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ABSTRACT
This paper considers the quantitative verification of discrete-
time stochastic hybrid systems (DTSHS) against linear time
objectives. The central question is to determine the likeli-
hood of all the trajectories in a DTSHS that are accepted by
an automaton on finite or infinite words. This verification
covers regular and ω-regular properties, and thus comprises
the linear temporal logic LTL. This work shows that these
quantitative verification problems can be reduced to com-
puting reachability probabilities over the product of an au-
tomaton and the DTSHS under study. The computation of
reachability probabilities can be performed in a backward-
recursive manner, and quantitatively approximated by pro-
cedures over discrete-time Markov chains. A case study
shows the feasibility of the approach.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Theory
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1. INTRODUCTION
Stochastic hybrid systems (SHS, for short) are pivotal in

application areas such as systems biology, air traffic control,
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finance, and telecommunication systems [6]. Their main an-
alytical challenge is to treat the intricate intertwining of
discrete dynamics, continuous phenomena, and randomness.
An important class of properties for such systems are proba-
bilistic invariance (i.e., what is the likelihood to stay in a set
of “safe” states for some period of time?) and reachability
(i.e., what is the likelihood to reach a certain set of “goal”
states within a number of steps?). Variants thereof, such
as reach-avoid objectives, have also been considered [18]. A
broad palette of techniques has been developed to compute
these quantities, e.g., measure-theoretical approaches [5],
Monte Carlo simulations [14], coupled Hamilton Jacobi Bell-
man equations [13], approximation methods that turn an
infinite-state problem into a finite-state one [15], and dy-
namic programming [3]. These approaches exist for con-
trollable as well as autonomous models (i.e. “deterministic”
SHS), where in the former case maximal – or dually minimal
– probabilities are determined [3].

On the other hand, probabilistic reachability, invariance,
and reach-avoid measures have been studied extensively in
the field of probabilistic model checking. In fact, these prop-
erties can all naturally be expressed in PCTL [11], the prob-
abilistic variant of the branching-time temporal logic CTL.
Thanks to the effective support of powerful software tools
such as PRISM [1] and MRMC [12], the verification of this
class of properties has been successfully applied to numerous
models for systems biology, security protocols, hardware cir-
cuits and reliability analysis. This insight has recently cul-
minated into the generalization of CTL model checking to
continuous state space [7], the application of PCTL model
checking to discrete-time SHS (DTSHS) [2], and a study on
the relationship between PCTL and dynamic programming
for SHS models [17].

The use of PCTL allows for the expression of a significant
class of properties that can be analyzed over SHS. This pa-
per takes a somewhat orthogonal direction by considering
probabilistic linear-time objectives. An example of such an
objective is a more advanced reach-avoid property, such as
the following: determine the likelihood, starting from some
initial point, to reach a set of “goal” states, while avoiding
“bad”states, but conditional on visiting some“trigger”states
prior to reaching the goal states. Other examples include re-
peated reachability objectives (certain goal states must be
visited repeatedly), conjuncted with a persistence property
– from some point on, the system should only obey goal
states. Such objectives can naturally be provided as finite-



state automata, either on finite or on infinite words. This
includes regular and ω-regular properties, and thus covers
the linear temporal logic LTL and several properties that
cannot be expressed in PCTL (like the ones above).

The central question that we address in this paper is how
to determine the probability that a given discrete-time SHS
satisfies an automaton. Stated differently, we investigate
what is the likelihood of the trajectories in the DTSHS that
are accepted by the automaton. In order to cope with the
quantitative verification of DTSHS against automata objec-
tives, we resort to a well-known technique from model check-
ing: product construction. We consider the synchronous
product of a DTSHS H and a (Büchi) automaton A. Tech-
nically this is achieved by adopting deterministic finite-state
automata (for finite words) and separated generalized Büchi
automata [8] (for infinite words). The key result is that
the probability of all paths in H that are accepted by A
can be reduced to computing reachability probabilities in
the product H ⊗ A. These reachability probabilities can
in principle be determined by any available technique for
DTSHS. We then consider a finite abstraction of the DT-
SHS as a discrete-time Markov chain (DTMC), and provide
an approximation (with explicit errors) of the time-bounded
or -unbounded reachability objectives. Aa a numerical case
study, a two-room heating benchmark [2] is used to illustrate
the application and feasibility of our approach.

Automated verification of stochastic hybrid systems is en
vogue, and several quite recent works have appeared focus-
ing on safety properties. Zhang et al. [20] propose a tech-
nique for verifying probabilistic safety problems by adopt-
ing abstraction techniques from the verification of hybrid
systems. Fränzle et al. apply stochastic satisfiability mod-
ulo theory (SSMT) to the symbolic analysis of probabilistic
bounded reachability problems of probabilistic hybrid au-
tomata. This SSMT-approach has recently been extended to
computing expected values of probabilistic hybrid systems,
for instance mean-times to failure [10]. This paper comple-
ments the verification techniques using PCTL [2, 17], and
includes safety as well as liveness properties.

2. PRELIMINARIES
We consider the model of discrete time stochastic hybrid

systems (DTSHS) from [2], which is an autonomous (un-
controlled) version of that in [3]. A DTSHS is a stochastic
model with a hybrid state space S = ∪�∈Loc{�} × S�, S� ⊆
R

d(�), given by the disjoint union of continuous domains S�

(each of which with its own dimension, specified by d : Loc →
N) associated to discrete locations Loc, also referred to as
the “modes”. A point in the hybrid state space s = (�, x)
is thus made up of two components: a discrete one � ∈ Loc
and a continuous one x ∈ R

d(�). Unlike [2, 3], here discrete
labels are associated with locations via a function L. Let
B(S) denote the σ-algebra generated by the subsets A of S

of the form A = ∪�∈Loc{�} × A�, where A� ∈ B(Rd(�)) is a

Borel set in R
d(�). We use the notation dom(�) to denote

the domain associated to location �.

Definition 1. [ DTSHS] A DTSHS is a structure H =
(Loc,AP, L, d, α, Tx, T�, Tr), where:

• Loc - is a finite set of locations;

• AP - is a finite set of atomic propositions;

• L : Loc → 2AP - is the labeling function, which acts on
the discrete locations;

• d : Loc → N - is the dimension assigned to the contin-
uous domain R

d(�) of each location � ∈ Loc;

• α : B(S) → [0, 1] - is the initial probability distribution;

• T� : Loc×S → [0, 1] - is a conditional discrete stochas-
tic kernel, which assigns to each s ∈ S a probability
distribution, T�(·|s), over Loc;

• Tx : B(Rd(·)) × S → [0, 1] - is a continuous stochastic

kernel on R
d(·), conditional on S. It assigns to each s =

(�, x) ∈ S a probability measure, Tx(·|s), on the Borel

space (Rd(�),B(Rd(�))). The function Tx(A�|(�, ·)) is
assumed to be Borel measurable, for all � ∈ Loc and all
A� ∈ B(Rd(�));

• Tr : B(Rd(·)) × S × Loc → [0, 1] - is a stochastic kernel

on R
d(·), conditional on S × Loc. It assigns to each

s ∈ S and �′ ∈ Loc, a probability measure, Tr(·|s, �′),
on the Borel space (Rd(�′),B(Rd(�′))). The function
Tr(A�′ |(�, ·), �′) is assumed to be Borel measurable for

all �, �′ ∈ Loc, � �= �′, and all A�′ ∈ B(Rd(�′)).

Example 1. Fig. 1 depicts the DTSHS H1 with the set
of locations Loc = {�0, �1, �2, �3} and the set of atomic propo-
sitions AP = {ON1, ON2, OFF1, OFF2}. Each location �i is as-
sociated with a continuous two-dimensional bounded rectan-
gular domain S�i = [0, x′

1] × [0, x′
2] ⊂ R

2 (thus d(li) = 2),
and is labeled with an element from 2AP, for instance L(�0) =
{ON1, ON2}. The initial distribution is α(·) = δ(�0,0)(·). Here
δ(�0,0)(·) is the Dirac delta function. Each continuous do-
main S�i is partitioned into (the same) four non-overlapping
sub-regions G0, G1, G2 and G3 (see Fig. 2). The condi-
tional discrete stochastic kernel T� is given by T�(�i|(�, x)) =
Leb(Gi)
Leb(S�)

, where Leb is the Lebesgue measure. The discrete

graphical structure of H1 is represented in Fig. 1. An edge
represents a positive transition probability between pairs of
modes. In particular, each self-loop denotes the likelihood
of dwelling within Gi, for any location �i. The conditional
stochastic kernel Tx corresponds to a Gaussian distribution
Tx(·|(�, x)) = N (·; μ(�, x), Σ(�, x)), where μ(�, x) and Σ(�, x)
are the mean and the covariance, respectively, and are func-
tions of the hybrid state (�, x). For � �= �′ the stochastic ker-
nel Tr, conditional on a point (�, x), is given by Tr(·|(�, x), �′) =
δ(�,x)(·), which denotes a (deterministic) identity map.

{ON1, ON2} {ON1, OFF2}

{OFF1, OFF2}{OFF1, ON2}

�0 �1

�2 �3

Figure 1: The dis-
crete structure of H1.

x1

x2

x′
1

x′
2

G1

G3

G0

G2

Figure 2: The (par-
titioned) continuous
domains S�i of H1.



Semantics.
To simplify the notation, let us introduce a conditional

stochastic kernel T : B(S) × S → [0, 1] defined by

T ({�′}×A�′ |(�, x))=

(
Tx(A�′ |(�, x))T�(�

′|(�, x)), if �′ = �

Tr(A�′ |(�, x), �′)T�(�
′|(�, x)), if �′ �= �,

(1)

for all sets A�′ ∈ B(Rd(�′)), �′ ∈ Loc, and (�, x) ∈ S. We con-
sider the evolution of the DTSHS either over a finite time
horizon T ⊂ N, or over an infinite one T = N. The underly-
ing stochastic process of a DTSHS is {s(k), k ∈ T}, where
s(k) = (l(k),x(k)) represents the process at step k ∈ T (we
denote processes with bold font, in order to emphasize the
difference from sample points over the state space). The
executions of {s(k), k ∈ T} are obtained according to the
following procedure [3, Definition 3]: the conditional dis-
crete stochastic kernel T� gives the probability to jump to
any location �′, given the current state (�, x). If T� samples
location �′ = �, the conditional stochastic kernel Tx charac-
terizes the probability for the next point inside the contin-
uous domain S� of �. If instead T� samples location �′ �= �,
the conditional stochastic kernel Tr induces a probability
distribution for the process over domain S�′ for location �′.

Definition 2. [Paths] Let H be a DTSHS. An infinite
path starting at state (�0, x0) is a sequence ρ = (�0, x0) →
(�1, x1) → (�2, x2) · · · , such that for every k ∈ N, sk =
(�k, xk) ∈ S. A finite path is a prefix (ending in a state) of
an infinite path.

We define PathsH∗ and PathsHω as the set of all finite paths
and infinite paths in H, respectively. Let also the sets PathsH

and PathsH(�, x) denote all finite and infinite paths in H and
those starting from state (�, x), respectively. For any k less
than the length of path ρ, let ρ[k] := (�k, xk) be the k-th
state of ρ. Given a path ρ, the function lab(ρ) returns the
word w = a1a2a3 . . . (sequence of state labels corresponding
to path ρ) such that ak = L(ρ[k](1)).

A DTSHS H with initial probability distribution α is as-
sociated to a probability measure PrHα on paths over a time
horizon [0, k], k ∈ N, as follows. Consider the canonical
sample space Ω = S

k+1, endowed with its product topol-
ogy. Let C(G(0), G(1), . . . , G(k)) denote the cylinder set
consisting of all paths ρ ∈ PathsH such that ρ[i] = si, where
G(i) ∈ B(S), si ∈ G(i) for any i ≤ k. The probability mea-
sure PrHα on B(PathsH) is the unique measure defined as:
PrHα (C(G(0), G(1), . . . , G(k))) =Z

G(0)

Z
G(1)

· · ·
Z

G(k)

T (dak|ak−1) · · ·T (da1|a0)α(da0).

Notice that PrHα (C(G(0))) =
R

G(0)
α(da0). Further details

on the topological and semantical properties of the DTSHS
model can be found in [3].

Automata and LTL specifications.
Here we will distinguish two types of specifications: finite

state automata and linear temporal logic (LTL) specifica-
tions.

Definition 3. [ DFA] A deterministic finite state automa-
ton (DFA) is a structure A = (Q, q0, Σ, F, Δ), where: Q -
is a finite set of locations; q0 ∈ Q - is the initial location; Σ

- is a finite alphabet; F ⊆ Q - is a set of accept locations;
Δ : Q × Σ → Q - is a transition function.

From here on we assume that Σ = 2AP, and let Σ∗ and
Σω denote the set of all finite and infinite words over Σ,
respectively. A finite word w ∈ Σ∗ is accepted by a DFA
A, if there exists a finite run (or a path) θ ∈ Q∗ such that
θ[0] = q0, Δ(θ[i], w[i]) = θ[i + 1] for i � 0 and there exists
a j ∈ N, j < ∞, such that θ[j] ∈ F . Note that w[i] (resp.
θ[i]) denotes the i-th letter (resp. state) on w (resp. θ). The
accepted language of A, denoted L∗(A), is the set of all
words accepted by A. Notice that one could define Δ as a
transition relation (as opposed to a function), which results
in a nondeterministic finite state automaton (NFA). It is
well known that DFAs are equally expressive as NFA and
that for any NFA a canonical minimal DFA exists [16].

Definition 4. [GBA] A generalized Büchi automaton
(GBA) is a structure A = (Q, Q0, Σ,F , Δ), where Q - is a
finite set of locations; Q0 ⊆ Q - is a set of initial locations;
Σ - is a finite alphabet; F ⊆ 2Q - is a set of acceptance sets;
Δ ⊆ Q × Σ × Q - is a transition relation.

We sometimes write q σ−−→ q′ if (q, σ, q′) ∈ Δ for simplicity.
An infinite word w ∈ Σω is accepted by A, if there exists an
infinite run θ ∈ Qω such that θ[0] ∈ Q0, (θ[i], w[i], θ[i+1]) ∈
Δ for all i � 0 and for each F ∈ F , there exist infinitely
many indices j ∈ N such that θ[j] ∈ F . The accepted lan-
guage of A, denoted Lω(A), is the set of all infinite words
accepted by A. Given a GBA A and location q, we denote
by A[q] the GBA A with q as the unique initial location.
Note that Lω(A) =

S
q∈Q0

Lω(A[q]).

Definition 5. [Separated GBA] A GBA A is separated
if, for any locations q, q′ ∈ Q, Lω(A[q′]) ∩ Lω(A[q′′]) = ∅.

The set of LTL formulae over the set AP of atomic propo-
sitions is defined as follows:

ϕ ::= a | ϕ ∧ ϕ | ¬ϕ | X ϕ | ϕ U ϕ,

where a ∈ AP. We interpret LTL formulae over DTSHS H.

Definition 6. [LTL semantics] For an LTL formula ϕ,
a path ρ ∈ PathsH, and a step i ∈ N, the satisfaction relation
|= is defined by:

(ρ, i) |= a ⇐⇒ a ∈ L(ρ[i](1))
(ρ, i) |= ϕ1 ∧ ϕ2 ⇐⇒ (ρ, i) |= ϕ1 and (ρ, i) |= ϕ2

(ρ, i) |= ¬ϕ ⇐⇒ not (ρ, i) |= ϕ
(ρ, i) |= X ϕ ⇐⇒ (ρ, i + 1) |= ϕ
(ρ, i) |= ϕ1 U ϕ2 ⇐⇒ ∃j ∈ N.∞ > j ≥ i, (ρ, j) |= ϕ2 and

∀k ∈ N.i � k < j, (ρ, k) |= ϕ1

An example LTL formula is a U (¬b ∧ (c U d)). Using the
until operator we can define the temporal modalities ♦ and

� as ♦ϕ := true U ϕ and � ϕ := ¬♦¬ϕ. The operator
♦ϕ is satisfied on all paths where eventually in the future
ϕ holds. The operator � ϕ characterizes all the paths that
only contain states satisfying ϕ. The formula �♦ϕ means
that ϕ holds infinitely often, whereas ♦� ϕ means that from
some moment on the formula ϕ will always hold.

Given a DTSHS H, let Lω(ϕ) = {ρ ∈ PathsH | (ρ, 0) |=
ϕ} be the language of ϕ in H. The measurability of Lω(ϕ)
can be proven in a similar way as in [9].



Theorem 1. [[8]] For any LTL formula ϕ over AP, there
exists a separated GBA Aϕ = (Q, Q0, Σ,F , Δ), where Σ =

2AP and |Q| � 2O(|ϕ|), such that Lω(Aϕ) is the set of com-
putations satisfying the formula ϕ.

Here |ϕ| denotes the length of the LTL formula ϕ in terms
of the number of operators in ϕ.

3. REACHABILITY ANALYSIS
This section formally introduces the following problem

over a DTSHS H: determine the probability of reaching
a certain “goal” or “target” set within a given time horizon,
starting from any state in S. More precisely, select any com-
pact Borel set G ∈ B(S), representing the goal set. We are
interested in determining the probability that the execution
associated with the initial condition s0 ∈ S will intersect G
within the time horizon T:

ps0(♦G) := Ps0{s(k) ∈ G for some k ∈ T}, (2)

where Ps0 denotes the probability measure for an event over
the solution of H, conditional on s(0) = s0: the value of
ps0(♦G) depends on the initial state s0. (Notice that the
measure Ps0 can also be expressed by PrH, where G(0) =
s0.) If ps0(♦G) ≥ ε, ε ∈ (0, 1], we say that the system
initialized at s0 reaches G with an ε probabilistic guarantee
(the case ε = 0 is trivially satisfied by all states in S). For a
given ε ∈ (0, 1], we define the ε-probabilistic reachability set
by

R(ε,G) = {s0 ∈ S : ps0(♦G) ≥ ε} (3)

of those initial states s0 that are associated with a pro-
cess that reaches set G with an ε probabilistic guarantee.
We show that the problem of computing ps0(♦G) can be
solved through a backward iterative procedure by represent-
ing ps0(♦G) as a max function.

3.1 Characterizing Probabilistic Reachability

Step-bounded reachability probability.
Let us consider T = [0, N ] ⊂ N. Let 1C : S → {0, 1}

denote the indicator function of the set C ⊆ S: 1C(s) = 1
if and only if s ∈ C. Observe that maxk∈[0,N] 1G(sk) = 1,
if ∃k ∈ [0, N ] : sk ∈ G, and 0 otherwise, where sk ∈ S.
Then, the quantity ps0(♦G) in (2) can be expressed as the
expectation with respect to the probability measure Ps0 of
the Bernoulli random variable maxk∈T 1G(s(k)), conditional
on s(0) = s0 [3]:

ps0(♦G) = Es0

»
max

k∈[0,N]
1G(s(k))

–
. (4)

Denote with G = S \ G, the complement of G over S.
Consider the sequence of functions Wk : S × B(S) → [0, 1],
k ∈ [0, N ], defined for s ∈ S and G ∈ B(S) by WN(s, G) =
1G(s), and for k < N :

Wk(s,G) = 1G(s) + 1G(s)

Z
SN−k

max
n=k+1,...,N

1G(sn) ·
N−1Y

m=k+1

T (dsm+1|sm)T (dsk+1|s). (5)

It is easily seen that for any k ∈ [0, N ], Wk(s, G) repre-
sents the probability that an execution of the DTSHS en-
ters the target set G over the residual time horizon [k, N ],

starting from s at time instant k [3]: we name Wk(s, G)
the value function at time k. In particular, W0(s, G) =
Es[maxk∈[0,N] 1G(s(k))], evaluated at s = s0 ∈ S returns the
quantity of interest ps0(♦G), and the ε-probabilistic reacha-
bility set defined in (3): R(ε,G) = {s0 ∈ S : W0(s0, G) ≥ ε}.

The following result states that the value functions can be
determined through a backward-recursive procedure.

Theorem 2. [[3], Lemma 2] The value functions Wk :
S × B(S) → [0, 1], defined in (5) can be computed for s ∈ S

through the following backward recursion for k < N :

Wk(s, G) = 1G(s) + 1G(s)

Z
S

Wk+1(sk+1, G)T (dsk+1|s)
(6)

initialized with WN(s, G) = 1G(s).

In conclusion, given an initial distribution α, the related
step-bounded rechability probability is simply

R
S
α(ds)ps(♦G).

Step-unbounded reachability probability.
Let us consider now the case T = N. We denote by

p∞
s0(♦G) := Ps0{s(k) ∈ G for some k ≥ 0} (7)

the step-unbounded reachability probability. It can be com-
puted as the fixpoint W (s,G) of the following system of
integral equations:

W (s,G) = 1G(s) + 1G(s)

Z
S

W (s′, G)T (ds′|s). (8)

In this case p∞
s0(♦G) = W (s0, G). Notice that the map

W : S ×B(S) → [0, 1] is related to Wk as follows W (s,G) =
limk→∞ Wk(s, G), for any s ∈ S.

3.2 Discretization
In most cases, the solution of Equations (6) or (8) is not

analytic. In this paper we will use discretization techniques
in order to approximate the solution for the time-bounded
and time-unbounded reachability probability.

Consider S =
S

�∈Loc{�} × S� and assume each S� is
compact. We introduce a finite partition for each domain
S� ⊂ R

d(�), � ∈ Loc, by taking S� =
Sm�

i=1 S�,i, where

S�,i ∈ B(Rd(�)) with S�,i ∩ S�,j = ∅, for all i �= j. Here
m� represents the finite number of partitions for the domain
in location �. Denote by h�,i the diameter of the set S�,i

as h�,i = sup{||x − x′|| : x, x′ ∈ S�,i} (here we are using
the Euclidean norm), and define the grid size parameter by
h := maxi=1,...,m�;�∈Loc h�,i. Let us additionally introduce

a function r� : B(Rd(�)) → R
d(�) which, given a partition

set S�,i ∈ B(Rd(�)) and location � ∈ Loc, returns a ran-
domly chosen point in S�,i, denoted with r�(S�,i), which is
also named the “representative point” of the partition set
S�,i. Notice that the discretization can in general be tai-

lored to the target set G, so that G =
Sm

g
�

i=1 Sg
�,i, where

∀� ∈ Loc, mg
� ≤ m�. Using the grid size parameter h we can

define the discretized DTMC of a DTSHS as follows:

Definition 7. [DTMC approximation of DTSHS] For the
DTSHS H = (Loc,AP, L, d, α, Tx, T�, Tr), the DTMC Dh =
(Sh,AP, Lh, αh, Ph) is defined as follows: Sh = {(�, i)|� ∈
Loc, i ∈ {1, . . . , m�}} - is the state space; Lh(�, i) = L(�) -
is the labeling function; αh(�, i) =

R
S�,i

α(�, x)dx - is the



initial probability distribution; Ph((�, i), (�′, i′)) = T (�′ ×
S�′,i′ |(�, r�(S�,i))) - is the transition probability matrix.

Notice that the state space Sh of the discretized DTMC Dh

is given by pairs (location, partition index). The probabil-
ity Ph((�, i), (�′, i′)) to jump from state (�, i) to state (�′, i′)
is the probability to jump from r�(S�,i), the representative
point of partition S�,i, to the partition set S�′,i′ in location
�′.

Let us denote with Gh ∈ Sh the set of states of Dh cor-
responding to partitions of S overlapping with the original
target set G of H. Similarly, Gh = Sh \ Gh. We define the
step-bounded and step-unbounded reachability probabilities
by introducing functions W h

k and W h respectively, both of
which are defined on Sh × B(Sh) and take value in [0, 1]:

W h
k (v, Gh)=1Gh(v)+1Gh

(v)
X

vk+1∈Sh

W h
k+1(vk+1, Gh)Ph(v, vk+1),

(9)
for k < N , initialized with W h

N(v, Gh) = 1Gh(v) and

W h(v, Gh) = 1Gh(v) + 1Gh
(v)

X
v′∈Sh

W h(v′, Gh)Ph(v, v′).

(10)
W h

k and W h approximate the original functions Wk and W –
in the next Section we derive explicit approximation bounds.

Notice that step-bounded and step-unbounded reachabil-
ity probability is given by a system of linear equations for
which solutions can be computed efficiently. If αh(v0) =
1, the solutions to Eq. (9) and (10) will be denoted asbpv0(♦Gh) and bp∞

v0(♦Gh), respectively, whereas for an ar-
bitrary initial distribution αh we get

P
v∈Sh

αh(v)bpv(♦Gh)

and
P

v∈Sh
αh(v)bp∞

v (♦Gh), respectively.

3.3 Error Bounds
The quantities W h

k (v, Gh), W h(v, Gh), bpv(♦Gh), and bp∞
v (♦Gh)

are all defined on Sh. We can extend them over S by piece-
wise constant interpolation – for instance, W h

k (s, Gh) =
W h

k (r�(S�,i), Gh),∀s ∈ S�,i, i = 1, . . . , m�, � ∈ Loc. In the
remaining of this section, we shall refer to the quantities ex-
tended over S. We now derive explicit error bounds between
the quantities in Equations (6)-(8) and the corresponding
quantities in Equations (9)-(10) (again, extended over S).

We assume that the kernels T�, as well as the densities tx

and tr of Tx and Tr, satisfy the following Lipschitz continuity
assumptions:

Assumption 1. For any (�, x), (�, x′), (�, x′′), (�′, x′′) ∈ S:

|T�(�
′|(�, x)) − T�(�

′|(�, x′))| ≤ h1||x − x′||,
|tx(x′′|(�, x)) − tx(x′′|(�, x′))| ≤ h2||x − x′||,
|tr(x

′′|(�, x), �′) − tr(x
′′|(�, x′), �′)| ≤ h3||x − x′||, � �= �′,

where h1, h2 and h3 are finite Lipschitz constants.

We define K .
= |Loc|h1 + λ(G) · (h2 + (|Loc| − 1)h3), where

λ(G) is the Lebesgue measure of the set G and |Loc| is the
number of discrete locations.

Theorem 3. Given a DTSHS H, the DTMC Dh ob-
tained with discretization step h, a finite time horizon N
and a target set G ∈ B(S), the following holds:

1) |ps0(♦G) − bpv0(♦Gh)| ≤ NKh,

2) |p∞
s0(♦G) − bp∞

v0(♦Gh)| ≤ 2Kh,

where v0 = (�, i) and s0 ∈ G�,i.

4. AUTOMATA MODEL CHECKING
In this section we study the problem of model checking a

property specified as a DFA or as a separated GBA against
a DTSHS. Recall that the main difference between a DFA-
property and a separated GBA-property is that the former
reasons over the finite paths whereas the latter reasons over
infinite paths. Since every LTL-formula ϕ can be expressed
as a separated GBA (see Section 2), LTL model checking
boils down to automata model checking. Let the quan-
tity PrH(L(A)) := PrH(ρ ∈ PathsHf |lab(ρ) ∈ L(A)) (and

PrH(Lω(B)) := PrH(ρ ∈ PathsH
ω |lab(ρ) ∈ Lω(B))) denote

the probability that the DTSHS H satisfies the DFA A (and
GBA B, respectively). The measurability of the sets {ρ ∈
PathsH

f |lab(ρ) ∈ L(A)} and {ρ ∈ PathsHω |lab(ρ) ∈ Lω(B)}
can be shown as in [19]. We will show that the probability
of these events can be computed over the product between
H and A (and B).

DFA Specifications.
We start considering properties expressed as DFA.

Definition 8. [Product between DTSHS and DFA] Con-
sider a DTSHS H = (Loc,AP, L, d, α, Tx, T�, Tr) and a DFA

A = (Q, q0, Σ, F, Δ). Let H⊗A = (V,AP, bL, bα, bd, bTx, bT�, bTr)

be the product DTSHS, where V := Loc × Q, bL(〈�, q0〉) =

L(�), bα(〈�, q0〉, x) := α(�, x), bd(〈�, q〉) := d(�) and the kernels
are defined by:

T�(�
′|(�, x)) = p ∧ Δ(q, L(�)) = q′bT�(〈�′, q′〉|(〈�, q〉, x)) = p

,

Tx(A�|(�, x)) = p ∧ Δ(q, L(�)) = q′bTx(A〈�,q′〉|(〈�, q〉, x)) = p
,

Tr(A�′ |(�, x), �′) = p ∧ Δ(q, L(�)) = q′bTr(A〈�′,q′〉|(〈�, q〉, x), 〈�′, q′〉) = p
(� �= �′).

Here A〈�,q′〉 and A〈�′,q′〉 denote the Borel-measurable sets
in S〈�,q′〉 and S〈�′,q′〉, respectively. The definition of the

conditional stochastic kernel bT for the product H⊗A is the
same as in Eq. (1). We define the set of final locations of
H⊗A as VF := Loc × F .

Theorem 4. For any DTSHS H and DFA A,

PrH(L(A)) = PrH⊗A(♦VF ),

where PrH⊗A(♦VF ) is the probability to reach the set of final
locations VF in the product H⊗A.

Given the fact that H ⊗ A is a DTSHS, the probability
PrH⊗A(♦VF ) can be computed via Eq. (6). In this case,
PrH⊗A(♦VF ) is the fixpoint of Eq. (8). Notice that in order
to make the computation of PrH⊗A(♦VF ) more efficient we
can make all the states corresponding to the set of locations
VF absorbing.

GBA Specifications.
In order to compute the probability that a DTSHS H

satisfies a separated GBA-property A we consider two steps.
First, we construct the product between H and the separated
GBA A. Second, in the product H ⊗ A we compute the
probability PrH(Lω(A)).



Definition 9. [Product between DTSHS and GBA] Con-
sider a DTSHS H = (Loc,AP, L, d, α, Tx, T�, Tr) and a GBA
A = (Q, Q0, Σ,F , Δ). Their product is defined as H ⊗A =

(V,AP, bL, bα, bd, bTx, bT�, bTr) and is constructed as in Definition
8, except that bα(〈�, q0〉, x) := α(�, x) for all q0 ∈ Q0.

In general when one takes the product between a gener-
alized deterministic Büchi automaton (GDBA) and a DT-
SHS, the resulting product is a DTSHS. The product be-
tween a generalized (nondeterministic) Büchi automaton (GBA)
and a DTSHS is not always a DTSHS. This can be seen
from the fact that for a location q in A and a symbol σ ∈ Σ,
{(q, σ, q′), (q, σ, q′′)} ⊆ Δ for q′ �= q′′, it follows that for a
transition � → �′ in H with T�(�

′|(�, x)) = 1 the product
will contain two transitions: 〈�, q〉 → 〈�′, q′〉 and 〈�, q〉 →
〈�′, q′′〉. In this case we get that bT�(〈�′, q′〉|(〈�, q〉, x)) +bT�(〈�′, q′′〉|(〈�, q〉, x)) = 2. In this paper we consider GBA,
which are strictly more expressive than GDBA [4]. The sep-
arability property will give us the possibility to transform
the product into a DTSHS.

Example 2. Fig. 5 shows the product H⊗A between the
DTSHS H of Fig. 3 and the separated GBA A of Fig. 4.
(For each location of the DTSHS H we pick a continuous
kernel Tx and kernel Tr – they can for instance be a con-
ditional exponential or Gaussian distribution.) Notice that
the product in its original form does not define a DTSHS as
the automaton A is nondeterministic (all dashed transitions
in Fig. 5 are nondeterministic). For instance in the product
location v0 there are two transitions to the dashed product
locations v1 and v2. To each product locations v1 and v2

corresponds the location �0 from the DTSHS H.

�0

�1 �2 �3

�4

{a}

{b} {c} {a}

{b}

Figure 3: DTSHS H
for Example 2.

q0

q2 q4

q5

q1 q3

a

a

c

a

b

a
b

c

c

Figure 4: Separated
GBA A for Ex. 2.

v0 = 〈�0, q0〉 v4 = 〈�1, q1〉 v10 = 〈�2, q5〉

v7 = 〈�4, q3〉

v12 = 〈�3, q0〉

v16 = 〈�4, q1〉v2 = 〈�0, q2〉 v9 = 〈�4, q5〉

v5 = 〈�1, q3〉 v14 = 〈�3, q2〉v1 = 〈�0, q1〉

v3 = 〈�1, q2〉

v6 = 〈�1, q5〉

v8 = 〈�2, q3〉 v15 = 〈�4, q2〉

v13 = 〈�3, q1〉

v11 = 〈�2, q0〉

Figure 5: Product H⊗A for Example 2.

In order to compute the probability PrH(Lω(A)), we con-
sider the probability to reach an accepting bottom strongly
connected component (aBSCC) in the product H ⊗ A. A
strongly connected component (SCC) is a strongly connected
set of discrete locations such that no proper superset is
strongly connected.(The notion of SCC is related to that
of irreducible class for classical Markov chains.) A bot-
tom strongly connected component (BSCC) is an SCC from
which no location outside the SCC is reachable.

Definition 10. [aBSCC] Given the product H ⊗ A, a
BSCC B ⊆ V = Loc×Q is accepting if for all F ∈ F of A,
there exists some 〈�, q〉 ∈ B such that q ∈ F .

Let the set of final locations be V ω
F = {v ∈ B | B in the set

of all aBSCC in H⊗A}.
Now the task is to compute PrH(Lω(A)). Using the sep-

arability property of GBA A we obtain a DTSHS out of
H⊗A. The following lemma asserts that for each accepted
word of the separated GBA A there exists a single accepting
path in H⊗A.

We say that from location 〈�, q〉 there is a path leading to a
aBSCC B, if there is a sequence 〈�0, q0〉, 〈�1, q1〉, . . . , 〈�n, qn〉
such that 〈�, q〉 = 〈�0, q0〉, 〈�i, qi〉 and 〈�i+1, qi+1〉 are con-
nected (if there exists G′ ⊆ dom(〈�i, qi〉)\{∅} such that for

all x ∈ G′, bT ((〈�i+1, qi+1〉, ·)|(〈�i, qi〉, x)) > 0) for 0 � i < n
and 〈�n, qn〉 ∈ B.

Lemma 1. Consider the product H ⊗ A, where A is a
separated GBA. For any aBSCC B of the product H ⊗A,
it holds that

1. 〈�, q〉 → 〈�′, q′〉 and 〈�, q〉 → 〈�′, q′′〉 implies q′ = q′′,
for any 〈�, q〉, 〈�′, q′〉, 〈�′, q′′〉 in B;

2. if 〈�, q〉 and 〈�, q′〉 with q �= q′ have a path leading to
B then q = q′.

Using the above lemmas we can conclude that each loca-
tion of H⊗A that does not lead to an aBSCC can be safely
removed. The resulting product is denoted H⊗A. With ref-
erence to Example 2, by removing all dashed transitions and
dashed locations in Fig. 5 we obtain the DTSHS H⊗A.

In general, when searching for an aBSCC one relies on the
topological discrete structure (which hinges on the condi-
tional discrete stochastic kernels) of H⊗A. Still, an aBSCC
in H⊗A might not be accepting. To illustrate this fact, con-
sider the product H⊗A from Fig. 6 and the set of accepting
conditions F = {{q0}, {q1}}. It is easy to see that when the

conditions bT ((v1, ·)|(v0, x)) > 0 and bT ((v0, ·)|(v1, y)) > 0

are satisfied for every x ∈ R
d(v0) and y ∈ R

d(v1) then the
set B = {v0, v1} is an aBSCC. However, let us now assume
that the domain S0 from Fig. 7 is associated to location v0.
The domain S0 contains two subdomains G1 and G2, which

are such that bT (v0×S|(v0, x)) = 0 and bT ((v1, ·)|(v0, x)) = 0,
for all x ∈ G1 ∪G2 and S ⊆ S0\(G1 ∪G2). This means that
when we are in the subdomain G1 or G2 there is no way to
jump back to S0\(G1 ∪ G2), nor to jump to location v1. As
a result we get that the aBSCC B is not accepting. This
example suggests that when searching for accepting BSCCs
it is not enough to look at the conditional discrete stochastic
kernels — one has to consider also the continuous stochastic
kernels.

Given an aBSCC B in H⊗A and a set of accepting con-
ditions F we introduce acc(B) = {〈�, q〉 ∈ B|, q ∈ F ∈ F},



v0 = 〈�0, q0〉

v1 = 〈�1, q1〉

Figure 6: Product
H⊗A with aBSCC.
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Figure 7: Domain
with two absorb-
ing subregions: the
aBSCC may not be
accepting.

the function returning the set of accepting locations in the
aBSCC B. For a given set of states G ⊆ S we define the
random variable η(G) =

P∞
k=0 1G(s(k)), where s(k) is the

stochastic process associated with H⊗A, and Es(η(G)) is
the expected value of η(G) over all executions of s(k) start-
ing from s(0) = s.

Definition 11. [Recurrent aBSCC] An aBSCC B is re-
current if for the set G = {v×G′|v ∈ acc(B),G′ ⊆ dom(v)},
Es(η(G)) = ∞, for all s ∈ G.

Here recall that dom(v) denotes the domain associated to
location v. The above definition says that every state from
G can reach all other states in G infinitely often.

In order to check whether an aBSCC is recurrent one has
to look at the conditional stochastic kernel bT . For instance,
in Fig. 7 one has to find all possible subsets Gi, i > 0, of

the domain S0, such that bT (v0 × S0\(∪i>0Gi)|(v0, x)) = 0,
x ∈ Gi. This is equivalent to searching for all absorbing
regions S′ of the domain S0. In case one such region S′

does exist, one can assign a new location v′ to the absorbing
region S′ and a transition v → v′, such that v′ has the
domain S′ and v has the new absorbing domain S0\S′. In
general searching for absorbing regions is hard as one has to

analyse the kernel bT for every x (uncountable many) in a
continuous domain S. We propose to solve the problem of
absorbing regions by discretizing the aBSCC into a DTMC
and then searching for absorbing states. Notice that the
discretization approach will not guarantee the absence of
absorbing states as it relies on the size of the discretization
step.

Theorem 5. For any separated GBA A and DTSHS H:

PrH(Lω(A)) = PrH⊗A(♦V ω
F ).

Notice that for the above theorem we only need to compute
the probability to reach a set of absorbing final locations
V ω

F . This is enough due to the fact that as long as we are
in an aBSCC the DTSHS H satisfies the GBA-property A
with probability one.

5. CASE STUDY
In this section, we will show the applicability of our the-

oretical results to a case study.

5.1 Model Description

The following computational study [2] considers a model
for the temperature evolution in a building with two rooms.
Both rooms are equipped with a heater and each heater
switches between the ON and OFF conditions depending on
the temperature in the corresponding room. The state of
the system is hybrid, with the discrete state component
representing the status of the two heaters and the contin-
uous state component representing the temperature in each
of the two rooms. The discrete state space is given by
Loc = {ON, OFF}2. The allowed transitions between the lo-
cations are depicted in Fig. 1. The continuous state space is
R

2, irrespectively of the discrete state value (that is, d(�) =
2, ∀� ∈ Loc).

We suppose that the temperature of each room, say room
i, evolves according to the following stochastic difference
equation (SDE):

xi(k + 1) = xi(k)+bi(xa−xi(k))+aij,j 
=i(xj(k)−xi(k))

+ci1Loci(�(k))+wi(k),

where xa represents the ambient temperature (assumed to
be constant and equal for both rooms) and 1Loci(·) is the
indicator function of set Loci = {(�1, �2) ∈ Loc : �i = ON}.
The quantities bi, aij , and ci are non-negative real constants
representing the heat transfer rate from room i to the ambi-
ent (bi) and to room j �= i (aij), and the heat rate supplied
to room i by the heater in room i (ci). The disturbance
{wi(k), k = 0, . . . , N} affecting the temperature evolution
in room i is assumed to be a sequence of independent identi-
cally distributed Gaussian random variables with zero mean
and variance ν2. Furthermore, with no loss of generality
we suppose that the disturbances wi and wj affecting the
temperature of different rooms (i �= j) are independent.

The continuous transition kernel Tx describing the evo-
lution of the continuous state x = (x1; x2) can be easily
derived from the SDE above. Tx : B(R2)×S → [0, 1] can be
expressed as

Tx(· |(�, x)) = N (·; x + Zx + Γ(�), ν2I), (11)

where Z ∈ R
2×2, Γ(�) ∈ R

2, and I ∈ R
2×2 is the identity

matrix. For i = 1, 2, the element in row i and column j
of matrix Z is given by [Z]ij = aij , if j �= i, and [Z]ij =
−(bi +

P
k 
=i,k∈Loc aik), if j = i. For i = 1, 2, the ith element

of vector Γ(�), � = (�1, �2) ∈ Loc, is given by [Γ(�)]i =
bixa + ci, if �i = ON, and [Γ(�)]i = bixa, if �i = OFF. The
reset kernel is set to coincide with the transition kernel in
the current mode, irrespectively of the status to which the
heaters possibly switch: Tr(· |(�, x), �′) = Tx(· |(�, x)), for
any �, �′ ∈ Loc, and any x ∈ R

2.
As for the discrete state evolution, we suppose that each

heater switches status based on the temperature of the cor-
responding room, and independently of the other heater.
This is modeled taking the discrete transition kernel T� :
Loc×S → [0, 1] as the product of two conditional stochastic
kernels T�,i : {ON, OFF} × ({ON, OFF} × R) → [0, 1] governing
the switching of each heater i. More precisely, we set

T�(�
′|(�, x)) =

2Y
i=1

T�,i(�
′
i|(�i, xi)), (12)

� = (�1, �2), �′ = (�′1, �
′
2) ∈ Loc, x = (x1, x2) ∈ R

2, where

T�,i(�
′
i|(�i, xi)) =

(
σi(xi), �′i = OFF,

1 − σi(xi), �′i = ON
(13)



with σi : R → [0, 1] a sigmoidal function given by

σi(y) =
ydi

αdi
i + ydi

, y ∈ R. (14)

Function σi(y), y ∈ R, is parameterized by a “threshold”
parameter αi and a “steepness” parameter di > 0. αi is the
value of y at which the probability of the heater changing
status becomes equal to 0.5, whereas di is related to the
slope of the sigmoidal function at y = αi (which amounts to
di/(4αi)). We shall refer to the three possible values for the
steepness parameter di respectively as di = 1 (flat), di = 10
(gradual), and di = 100 (steep), in increasing order. The
values for the threshold αi are determined as a convex com-
bination of the temperatures xl

i and xu
i , xl

i < xu
i , defining

the desired temperature range [xl
i, x

u
i ] in room i.

5.2 Property Specification
We will consider two properties. The first one is a DFA

and the second one is an LTL-formula expressed as a GBA.
Recall that the difference between a DFA property and an
LTL-formula is that the former reasons over the finite paths
whereas the latter reasons over the infinite paths.

DFA property.
The property specified as a DFA A is depicted in Fig. 8.

q0 q1

q2

S

q3

DB
B

S

G

G

Figure 8: DFA A.
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Figure 9: Domains
for DFA A of Fig. 8.

Intuitively, A describes all the paths, the continuous part
of which can reach the region labeled with D (see Fig. 9)
by first visiting the region labeled with G while avoiding the
regions labeled with B. Region S is given by ([xl

1, x
u
1 ] ×

[xl
2, x

u
2 ])\(G ∪ B ∪ D). Notice that no equivalent CTL for-

mula can be formulated for property A.
We specify the heating system as a DTSHS H with 16

locations: to every subset S, G, D and B of each continuous
domain we assign a location, each of which has the con-
ditional discrete stochastic kernel T� specified as in Fig. 1
and Eq. (13). The parameter di is taken to be equal to 10
(gradual) and the parameter αi is equal to 1

4
xl

i + 3
4
xu

i for
i ∈ {1, 2}. The regions within the continuous domains are
specified by the parameters from Table 1. The set of atomic
propositions is AP = {S, G, D, B}. Every location is labeled
with a single element from the set AP. The continuous tran-
sition kernels Tx and R are given by Eq. (11), and depend
on the parameters a12 = a21 = 0.25, b1 = b2 = 0.1, c1 = 2.6,
c2 = 2.4, xa = 6 and ν = 0.5. We partition the continuous
domains [xl

1, x
u
1 ]× [xl

2, x
u
2 ] into square regions, uniformly di-

viding each interval [xl
1, x

u
1 ] into l slots. We leverage the dis-

cretization technique from Section 3.2 in order to obtain the
discretized DTMC from the product H ⊗ A. The DTMC

xl
1\xl

2 x1
1\x1

2 x2
1\x2

2 x3
1\x3

2 x4
1\x4

2 xu
1\xu

2

10\10 15\15 20\20 25\25 30\30 35\35

Table 1: Parameters characterizing continuous domains.

is highly connected, namely most of the transition proba-
bilites are non zero. The results reported in this section
refer to computations performed on a AMD Athlon 64 Dual
Core Processor with 2GB RAM. The product construction
and the discretization algorithm were implemented in MAT-
LAB. Table 2 shows the verification time and the DTMC

Slots l 5 10 20
DTMC states 400 1600 6400

Time (sec) 29.5 466.7 5694.6

Table 2: Verification time for the DFA A in (Fig. 8) over
the DTMC obtained from the DTSHS H.

size for different number of slots. The obtained verifica-
tion times critically depend on the discretization procedure,
rather than the model checking algorithms: the time spent
on the product construction and solving the system of linear
equations is much smaller compared to the time spent for
the generation of the DTMC. Fig. 10 displays the probabil-
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Figure 10: Satisfiability probability for the DFA A over the
DTSHS H (through its DTMC discretization), with the
first set of parameters.

ity that the two-room DTSHS satisfies the DFA property
A given that the initial location is (OFF, OFF) and the con-
tinuous state is chosen in any of the 4 domains S, G, B and
D. (The surface is obtained at the representative points.)
The number of discretization slots l is 10. A similar plot is
reported on Fig. 11 in 2D for a parameter choice of di of
100 (steep) and of αi of 1

2
xl

i + 1
2
xu

i , respectively — all other
parameters are as before. Here warmer colors denote higher
probabilities. In both the described instances, the proba-
bility is higher for all the states starting from the domain
G or nearby. This is due to the fact that the property A
is satisfied only for the paths of DTSHS that reach D by
starting anywhere in G or S and having crossed G.
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Figure 11: 2D plot for the satisfiability probability for the
DFA A over the DTSHS H (through its DTMC discretiza-
tion), with the second set of parameters.

LTL - formula.
We consider the formula ϕ = ♦�(D ∧ ¬S ∧ ¬F ) on the

set of atomic propositons AP = {S, D, F} and sets S =
[xl

1, x
u
1 ] × [xl

2, x
u
2 ] and D = [xl

1, x
m
1 ] × [xl

2, x
m
2 ], where xm

i =
xu

i +xl
i

2
, i ∈ {1, 2}. The formula signifies that all paths should

eventually reach domain D and then stay there forever.
We compute the satisfiability probability of the formula ϕ

on the DTSHS H2 modeling the two-room heating bench-
mark, where we consider a slightly different discrete struc-
ture, as specified in Fig. 12. For all locations Loc of the

{ON1, ON2}

�3

�4

�1

�2

�5

�6

�7

�8

F

{OFF1, ON2}

{OFF1, OFF2}{ON1, OFF2}{OFF1, OFF2}

{ON1, ON2}{OFF1, ON2}

{ON1, OFF2}

Figure 12: Discrete structure of the DTSHS H2.

DTSHS H2, the behavior of the discrete stochastic kernel
T� is defined in Eq. (12). The kernels T�, Tx and Tr for
locations Loc\{�4} are normalized, whereas in �4 we intro-
duce a new location F : this location models a failure mode,
which is possibly attained when both heaters in the two
rooms are switched on. F is an abstract locations containg
four sublocations F1, F2, F3 and F4 denoting the follow-
ing hybrid set of states {ON1, ON2} × D, {ON1, OFF2} × D,
{OFF1, ON2} × D and {OFF1, OFF2} × (S ∪ D). The tran-
sitions kernels T� and Tx to the four sublocations are de-
fined accordingly to Eq. (11) and (12), as in T�(Fi|(�4, x))
for Fi ∈ {{ON1, ON2}, {ON1, OFF2}, {OFF1, ON2}, {OFF1, OFF2}}.
The reset transition kernel is defined as Tr(x

′|(�4, x), Fi) =
Tx(x′|(�4, x)) for two cases Fi ∈ {F1, F2, F3} and x′ ∈ D,
or Fi = F4 and x′ ∈ S ∪ D. All locations �1, �2, �3 and �4
are labeled with S (domain S), locations �5, �6, �7 and �8
are labeled with D (domain D) and locations Fi are labeled

with F . We select the boundary for the continuous domains
as xl

1 = xl
2 = 5 and xu

1 = xu
2 = 45. Table 3 displays the

Slots l 4 8 16
DTMC states 49 193 769

Time (sec) 66.4 142.4 1723.8

Table 3: Verification time for the LTL-formula ϕ over the
DTMC obtained from the DTSHS H2.

verification time and the DTMC size for different choices of
partitioning slots l. Fig. 13 depicts the probability that the

Figure 13: Satisfiability probability for the LTL-formula ϕ
over the DTSHS H2 (through its DTMC discretization).

DTSHS H2 satisfies the LTL-formula ϕ given that the ini-
tial location is {OFF, OFF} and the continuous state is chosen
anywhere within the sets S, D of the continuous domains.
Notice that the probability is higher for continuous states
that are closer to the domain D. All continuous states in
domain D satisfy the formula ϕ with probability one.

6. CONCLUSIONS
In this paper, we have considered the quantitative veri-

fication of DTSHS against linear time objectives, specified
either as a DFA or as an LTL-formula (Büchi automaton).
We have shown that the probability that a DTSHS satisfies
a linear time property can be reduced to computing reacha-
bility probabilities in the product of the DFA (or the Büchi
automaton) and the DTSHS. Future work will include ver-
ification of nonautonomous DTSHS and the development
of more efficient techniques for the general verification of
DTSHS.
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