part of the paper, the results of wave
velocities measured in bender element tests on isotropically loaded ballotini samples, whose roughness
was quantified using optical interferometry, are presented to validate the newly derived analytical
expressions that relate overall (macro-scale) stiffness to the contact stiffness parameters.

2. Theoretical derivation of shear modulus for smooth elastic contacts

Hertz (1882) developed expressions to describe contact between smooth elastic surfaces. Hertzian
theory has been used as a basis to explain the relationship between soil shear modulus and confining
pressure (e.g. McDowell & Bolton, 2001). According to Hertzian theory (Johnson, 1985) the normal
contact stiffness (Kn) between two identical smooth spheres, is given by:

26,
K, = a (1
l-v,
1/3
a=|:3r(l_VP)j| F1\1,/3 (2)
8G,
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where G, = particle shear modulus; v, = particle Poisson’s ratio; a = circular (smooth)contact area
radius; r = radius of the identical contacting spheres; and Fy = normal inter-particle contact force.
Mindlin (1949) described the tangential contact stiffness (K7) between smooth spheres using Hertzian
theory. This model was extended to general cases which consider various loading histories by Mindlin
& Deresiewicz (1953) who give the following expression of the tangential contact stiffness for virgin
(initial) inter-particle tangential loading, Fr:

4G F 1/3
K, = Pall-—= 3)
2-v, HE,

where u = coefficient of inter-particle friction. Eqs. 1 and 3 lead to the following expression for the
contact stiffness ratio (Rx) for smooth contacts:

1/3
o K _2(t-v,) B @
K K, 2-v, ur,

Chang & Liao (1994) used a micromechanics based model to relate the shear modulus (Gp) of an
assembly of randomly packed identical spheres to Ky and K7. Using kinematic and static hypotheses
which assume uniform strain and uniform stress respectively, expressions for upper and lower bound
estimates of the elastic modulus were proposed:

_2Nr'K, 2+43Rq

G inematic ~_ 5
0,Ki t 3V 5 ( )
2Nr’K 5R
Gy e = 2L K ©)
3V 3+2R,

where N = the total number of particle contacts in the sample of volume V. The ratio N/V can be
obtained from the particle radius (r), the sample void ratio (e) and the mean coordination number (Nc)
as expressed in Yimsiri & Soga (2000) as follows:

E = L 7)
14 8r37z(1 + e)

3. Theoretical derivation of shear modulus for rough elastic contacts

3.1 Influence of surface roughness on normal contact stiffness

Greenwood et al. (1984) and Johnson (1985) proposed a non-dimensional roughness parameter (o) to
extend Hertzian theory to rough contacts:

a=— ®)

where S; = root mean square (RMS) roughness; and dy = overlap of contacting spheres as used in
Hertzian theory. The RMS roughness is defined as (Thomas, 1982):

S, = %ZI(ZZ) )

where 7n is the number of measured data points; and Z; is the elevation of data point i relative to the
reference surface.

When two rough surfaces having S,1 and S, are considered, S, in Eq. 8 can be replaced by a combined

roughness, i.e. S;2 = Sy/%+ Sg2* (Greenwood et al., 1984; Johnson, 1985). Yimsiri & Soga (2000) used
3
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a to relate the radius of circular contact area between two rough surfaces (a®**") to the smooth
equivalent (a¥"°°™) as follows:

-2.
aRough — ( 8 + 24j aSmooth (10)
a+?2

Rough _, gSmooth = Agsuming that Hertzian

At an extremely large normal load, a approaches zero and a
theory of r dy = 2a? is still applicable to rough contacts, the overlap of rough spheres can be analysed

as:

ou’hz 2
gron 2 Qa" _2[(=28 ) N |y
N r ri\a+2

Yimsiri & Soga (2000) derived the normal contact stiffness for rough contacts by differentiating Fn
with respect to on

K Rough — dFN

N Rough
45"

3.2 Influence of surface roughness on tangential contact stiffness
The effect of surface roughness on the tangential contact stiffness is complex. Yimsiri & Soga (2000)

(12)

referred to an experimental study by O’Connor & Johnson (1963) and assumed that K7R°'¢" equals
K50t However, this assumption results in the Poisson’s ratio of the assembly becoming negative
when K7Rough > gRough (e RgRoush s 1) according to the following equations proposed by Chang &
Liao (1994):

1-R; (13)
Vs inematic =
5, K 1 4 + RK

1-R,

V\' Static S — (14)
" 2+3R,

where Vs, Kinemaic and vy swic are the Poisson’s ratios obtained using the kinematic and static
assumptions. To overcome this drawback, it is essential to select an appropriate value for K7Roush,
Knowing Rk and KyRough, KzRough can be obtained using Eq. 4. The influence of the surface roughness
on Rk has been reported in recent tribology research; Campaiid et al. (2011) and Medina et al. (2013)
assumed the same Rk for both smooth and rough contacts. In contrast, a lower R for rough contacts
was reported by Gonzalez-Valadez et al. (2010), whose ultrasound tests showed that RgRoush <

RiSmooth and RxRough increases as the normal contact force increases. Here it is assumed that RgRoveh =
RKSmooth

The coefficient of inter-particle friction, u, for rough contacts is needed to calculate Eq. 4. Cavarretta
et al. (2010) and Senetakis et al. (2013) obtained the inter-particle friction by shearing one particle
over another. Cavarretta et al. (2010) observed a higher friction for rough contacts than smooth ones.
Note that this type of experiment is non-trivial and very challenging to interpret. In contrast, plastic
theory predicts lower friction coefficient with larger roughness due to yielding of asperities (Chang et
al., 1988; Kogut & Etsion, 2004; Chang & Zhang, 2005).

Rough contacts can be modelled as a system of multiple micro-contacts, each being a smooth spherical
surface. Referring to Fig. 1, the inter-particle forces of Fy and F7 can be decomposed into normal (fy, ;)
and tangential contact forces (f7 ;) that act on an individual micro-contact i. The magnitude of fz; / fv, i

depends upon the micro-contact orientation. Summing this ratio over all the micro-contacts, gives:
4
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uF, i /qu,i

Thus, Eq. 4 can be applied to rough contacts using RgRoUeh = RgSmooth The resultant expressions for
K7R°ueh are given in Table 1. Substitution of KyRue" and K7R°'¢" into Eqs. 5 and 6 gives the shear
modulus of the assembly.

4. Experiments

4.1 Tested materials

The material tested comprised of borosilicate ballotini spheres with diameters between 2.4 mm and 2.7
mm. (shear modulus, G, = 25 GPa, specific gravity = 2.23, particle Poisson’s ratio, v, = 0.2). Typical
microscope images and optical interferometry surface topographies of these particles are shown in Fig.
2. The rough ballotini were made by milling the smooth ballotini as described by Cavarretta et al.
(2012). Forty surface roughness measurements were conducted on each material using a Fogale
Microsurf 3D (Fogale, 2005). The effects of surface curvature were considered in the roughness
measurements, and Fig. 2 summarises the roughness values as-measured and after-flattening using a
built-in motif analysis function available in the Fogale software (Fogale, 2005).

4.2 Cubical cell apparatus and sample preparation

A cubical cell apparatus was used, whereby pressures are applied to a cubical sample using flexible
air-filled cushions (Ko & Scott, 1967; Sadek & Lings, 2007). The cubical samples (100x100x100
mm?®) were prepared using a pluviation device that maintains a constant drop height (Camenen et al.,
2013). The measured void ratios were 0.632 and 0.679 and the measured relative densities were 42%
(émin = 0.557 and emax = 0.698) and 47% (emin = 0.585 and emax = 0.746), for the smooth and rough
ballotini samples respectively. Note that the size of the tested materials exceeds the maximum
recommended particle size for which this test is applied (up to 2.00 mm in diameter; JGS 0161, 2009).
A vacuum confinement of 50 kPa was applied while the sample was gently moved into the cubical cell
apparatus (O’Donovan et al., 2014).

4.3 Bender element testing

Bender element testing was initially developed by Shirley (1978) and Shirley & Hampton (1978).
Bender/extender (BE) elements which are able to generate shear waves (S wave) and compression
waves (P wave) were used in this research (Lings & Greening, 2001). Details of the installation of the
bender elements using the cubical cell apparatus are described by O’Donovan et al. (2014). The bender
elements were inserted into the faces of the cubical sample, while it was still subject to vacuum
confinement of about 50 kPa; then the vacuum confinement was systematically reduced as the cushion
pressure was increased, initially to an isotropic cell pressure of 50 kPa. Bender element tests were
carried out at discrete confining pressures (50, 100, 200, 300, 400 and 500 kPa) both during loading
and unloading. After increasing the confining pressure to next level, a pause of at least 1 hour was
applied to allow for creep of the sample.

At each confining pressure a sinusoidal wave with a frequency of 15 kHz and 270 degrees of phase
delay was transmitted. The high frequency chosen should minimise the near field effects in received
signal (Arroyo et al., 2003). The importance of choosing a sensible method to identify the wave arrival
has been discussed extensively (e.g. Yamashita et al., 2007 & 2009). This research uses a peak to peak
method in which the time delay between the peaks of the transmitted and received waves is considered

to be the travel time.
5
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4.4 Test results

A typical series of the received S-wave voltages in one direction for smooth and rough samples at
various confining pressures is illustrated in Fig. 3. The vertical axis gives transmitted and received
voltages normalised by their maximum values; the relevant test confining pressure is indicated on each
voltage trace. Arrows show the first and second peaks in received waves. As the confining pressure
increases, the first peaks of the received waves appeared earlier, indicating higher velocities.
Comparing Fig. 3(a) and (b) the differences in response are due to the combined effects of differences
in surface stiffness and differences in sample void ratio.

The relationships between the elastic moduli and the elastic wave velocities are assumed to be
applicable here, i.e.:

M,=pV; (16)

Go =p V52 a7

where My and Gy = constrained and shear moduli, respectively; p = sample bulk density; Vp and Vs =
compression and shear wave velocities, respectively. The Poisson’s ratio of the sample (v;) can be
calculated by assuming applicability of elastic theory for homogeneous and isotropic materials (Kumar
& Madhusudhan, 2010).

M, -2G,

= 18
2(M0_Go) (%)

VS
The calculated moduli include the efffects of soil density. A correction factor based on a void ratio
function of the form proposed by Hardin & Richart (1963)

_ 2
F(e)ZM (19)
1+e

was applied to Gy for both smooth and rough assemblies. Regression analyses were used to fit
functions through the experimental data of V,-p' and e-p’ to interpolate values of V, and e at additional
values p'. Best surface fitting through the larger interpolated dataset showed that B is approximately
2.9 and that this value is equally valid for both materials. A value of 2.17, derived for rounded sand
particles (Hardin, 1965), has previously been used by Kuwano & Jardine (2002) and Yang & Gu
(2013) for data on glass ballotini.

The normalised shear modulus Go/F.) in XY (X wave propagation direction, Y wave polarisation) and
YX (Y wave propagation direction, X wave polarisation) directions are plotted against the isotropic
confining pressure in Fig 4. Here, only data for the loading case are presented. As the confining
pressure increases the difference between smooth and rough samples gradually reduced, as reported in
the analytical study by Yimsiri & Soga (2000). The power coefficients for the smooth ballotini sample
ranged from 0.35 to 0.37, while those for rough ballotini sample ranged from 0.53 to 0.66. Note that
with the exception of one measurement point at low confinement pressure that could have affected the
quality of the contacts, there is very good agreement between the measurements in both directions for
both smooth and rough samples.
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5. Discussion and comparison between analysis and experiments

In order to use experimental data to validate the newly derived analytical expressions of stiffness, a
number of particle-scale parameters were needed. Referring to Eqgs. 4-7, the normal and tangential
contact forces (Fy and Fr), the void ratio (¢) and the mean coordination number (N¢) were obtained
from DEM simulations which considered similar cubical samples (O’Donovan, 2013) and similar
particle size distributions. These data gave 0.0665 < Fr/Fn < 0.0687, 0.697 > e > 0.677 and 5.38 < N¢
<5.63 as p'increased from 0.1 MPa to 1 MPa. The friction coefficient for the ballotini («) was taken as
0.0805 based on Cavarretta et al. (2012). Referring to Fig. 5 there is a good agreement between the
experimental data and the analytical predictions using the static assumption. The kinematic assumption
overestimates the shear modulus in both cases; however, it does capture the experimental trend, i.e. the
rough particles are softer than the smooth particles and the difference in stiffness between the rough
and the smooth materials decreases with increasing p".

The evolution of the Poisson’s ratio (vs) at different confining pressures is compared in Fig. 6. The
analytical values derived from Eqs. 13 and 14 gave lower estimates for v over the range of examined
confining pressures when compared with the experiments. However, the analytical expression for v
does not depend on the surface roughness. The static hypothesis was again in better agreement with the
experimental results for smooth particles. It is interesting that the experimental value for rough
particles decreased as the confining pressure increased, while the opposite trend was observed for the
smooth particles. Similar experimental results were reported by Sharifipour & Dano (2006) where
smooth and rough (corroded) ballotini were compared. It is worth mentioning that Suwal & Kuwano
(2013) compared the Poisson’s ratio obtained in static and dynamic tests and found that the dynamic
tests gave a larger value.

6. Conclusions

This contribution has revisited the analytical model proposed by Yimsiri & Soga (2000) that relates
elastic stiffness of an assembly of particles to particle scale parameters. Drawing on recent
experimental research, the model was extended to include a reduction in the inter-particle tangential
stiffness with surface roughness. Incorporation of this feature results in more realistic values of shear
modulus and Poisson’s ratio, in particular the negative Poisson’s ratio values which were obtained
when the original model was used with (plausible) contact stiffness ratios exceeding 1 are now avoided.
To validate the new model, bender element tests on smooth and artificially roughened ballotini were
performed in a cubical cell. The particle surface roughnesses were quantified using an optical
interferometer, to enable direct comparison with the modified analytical expression. Additional
particle-scale data needed for the analytical expression were obtained from an equivalent DEM
simulation. The estimates of small-strain shear modulus obtained using the new analytical model were
in good agreement with the experimental data when the static hypothesis was used, while the
expression derived using the kinematic hypothesis was qualitatively similar. Both the analytical model
and the experimental data show that increasing particle surface roughness reduces the shear modulus at
small strains, and the magnitude of this reduction reduces with increasing isotropic confining pressure.
The analytical and experimental data both indicate that the power coefficient (b) increases with surface
roughness. The analytical expression for Poisson’s ratio does not consider surface roughness, and the
expression from the static hypothesis gave a better match to the experimental data than that obtained
using the kinematic hypothesis.



282
283
284
285
286
287
288

289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336

Acknowledgements:

Partial funding for this research was provided via EPSRC grants EP/G064954/1 and EP/G064180/1.
The first author is supported by JASSO (Japan Student Services Organization) and an Imperial College
Dixon Scholarship.

References

Arroyo, M., Muir Wood, D., & Greening, P.D. (2003) “Source near-field effects and pulse tests in soil
samples”, Géotechnique 53(3), 337-345.

Camenen, J.F., Hamlin, S., Cavarretta, I., & Ibraim, E. (2013) “Experimental and numerical
assessment of a cubical sample produced by pluviation” Géotechnique Letters 3(2), 44-51.

Campand, C., Persson, B.N.J., & Miiser, M.H. (2011) “Transverse and normal interfacial stiffness of
solids with randomly rough surfaces” Journal of Physics : Condensed Matter 23, 085001

Cavarretta, 1., Coop, M., & O’Sullivan, C. (2010) “The influence of particle characteristics on the
behaviour of coarse grained soils” Géotechnique 60(6), 413—423.

Cavarretta, 1., O’Sullivan, C., Ibraim, E., Lings, M., Hamlin, S., & Wood, D.M. (2012)
“Characterization of artificial spherical particles for DEM validation studies” Particuology 10(2),
209-220.

Chang, C., & Liao, C. (1994) “Estimates of elastic modulus for media of randomly packed granules”
Applied Mechanics Reviews 47(1S), S197-5206.

Chang, L., & Zhang, H. (2005) “On the two points of views of plastically deformed asperity contacts
with friction loading" Proceedings of the Institution of Mechanical Engineers, Part J: Journal of
Engineering Tribology 219, 201-206.

Chang, W., Etsion, L., & Bogy, D. (1988) “Static friction coefficient model for metallic rough surfaces”
Journal of Tribology 110(1), 57-63.

Duffy, J., & Mindlin, R. (1956) “Stress-strain relations and vibrations of a granular medium” ASME
Journal of Applied Mechanics 24, 585-593.

Fogale (2005) Fogale Nanotech User Manual version 1.5. Nimes, France: Fogale.

Goddard, J.D. (1990) “Nonlinear elasticity and pressure-dependent wave speeds in granular media”
Proceedings Royal Society of London A: Mathematical and Physical Sciences 430, 105-131.

Gonzalez-Valadez, M., Baltazar, A., & Dwyer-Joyce, R.S. (2010) “Study of interfacial stiffness ratio
of a rough surface in contact using a spring model” Wear 268(3-4), 373-379.

Greenwood, J., Johnson, K., & Matsubara, E. (1984) “A surface roughness parameter in Hertz contact”
Wear 100(1-3), 47-57.

Greenwood, J., & Tripp, J. (1967) “The elastic contact of rough spheres” Journal of Applied
Mechanics 34(1), 153-159.

Hardin, B.O. (1965). “Dynamic versus static shear modulus for dry sand”. Materials Research &
Standards, ASTM, 232-235.

Hardin, B.O., & Richart F.E. (1963). “Elastic wave velocities in granular soils” Journal of Soil

Mechanics & Foundations Division, ASCE 89, SM1, 33-65.

Hertz, HR., 1882. Uber die Beruhriing fester elastischer Korper. Journal Fur Die Reine Und
Angewandte Mathematik 92, 156-171.

Johnson, K. (1985) Contact mechanics. Cambridge University Press.

Kogut, L., & Etsion, 1. (2004) “A static friction model for elastic-plastic contacting rough surfaces”
Journal of Tribology 126, 34-40.

Lings, M., & Greening, P. (2001) “A novel bender/extender element for soil testing” Géotechnique
51(8), 713-717.

Kumar, J., & Madhusudhan, B.N. (2010) “Effect of relative density and confining pressure on Poisson
ratio from bender and extender elements tests” Géotechnique 60(7), 561-567.

Kuwano, R., Jardine, R. (2002). “On the applicability of cross-anisotropic elasticity to granular
materials at very small strains” Géotechnique 52(10), 727-749.

Ko, H., & Scott, R. (1967). “A new soil testing apparatus” Géotechnique 17(1), 40-57.

McDowell, G., & Bolton, M. (2001) “Micro mechanics of elastic soil” Soils and Foundations 41(6),
147-152.



337
338
339
340
341
342
343
344
345
346
347
348
349
350
3561
352
3563
354
355
356
357
3568
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383

Medina, S., Nowell, D., & Dini, D. (2013) “Analytical and numerical models for tangential stiffness of
rough elastic contacts” Tribology Letters 49(1), 103—115.

Mindlin, R.D. (1949). “Compliance of elastic bodies in contact” ASME Journal of Applied Mechanics
16, 259-268.
Mindlin, R.D., and Deresiewicz, H. (1953). “Elastic spheres in contact under varying oblique forces”

ASME Journal of Applied Mechanics 20, 327-344.

O’Connor, J., & Johnson, K. (1963) “The role of surface asperities in transmitting tangential forces
between metals” Wear 6(2), 118-139.

O'Donovan, J. (2013) Micromechanics of Wave Propagation through Granular Material. PhD Thesis
Imperial College London

O’Donovan, J., Hamlin, S., Marketos, G., O’Sullivan, C., Ibraim, E., Lings, M., Muir Wood, D. (2014).
“Micromechanics of seismic wave propagation in granular materials” Geomechanics from Micro
to Macro Proceedings IS-Cambridge 2014, Soga, K., Kumar, K., Biscontin, G. and Kuo, M.
(Eds.) 305-310, CRC Press.

Otsubo, M., O’Sullivan, C., & Sim, W.W. (2014) “A methodology for accurate roughness
measurements of soils using optical interferometry” Geomechanics from Micro to Macro
Proceedings IS-Cambridge 2014, Soga, K., Kumar, K., Biscontin, G. and Kuo, M. (Eds.)
1117-1122, CRC Press

Sadek, T., & Lings, M. (2007) “Wave transmission in Hostun sand: multiaxial experiments” Rivista
Italiana di Geotecnica, 41(2) 69-84.

Santamarina, C., & Cascante, G. (1998) “Effect of surface roughness on wave propagation parameters”
Géotechnique 48(1), 129-136.

Senetakis, K., Todisco, M.C., & Coop, M.R. (2013) “Tangential load—deflection behaviour at the
contacts of soil particles” Géotechnique Letters 3(2), 59—66.

Sharifipour, M., & Dano, C. (2006) “Effect of grains roughness on waves velocities in granular
packings” Proceedings First Euro Mediterranean in Advances on Geomaterials and Structure
123-128.

Shirley, D. (1978) “An improved shear wave transducer” Journal of the Acoustical Society of America
63, 1643-1645.

Shirley, D., &Hampton, L. (1978) “Shear-wave measurements in laboratory sediments” Journal of the
Acoustical Society of America 63, 607-613.

Suwal, L., & Kuwano, R. (2013) “Statically and Dynamically Measured Poisson’s Ratio of Granular
Soils on Triaxial Laboratory Specimens” ASTM Geotechnical Testing Journal, 36, 4, 1-13.

The Japanese Geotechnical Society (2009). Test Method for Minimum and Maximum Densities of
Sands, JGS 0161:2009 (JIS A 1224:20009).

Thomas, T.R. (1982) Rough surfaces. London: Imperial College Press.

Yamashita, S., & Fujiwara, T. (2007) International parallel test on the measurement of Gmax using
bender elements organized by TC-29.
http://geotechnicalsociety.jp/file/e/tc29/BE_Inter_PP_Test_en.pdf

Yamashita, S., Kawaguchi, T., Nakata, Y., Mikami, T., Fujiwara, T., & Shibuya, S. (2009)
“Interpretation of international parallel test on the measurement of Gmax using bender elements”
Soils and Foundations 49(4), 631-650.

Yang, J. and Gu, X.Q. (2013) “Shear stiffness of granular material at small strains: does it depend on
grain size?” Géotechnique 63(2), 165-179.

Yimsiri, S., & Soga, K. (2000) “Micromechanics-based stress—strain behaviour of soils at small strains”

Géotechnique 50(1), 559-571.



384
385

386
387

Table 1. Summary of contact model presented by Yimsiri & Soga (2000) and a suggested
modification. (Tangential contact stiffness is for a virgin tangential load).

Model Normal contact stiffness, K y Tangential contact stiffness, K
Lo 1/3
HertZ - Mmdhn & KSmuoth_ 2Gp |:37”(1 _VP):| F1/3
. . N - N 1/3
DereSIeWICZ (1953) 1_Vp SGP KSmooth _ 2 (1 - VP) KSm(th (1 _ FT ]
T - N
Yimsiri & Soga 2-v, HEFy
(2000) K Rough dF N
N - d5 Rough 2(1—1/ ) F 1/3
Modified expression ' Ko = ——— L gt - —L
2-v, uF,
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Figure 1. (a) Inclined contact planes at asperities between rough-rough surfaces and (b)

smooth-smooth surfaces.
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Figure 2. Microscope images and surface topographies of tested materials. (a) smooth ballotini,

(b) rough ballotini.
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Figure 3. S-wave response in (a) smooth assembly and (b) rough assembly in XY direction at
various mean confining pressures. (Arrows indicate the first and second peaks in received
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Figure 4. Pressure dependency of shear stiffness in isotropic

loading for smooth and rough

ballotini samples based on shear wave velocity measurements of waves propagated and polarised
in the horizontal plane XY of the cubical sample (in the legend, b is the power coefficient of
stiffness — pressure relation, while S, is the root mean square of roughness).
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Figure 5. Comparison between analytical model and experimental results on relationship
between shear modulus and isotropic confining pressure.

O 0"":—:/ 3 o Exp. (Smooth), Sq:0.036 pm |
_ -7 e Kinematic (5), Sq:0.036 pm |
—-=- Static (6), Sq=0.036 pm
_ A"' A Exp. (Rough), Sq=0.67 pm |
— — Kinematic (5), Sq:0.67 pm
a Static (6), Sq:0.67 pm
20 : : : : : —
0.1 0.5 1

15



418

419
420
421

0.5 - . -

Kinematic (12)
i = = Static (13)
i‘“ 04r+ O Exp. (Smooth), Sq:0'036 um| |
= A A Exp. (Rough), S =0.67 jum
= | a .
s 03¢ A A 8
gy
: o) a 6 R
lg 02 —=—=—-=—-=- G--0--0-0-=-----
..; O
2
3 0.1}
=¥
0 | | I I : . IR TR W
0.1 0.5 1

Isotropic confining pressure, p' : MPa
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