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Kamiya A, Takahashi T. Quantitative assessments of morpholog-
ical and functional properties of biological trees based on their fractal
nature. J Appl Physiol 102: 2315–2323, 2007. First published March
8, 2007; doi:10.1152/japplphysiol.00856.2006.—The branching sys-
tems in our body (vascular and bronchial trees) and those in the
environment (plant trees and river systems) are characterized by a
fractal nature: the self-similarity in the bifurcation pattern. They
increase their branch density toward terminals according to a power
function with the exponent called fractal dimension (D). From a
stochastic model based-on this feature, we formulated the fractal-
based integrals to calculate such morphological parameters as aggre-
gated branch length, surface area, and content volume for any given
range of radius (r). It was followed by the derivation of branch
number and cross-sectional area, by virtue of the logarithmic section-
ing of the r axis and of the branch radius-length relation also given by
a power function of r with an exponent (�). These derivatives allowed
us to quantify various hydrodynamic parameters of vascular and
bronchial trees as fluid conduit systems, including the individual
branch flow rate, mean flow velocity, wall shear rate and stress,
internal pressure, and circumferential tension. The validity of these
expressions was verified by comparing the outcomes with actual data
measured in vivo in the vascular beds. From additional analyses of the
terminal branch number, we found a simple equation relating the
exponent (m) of the empirical power law (Murray’s so-called cube
law) to the other exponents as (m � D � �). Finally, allometric
studies of mammalian vascular trees revealed uniform and scale-
independent distributions of terminal arterioles in organs, which
afforded an infarct index, reflecting the severity of tissue damage
following arterial infarction.

fractal dimension; allometric scaling; Murray; vascular beds; wall
shear stress

AS MANDELBROT (24) stated in his elegant monograph, biological
branching systems such as vascular, bronchial, and plant trees
all exhibit fractal nature, i.e., a scale-independent self-similar-
ity in the bifurcation pattern of their architecture (2, 10). The
fractal dimensions (D) of these biological systems have been
measured using various techniques, as reported in the literature
for vascular (5, 27, 39), bronchial (21, 31), and plant (26, 28,
40) trees. In all but a few cases (27, 28), the entire branch
distribution is well simulated by a power function with a single
exponent (�D), as discussed later. The arguments developed in
these investigations have tended to concentrate on profound
mathematical implications underlying the fractal geometry (2,
24); however, its applicability to practical problems in biology
has been less explored. Here, we try to supplement some
pragmatic methodology to use these D values in quantitative
analyses of the biological branching systems, which may shed

light on additional significance of the fractal theory in biolog-
ical sciences.

The primary aim of this study is to show that the fundamen-
tal quantities of the fractal branching systems can be formu-
lated in simple rational functions. On the basis of a stochastic
model linking the probability of branch density with aggre-
gated branch length, morphological parameters are expressed
in plain definite integrals with D for a desired range of branch
radius. Then, fluid dynamic parameters of vascular and bron-
chial trees as the conduit systems are derived in power
functions of radius including D in the exponents. The
reliability of these expressions will be examined by com-
paring their outcomes with actual data measured in vivo in
the vascular beds (47).

Another aim of this study is to clarify the relationship
between the fractal dimension and the exponent of the empir-
ical power law in the vascular and bronchial trees (Murray’s
so-called cube law), of which close correlation has been
delineated by Mandelbrot (24). We will present a patent
mathematical equation relating these two parameters, in cor-
poration with the branch length-radius relationship by Suwa
and Takahashi (41).

Further discussion will be extended for applicability of the
present fractal models to various biological problems. This
included the allometric assessment of the terminal branch
number of the vascular tree in mammalian organs, which gave
us the opportunity to propose an infarct index, a quotient of
clinical significance.

METHODS

The basic model in this study is constructed on the common
stochastic characteristics of fractal trees. Its principle, however, is best
interpreted by considering a situation measuring a fractal dimension
(D) of an in situ vascular tree from cross sections of the host tissue
specimen stained with a blood vessel marker (5, 21; Fig. 1A). Any
cross section is randomly selected and is examined microscopically by
altering the resolution suitable to relevant vascular sizes. The radius of
each vessel is measured from the minor axis of its elliptic cut end
(Fig. 1B), and the number of vessels larger in radius than the variable
(r) is counted to calculate the density per unit area. The density data
accumulated by repeating this procedure for other sections are used to
determine the dimension D from the negative slope of their log-log
plot against r (Fig. 1C). The above procedure to determine D is similar
to that of the ordinary box-counting method (26, 27). The estimated
value of D must be between one and two, because data are sampled
from planes (24). When the acquired power function of r is normal-
ized with the total count, it represents the probability �(r) that a
branch larger than r in radius is observed in any unit area of a cross
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section and can be written with the probability density function �(r)
as follows:

��r� � 	
r




��r�dr, ��r� � �r�D�1, � �
D

rt
�D � ro

�D, (1)

The coefficient � is given as above, because in biological trees, the
minimum branch radius at the terminals (rt) is known to be almost
uniform (37) and its value as well as the maximum radius at the origin
(ro) is usually measurable [�(r) � 0, for r � rt or r  ro and
	0


 �(r)dr � 	rt

ro �(r)dr � 1]. We will discuss later about the
morphological and functional uniformity of the terminal branches in
these trees.

A novel point in the present stochastic approach is to introduce a
new term, “aggregated branch length,” and to relate it to the above
probability density function �(r) under the stationary condition. The
aggregated branch length is defined as the sum of the branch length of
vessels in a group sorted for radius around r within a certain minute
deviation (dr). Obviously, the longer the aggregated branch length in
the host specimen is, the more frequently the vessels in the group are
observed in any cross section. This linear relationship is simply
expressed by employing the density function of the aggregated length
la(r) as follows:

la�r�dr � ���r�dr, (2)

where � is a scale factor in the length dimension. From Eqs. 1 and 2,
the aggregated branch length (�L) within a certain radius range
r1 � r � r2 is calculated by integrating la(r)dr over the range:

�L � 	
r1

r2

la�r�dr �
��

� D
�r2

�D � r1
�D�. (3)

It is evident that the coefficient � represents the entire branch length
[� � 	r1

r2 la (r)dr]. Analogously, the surface area (�S) and content
volume (�V) of the branches are obtained by integrating 2�rla(r)dr
and �r2la(r)dr for the given radius range:

�S � 	
r1

r2

2�rla�r�dr �
2���

� D � 1
�r2

�D�1 � r1
�D�1�, (4)

�V � 	
r1

r2

�r2la�r�dr �
���

�D � 2
�r2

�D�2 � r1
�D�2�. (5)

These fractal-based integrals are probably the first mathematical
formulations that clearly describe the structural parameters of the trees
with discrete functions of branch radii. Notice that the distributions of
these morphological quantities along the vessel size have convention-
ally been estimated only in semi-quantitative ways in the systemic
vasculatures (6, 36) or calculated in the symmetric and regularly
downsizing branch models as a function of branch generation in the
pulmonary arterial and bronchial systems (3, 23, 44).

By introducing several basic assumptions, the above integrals allow
us to quantify the functional parameters of vascular and bronchial
trees as fluid conduit systems, in combination with the branch length-
radius (Lb-r) relationship established by Suwa and Takahashi (41):

Lb�r� � �r�. (6)

The values of the exponent (�) in various vascular beds are clustered
around 1.0 (41). A similar relation has been reported for the bronchial
system (43) as well as plant trees (32).

The first assumption employed is the steady state of fluid-dynamic
parameters under constant flow distribution of incompressible fluid. If
pulsations of the branch radius and flow due to cardiac beats or
pulmonary ventilation are significant, their mean values through the
cycles are used for calculations of the parameters. Otherwise, more
elaborate models including pulsatile variables [e.g., Painter et al. (33)]
should be employed. It is also assumed that in the vascular tree, all
vessels except capillaries are fully recruited.

The derivation of the functional parameters is initiated by evalu-
ating the branch number Nb(r) as a discrete function of radius r. To do
so, we derive the expectation of aggregated branch length L� a(r) at r
from the integral in Eq. 3, according to the logarithmic sectioning of
the r axis (see APPENDIX A):

L� a�r� � ��r�D.

Then, the branch number Nb (r) is acquired from the ratio L� a(r)/Lb(r):

Nb�r� �
L� a�r�

Lb�r�
�

��

�
r�D�� � � r

ro
��D��

, (7)

since the number at the origin is unity [Nb (ro) � 1, then ��/� �
ro
D��].

Fig. 1. Schematic illustrations for interpreting the method to measure a fractal dimension (D) of a natural branching system. A: in situ vascular tree in the tissue
specimen. B: cross section of the tissue including the elliptic cut ends of vascular branches of various sizes, the short axes of which designate the vessel radii.
C: when the number of branches [Ñ(r)] larger in radius than the variable (r) is counted and plotted against r on a log-log scale, the gradient of the linear slope
represents the dimension D of the fractal tree. Data points in C are plotted by partly modifying the data measured in the rat brain vasculature by Matsuo et al.
(27; with permission).
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The above expression of Nb (r) allows similar fractal-based formu-
lations for cross-sectional area (Ac), mean flow velocity (Um), indi-
vidual branch flow (Fb), and wall shear rate (�̇w), all in the forms of
the ratio, r/ro or r/rt, with their values at the origin (Aco, Umo, Fbo, and
�̇wo) or at the terminals (Act, Umt, Fbt, and �̇wt):

Ac�r� � �r2Nb�r� � Aco� r

ro
��D���2

� Act� r

rt
��D���2

,

Um�r� �
Fbo

Ac�r�
� Umo� r

ro
�D���2

� Umt� r

rt
�D���2

,

Fb�r� � �r2Um�r� � Fbo� r

ro
�D��

� Fbt� r

rt
�D��

,

�̇w�r� �
4Um�r�

r
� �̇wo� r

ro
�D���3

� �̇wt� r

rt
�D���3

.

(8)

Since Nb(r) in Eq. 7 implies the expectation of the branch number, the
derived parameters in Eq. 8 represent the averaged values for the same
size branches, which absorb the statistical deviations due to the
asymmetric dichotomy involvement (23) and so on (see APPENDIX B).

The profile of the internal pressure P(r) is another important
variable of fluid dynamics in the conduit systems, particularly in the
vascular system. Hagen-Poiseuille’s law indicates that the pressure
drop (�P) against flow Fb along a branch of radius r and length Lb is
written as:

�P �
8��r�Fb

�r4 Lb �
8��r�Um�r�

r2 Lb,

where �(r) is the radius-dependent fluid viscosity and Um(r) is the
mean flow velocity in Eq. 8. Because the differentiation of Eq. 6 with
respect to r yields dLb/dr � ��r��1 and �P/Lb � �P/�Lb, the pressure
gradient against radius (dP/dr) is written as:

dP

dr
�

dLb

dr

�P

�Lb

� 8��r��3��r�Um�r�.

When we deal with blood viscosity in the vascular system, the
simplest mathematical model of its vessel-radius dependency �(r) has
been proposed by Haynes (11):

��r� �
�


�1 � �/r�2. (9)

As seen in Fig. 2, this equation well simulates the apparent viscosity
data of blood at least for the vessel sizes relevant in this study (r � 4
�m), if appropriate values are assigned to the saturated viscosity at a
large tube (�
) and to the constant of red cell size order (�).
Accordingly, the pressure gradient in the vascular system against
branch radius, dP/dr, can be expressed in the following equation:

dP

dr
� � k

rD�2��3

�r � ��2, k �
8��2�
Fbo

���
(10)

The symbol “�” corresponds to the arterial and venous sides, respec-
tively. The pressure profile P(r) is obtained by integrating the above
differential equation. In general, the solution is given by binomial
integration (42). However, in a special case where the exponent of r
is equal to unity (D � 2� � 3 � 1) and the terminal pressure (Pt) is
constant as usual (37), P(r) is written as:

P�r� � Pt � k� ln� r � �

rt � �
� � �� 1

r � �
�

1

Pt � �
�� . (11)

It is also suggested in Eq. 11 that when the constant k in Eq. 10 is
difficult to determine and the pressure at the origin (Po) is known, an
alternative expression of �k is useful:

�k �
Po � Pt

ln�ro � �

rt � �
� � �� 1

ro � �
�

1

rt � �
�.

Note that the term (Po�Pt) is negative in the venous system.
The following analyses are concerned with the relation of the

present fractal model to the empirical power law, which is well known
to hold for the bifurcating structure in vascular and other biological
trees. At every branching point, the radius of a mother branch (r0) is
related to those of daughter branches (r1 and r2) by a certain number
(m) with a small deviation (19):

r0
m � r1

m � r2
m. (12)

Mandelbrot (24) called this number “m” as the diameter exponent (by
designating it with a symbol “�”) and ascribed it to the proof that the
biological trees are possessed of a fractal nature, i.e., self-similarity in
the branching pattern. The system-specific values of m, estimated
morphometrically in various mammal vascular beds, range from 2.7 to
3.0 (15, 16, 20, 29, 35, 41), whereas those in the bronchial and plant
trees are reported to be around 3.0 (14, 21, 22, 23) and 2.5 (30),
respectively.

In order to clarify the relationship between the fractal dimension D
and the diameter exponent m, let us consider a set of three trees, the
origin of which is shared by the mother and daughter branches, as
shown in Fig. 3. Obviously, the number of terminal branches of the
mother tree is equal to the sum of those of the daughter trees. When
the terminal radii rt are largely equal in these trees as ordinal, this
relationship is written by applying the terminal branch number Nb (rt)
in Eq. 7 as follows:

� rt

r0
���D���

� � rt

r1
���D���

� � rt

r2
���D���

or r0
D�� � r1

D�� � r2
D��.

In comparison with Eq. 12, we have a new formula,

m � D � �. (13)

This quite simple equation directly links the empirical power law and
the present fractal model of the biological branching systems.

Fig. 2. Apparent blood viscosity data showing the tube radius dependency and
its simulation curve proposed by Haynes (11). ●, Viscosity data of human
blood measured in vitro with tubes of various radii, and the solid line shows the
simulation curve in Eq. 9 with the parameter values of �
 � 4.0 cP and � �
4.29 �m, which was determined by the least squares fitting to the data
points (4).
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RESULTS

When the values of D and � are given, the aggregated branch
length �L, surface area �S, and content volume �V can be
calculated from the fractal-based integrals in Eqs. 3 to 5 for any
radius range. Figure 4A illustrates an example of such calcu-
lations for three different values of D (� 1.4, 1.6, and 1.8),
which were carried out for the systemic arterial system (�LSA,
�SSA, and �VSA) in an adult human (70 kg in body weight,
Wb), by assessing � from the physiological estimate of total
systemic arterial volume (700 ml, 6). The relative distributions
of these morphological parameters to the totals within loga-
rithmically scaled radius ranges are also illustrated in Fig. 4B.
Note the different trends in these relative distributions, mark-
edly increasing in �LSA, but decreasing in �VSA toward the
terminals. Such tendencies clearly differing in the distributions
of the individual morphological parameters over the entire
radius range have not been well explored in conventional
studies, at least in the systemic vasculatures (6, 36).

Concerning the functional parameters, the reliability of the
formulae in Eqs. 8–11 was examined by comparing their
outcomes with actual measurements obtained in the vascular
system. Figure 5 illustrates in vivo data of mean red cell flow
velocity and blood pressure, measured in the peripheral vas-
cular beds of the rat mesentery by Zweifach and Lipowsky
(47), probably under considerably vasodilated conditions.
These data are quite rare and valuable because they are plotted
against vessel radius at each measuring site. The thin broken
lines indicate the curves of mean flow velocity Um(r) calcu-
lated from Eq. 8 for D � 1.75 � 0.05 and the value of � � 1.13
reported for this vascular bed (41). As seen in Fig. 5, the
obtained curves for D � 1.75 well simulated the actual data of
mean flow velocity on both the arterial and venous sides. In
addition, the exponent of r in Eq. 10 according to D (�1.75)

and � (�1.13) above, happened to be very close to 1.0 (D �
2� � 3 � 1.01). Therefore, the pressure profiles were simu-
lated using Eq. 11 as designated by the broad solid lines in Fig.
5. The curves showed fine fitting to the in vivo pressure data in
both the arterial and venous vascular beds. Such agreements
between the in vivo data and the simulated curves in Fig. 5
confirmed the reliability of the proposed fractal model in
quantitative assessments of hemodynamic parameters in the
systemic circulation.

From �̇w(r), �(r), and P(r) in Eqs. 8, 9, and 11, we are able
to calculate wall shear stress [�w(r) � �(r)�̇w(r)] and circum-
ferential wall tension [Tc(r) � rP(r)], two major biomechanical
factors that induce the adaptive remodeling of vascular walls
(17, 25). Figure 6 depicts the distributions of these factors in
the vascular system, computed over the entire range of vessel
radius (4 �m � 1 cm) using the values of D � 1.75 � 0.05, the
same value of � and other coefficients as those in Fig. 5. The
profiles of �w(r) visualized by the three curves to the individual
D values revealed convex curves. They attained their peaks in
a radius range from 30 to 90 �m, although the shear stress
levels were rather higher compared with conventional data
(15), probably due to considerably high flow velocity data in
Fig. 5 (47). On the other hand, the profile of Tc(r) was
presented by a single curve, because the exponents of r in Eq.
10 (D � 2� � 3 � 0.96, 1.01, and 1.06) corresponding to the
above D values were all close to 1.0 and Eq. 11 could be
employed for P(r) calculation. The curve of Tc(r) showed a
largely monotonous decline toward the terminals in both sides,
except for the portion of very large veins.

Regarding the relation between the power law exponent and
the fractal dimension in Eq. 13 (m � D � �), the values of D �
1.75 and � � 1.13 in Fig. 5 rendered m � 2.88, which fell just
within the range of conventional m estimates of 2.7 � 3.0 for
the vascular trees (15, 16, 20, 29, 35, 41).

DISCUSSION

The arguments so far have been carried out under the
assumption that any branching system is entirely prescribed by
a single fractal dimension. A few studies (27, 28), however,
have shown that it is not true in some cases, where the system
appears to be ruled by two different dimensions for large and
small radius ranges. It is, however, not a serious problem for
the proposed fractal model, being essentially based on definite
integrals, to rewrite the model using multiple D values, so long
as the radius zones corresponding to them are explicitly de-
fined. A model of double diameter exponents (m � 2 and 3) in
the vascular tree was also adopted by West et al. (45) for
analyses of the allometric scaling law in mammals. In addition,
several studies (33, 45) proposed dynamic models, in which
pulsatile movement of the duct wall is involved with pressure
and flow variations due to cardiac beats or pulmonary ventila-
tion, although the model in this study is confined to the
steady-flow condition.

The other major assumption underlying this study is the
uniform size of terminal branches in biological trees. In com-
parative animal physiology (37, 38), it is well established that
the terminal branches in the vascular and bronchial trees are
body scale-independently uniform in their size. Moreover, we
usually observe in plant trees that the terminal branches are
formed in a species-specific uniform shape and size. The terminal

Fig. 3. Schematic drawing interpreting a very simple relationship of terminal
branch numbers in any tree, indicating that when a mother branch (b0) is
divided into 2 daughter branches (b1 and b2), the terminal number of the b0 tree
[Nb0 (rt)] is equal to the sum of the individual terminal numbers of trees b1 and
b2 [Nb1 (rt) � Nb2 (rt)].
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blood pressure in mammals is also known to be regulated at a
constant, because the hydrostatic capillary pressure is one of
the essential factors to control fluid balance across the capillary
wall (38).

The results in Figs. 4 and 5 demonstrated that the fractal-
based integrals and their derivatives can be feasibly applied to
the assessments of morphological and functional quantities of
the vascular system, although the applicable situation is limited
to the stationary state, under which neither physiological re-
modeling nor pathological deterioration is taking place. These
attempts may be extended to the bronchial system and the
pulmonary functions as well. Compared with the bronchial
tree model by Horsfield et al. (13, 14) and others (9, 21, 22,
23), one of the characteristics of the proposed model is that the
available morphological information is only coordinated with
the branch radius and is free from branch generation number-
ing (see APPENDIX B). In some cases, such a feature of this model
may serve more direct approaches to various physiological
phenomena taking place in the bronchial ducts and alveoli. For
example, the regional distribution of surface area �S in the
bronchial tree given by Eq. 4 may facilitate simulations of heat
and vapor dissipation through the duct wall. The distribution of
content air volume �V estimated from Eq. 5 may also provide

an accurate modeling of diffusion and ventilation processes of
gases in the bronchial duct branches and alveoli.

The application of this fractal model to plant trees is also
promising. The fractal-based integral of content volume �V in
Eq. 5 suggests that only a few data for a tree, such as the
species-specific D and trunk size, are sufficient for predicting
the volume of wood in a relevant range of timber sizes
contained in the tree. This kind of assessment would certainly
be beneficial in forest resource management and its efficient
industrial utilization. The integral of surface area �S in Eq. 4
is also informative when tree bark contains products of agri-
cultural or pharmaceutical interest. Furthermore, it is useful to
estimate the oxygen production rate of a tree or a forest, which
is one of essential factors in ecological assessments, through
the leaf surface area calculable from the number of terminal
branches using Eq. 7. Similar analyses can be extended to plant
roots, because the root system possesses a fractal nature in the
branching structure (40). Mass assessment of fine plant roots in
the ground may help quantify their water-holding capacity,
which is an important factor in protecting against floods and
landslides after heavy rains.

Because these fractal trees are widely distributed in nature,
applicable fields of the proposed model (Eqs. 3–13) are ex-

Fig. 4. Regional distributions of morphological parameters for the systemic arterial systems of a 70-kg human. A: log-log plots of aggregated branch length
(�LSA), surface area (�SSA), and content volume (�VSA) vs. branch radius (r) calculated from Eqs. 3–5. The parameters employed include: D � 1.4, 1.6, and
1.8; r1 � rt � 4 �m; r2 � ro � 1 cm; and total systemic arterial volume (� 700 ml, Ref. 6). B: relative values of �LSA, �SSA, and �VSA to the total values
within the given ranges of radius for the above 3 values of D.
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pected to be very vast, including cardiovascular and pulmonary
physiology, pathology, and biomechanics, clinical medicine,
botany, agriculture, forestry and related industrial technolo-
gies, ecology and environmental assessment, and many other
areas. In addition to such pragmatic advantages, the proposed
model may provide unique quantitative approaches to various
biological problems, as described below.

The theoretical relationship between the empirical power
law and the proposed fractal model in biological branching
systems was clearly described by Eq. 13 (m �D � �) in this
study. Mandelbrot (24) proclaimed their close correlation and
called the diameter exponent “�” (� m) as a kind of fractal
dimension. However, he referred no such relation as Eq. 13,
probably because his concept of fractal dimension was too
profound and comprehensive to encounter this kind of plain
equality. Concise definition of D in the present stochastic
model is essential to derive Eq. 13, with the aid of the branch
length-radius relationship by Suwa and Takahashi (41). Any-
way, a stable cross bridge has been established between the
empirical power law and the fractal model in the branching
systems. We are now able to convert any information of either
side to the other.

In this study, the value of m was calculated from D (�1.75)
and � (�1.13), yielding a figure “m � 2.88” that was well

consistent with its conventional estimates as described before.
In many cases, however, Eq. 13 may be used to assess D,
because the data of m for various tree systems have been
accumulated among the arguments of the power law (14–16,
21–23, 29, 30, 35, 41) and many data of � are also available in
the morphometric reports of the biological trees (32, 41, 43).

The reason why the diameter exponent m is close to 3 in the
vascular system has been explained with the optimum model
by Murray (29) that the cost function of a vessel branch,
consisting of the mechanical energy expenditure due to viscous
resistance and the chemical energy cost in proportion to blood
volume, is minimized when m � 3 (the minimum work model).
The physiological mechanism inducing this optimal relation
was first experimentally confirmed by Kamiya and Togawa
(17) to be the adaptive response of the vascular wall to fluid
shear stress. The response was found to remodel the diameter
so as to maintain the stress at a constant against flow changes
and the diameter exponent m at 3. Many studies (15, 16, 20, 29,
35, 41), however, showed that the values of m reported for
various vascular trees were slightly but always less than 3. A
later survey by Kamiya et al. (15) also revealed a large
difference in wall shear stress levels between the arterial and
venous sides and vessel size dependency in both sides
(see Fig. 6). These findings suggest a clear inconsistency

Fig. 5. In vivo data of mean red cell flow
velocity (�) and of blood pressure (●) mea-
sured in the peripheral vascular beds of the rat
mesentery (47) and their simulation curves of
the fractal model. The thin broken lines indi-
cate the mean flow velocity curves Um(r) cal-
culated for D � 1.75 � 0.05 and � � 1.13
(41) from Eq. 8, using the terminal velocity
data (Umt � 0.27 mm/s at the arteriolar end
and Umt � 0.13 mm/s at the venular end)
sampled in this figure. The thick solid line
indicates the pressure profile P(r) calculated
from Eq. 11 using the data � � 4.29 �m and
the sample data of Pt � 34 mmHg at rt � 4
�m and Po � 82 mmHg at ro � 29 �m for the
arterial side, and Pt � 32 mmHg at rt � 4 �m
and Po � 20 mmHg at ro � 29 �m for the
venous side.

Fig. 6. Wall shear stress (�w) and circumfer-
ential wall tension (Tc) calculated for the en-
tire range of the vascular radius 4 �m � rt �
r � ro � 1.0 cm, by employing the same
values of D (�1.75 � 0.05), � (� 1.13) and
other coefficients as those in Fig. 5. The pro-
file of �w (r) [��(r)�̇(r)] is shown with 3
curves corresponding to the 3 values of D in
either of the arterial and venous sides whereas
that of Tc (r)[�rP(r)] is depicted with a single
curve because P(r) is calculated by Eq. 11 (see
text).
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between the actual situations and the optimum state predicting
even levels of the stress and the exponent anywhere in the
vasculature. Although Karau et al. (19) ascribed this discrep-
ancy to the heterogeneity of individual m values, another
possible explanation is that some energy term, probably related
to the circumferential tension or the internal pressure (34),
might be lacking in the conventional cost function of the
vascular system in the minimum work model (29). The profiles
of wall shear stress (�w) and circumferential tension (Tc)
depicted against branch radius in Fig. 6 may help to yield some
new concept about the optimality model or the design principle
of the entire vascular tree (34). In addition to such a large scale
problem, Murray’s law (m � 3) still holds for neighboring
branches, suggesting that the fractal dimension D and the
branch length exponent � are also deliberately selected to
maintain the functional properties of vascular trees.

A very interesting optimum model of the vascular system
has been presented by West et al. (45), to explain the well
established allometric scaling law between basal metabolism or
oxygen consumption (V̇O2) and the body weight (Wb,), namely
V̇O2 � Wb

a, a � 3/4 (Ref. 37). Their symmetric model of the
arterial tree includes the cross-sectional “area preserving” zone
(m � 2) in a few proximal branches, within which pulsatile
variations of the vessel wall via internal pressure pulsation are
prevailing and play an important role in yielding the predicted
relationship of a � 3/4, instead of a � 1 under the steady flow
condition. The validity of this model may be certified when
some physiological or biomechanical evidence is presented to
confirm that the amount of energy dissipation due to pulsations
in the major arteries is large enough to explain a shift of the
body mass exponent of basal metabolism (a) from 1 in the
steady state to 3/4 in the pulsatile state. Zamir (46) suggested
that during pulsatile flow at a low-frequency power dissi-
pation due to the oscillatory flow part in the vascular system
amounts to about one-half of that required for the steady
flow part.

The fractal model in this study can also develop some scope
of the scaling problems (37) via the allometric assessment of
the terminal numbers in the vascular trees. According to Holt
et al. (12), the radius of the aorta (ro, cm) in mammals is
expressed as a function of their body weight (Wb, kg) as
follows:

ro � 0.205Wb
0.36

By substituting the above into Eq. 7 with the values of D �
� � 2.88 and rt � 4 � 10�4 cm, we obtain the number of
terminals (systemic arterioles) Nb (rt):

Nb�rt� � � 4 � 10�4

0.205Wb
0.36��2.88

� 6.367 � 107Wb
1.04. (14)

Consequently, the arteriolar number Nb(rt) in a 70-kg human is
estimated to be 5.2 � 109, which is consistent with the
estimates for the capillary number in the human systemic
vascular beds of approximately 2 � 4 � 1010 (6, 7), since
several capillaries are ordinarily observed to branch off from
an arteriole in the vascular bed. Of real importance in Eq. 14,
however, is the body weight exponent of 1.04, being very close
to 1. This implies that the density of terminal arterioles in the
body is nearly equal in all mammals, despite large differences
in the body weight itself ranging from a few grams to several

tons (37). In addition, the relative weight of an organ to total
body weight is known to be constant among mammals, with
few exceptions (37). It is therefore likely that the density level
of terminals in a certain organ is uniform in these animals,
although the individual densities may differ from organ to
organ. This hypothesis is supported by the fact that, in the
lungs of terrestrial mammals, each alveolus is nearly equal in
size, whereas the total surface area of alveoli and the capillary
volume surrounding them are almost proportional to Wb (the
exponents of which are 0.95 and 1.00, respectively Ref. 8).
Furthermore, our preceding model analyses of mammalian
skeletal muscles (1, 18) demonstrated that the structure of the
capillary-tissue arrangement (Krogh’s cylinder) is most effi-
ciently tailored for oxygen delivery to tissue during heavy
muscular exercise and that the optimum radius of the cylinder
is scale-independently constant (the exponent of Wb �
�0.009). These findings suggest that for any organ, the basic
unit composed of a single capillary and some organ-specific
cells is uniform in size and shape in mammal species, probably
because the unit is designed a priori to attain the maximum
efficiency in transcapillary substance exchange during the
highest metabolic activity in tissue. The organ size propor-
tional to Wb is mainly ascribed to the accumulated number of
the basic units. When these uniform units are compactly
arranged in a space and are connected with a vascular system
ruled by Murray’s law (m � 3) and with a similarly designed
excretory system if necessary, the consequence may bring
about a model of the optimum organ, provided with the highest
functional efficiency. If the terminal arterioles in an organ are
uniformly distributed as discussed above, we can define an
infarct index, a quotient of clinical significance. When the flow
through an artery of physiological radius r is occluded in an
organ, the ratio of the infarct tissue mass to the whole organ,
I(r), is written from Eqs. 7 and 13 as:

I�r� �

�rt

r
���D���

� rt

ro
���D��� � � r

ro
�m

, (15)

where m is the diameter exponent and ro is the vascular radius
at the origin. The value of this quotient, 0 � I(r) � 1, may well
reflect the severity of tissue damage in the organ following
arterial infarction. In a particular case of coronary infarction,
the ratio of ischemic myocardium, Ic(r), is estimated from:

Ic�r� �
rm

�rcl�m � �rcr�
m
, (16)

where rcl and rcr are the radii of the left and right coronary
arteries at the roots. As the values of m in the coronary artery
have been reported, e.g., 2.7, according to Suwa and Takahashi
(41), this myocardial infarct index is readily assessable from
routine angiographical data. Extensive applicability of this
index in clinical medicine is expected.

APPENDIX A

The expectation of branch number Nb (r) by logarithmic sectioning
of the r axis. The aggregated branch length �L in Eq. 3 is defined as
an integral for a given range of branch radius. Here we attempt to
derive the expectation of this length as a discrete function of radius r.
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To do so, we need to notice that the probability density of the fractal
distribution �(r) is extremely skewed toward the terminals as shown
in Eq. 1 and the variable range of r is so great, e.g., in the vascular
system, that r varies from ro in centimeter order to rt in micrometer
level (Fig. 3). Accordingly, we introduce an alternative variable, x �
�ln (r/ro): dx � �dr/r, r � roe�x, which allows to divide the entire
variable range into n sections of the same width �x�(xt�xo)/n: xt �
�ln (rt/ro), xo � 0, and to allocate a largely comparable number of
branches to every section. Each regional expectation of the aggregated
branch length (�L� i) in such a logarithmic section is obtained by
integrating la(r)dr over �x around the midpoint of the ith section, xi �
(i � 1/2)�x, (i � 1,2,. . ., n):

�L� i � 	
xi��x/2

xi��x/2

la�r�dr � 	
xi��x/2

xi��x/2

��ro
�DeDxdx � ��ri

�D�x,

��ri � roxi�

if �x is adequately small. Therefore, the mean aggregated length at
each section (L� ai) is given by L� ai � �L� i/�x � ��ri

�D. On the other
hand, the branch length at the same midpoint (Lbi) is expressed from
Eq. 6 as Lbi � �xi

�. Then, the ratio L� ai/Lbi represents the expectation
of branch number Nbi at the ith section:

Nbi �
L� ai

Lbi

�
��

�
ri

�D��.

The branch number Nb (r) at radius r is obtained from the above, by
taking n to infinity (n 3 
) and rewriting ri 3 r and Nbi 3 Nb (r):

Nb�r� �
��

�
r�D�� � � r

ro
��D��

,

since the branch number at the origin is equal to 1 (��/� � ro
D��).

Equation 7 in the text has been deduced.

APPENDIX B

The total flow and other functional parameters in Eq. 8 in an
asymmetric branching system. It is obvious that if the branching
system is symmetric, the functional parameters such as cross-sectional
area (Ac), mean flow velocity (Um), individual branch flow (Fb), and
wall shear rate (�̇w) can be explicitly expressed by Eq. 8. Here we
show that this satisfactory condition (the symmetry of branch bifur-
cations) is not a necessary condition for these parameters, if they
represent the mean values (expectations) for the same radius branches.

First we examine that under a steady flow condition, the total flow
through branches of an arbitrary radius (r) is equal to that at the origin,
Fbo, although the branch system includes asymmetric bifurcations.
Now, let us consider an ordinary tree, in which the branches ever
reduce the radii toward the terminals but discontinuously with no
tapering in each branch. If the radius of a mother branch at a
branching point is larger than the variable (r) and the radius of either
daughter branch becomes equal to or less than r by a single dichot-
omy, the branching point may be termed a crossing site of the radius
level, r. The sum of the fluid flow through the daughter branches, not
exceeding r in the radius at every crossing site, may be regarded as the
total flow F(r) at radius r. Now, note that any stream line starting from
the origin must pass the crossing site of the level r, once and only
once, until it reaches the terminals. Then it is obvious that the total
flow F(r) at the level r is equal to the flow at the origin, Fbo. This
means that the total flow F(r) is constant for any r level in the range,
rt � r � ro, so long as the fluid does not leak out from the duct wall.

The above argument also indicates that the total flow F(r) at radius r
can be determined, regardless of how many branches of asymmetric
bifurcation are involved at the crossing sites. It implies that the total flow
F(r) is preserved at a constant at any level of r, irrespective of the
heterogeneity in the branching architecture. In addition, the expectation of

branch number Nb(r) determined in APPENDIX A is not concerned with
branch asymmetry. Therefore, the heterogeneity in the branching system
has no influence on the functional parameters in Eq. 8, because they are
all determined by Nb (r) and F(r). It is thus evident that the symmetry of
the branching system is not necessarily required to assess the functional
parameters in Eq. 8, provided that they are regarded as the mean values
(expectations) over the same radius branches.
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Math 18: 87–111, 1853.

43. Weibel ER. Morphometry of the Human Lung. New York: Academic,
1963.

44. West BJ, Bhargava V, Goldberger AL. Beyond the principle of simil-
itude: renormalization in the bronchial tree. J Appl Physiol 60: 1089–
1097, 1986.

45. West GB, Brown JH, Enquist BJ. A general model for the origin of
allometric scaling laws in biology. Science 276: 122–126, 1997.

46. Zamir M. The Physics of Pulsatile Flow. New York: Springer-Verlag,
2000.

47. Zweifach BW, Lipowsky HH. Pressure-flow relations in blood and
lymph microcirculation. In: Handbook of Physiology. The Cardiovascular
System, Microcirculation. Bethesda, MD: Am. Physiol. Soc, 1984, sect. 2,
vol. 4, chapt. 7, p. 251–307.

2323FRACTAL TREE ASSESSMENT

J Appl Physiol • VOL 102 • JUNE 2007 • www.jap.org

Downloaded from journals.physiology.org/journal/jappl (106.051.226.007) on August 9, 2022.


