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The T cell receptor (TCR) repertoire can provide a personalized biomarker for infectious 

and non-infectious diseases. We describe a protocol for amplifying, sequencing, and 

analyzing TCRs which is robust, sensitive, and versatile. The key experimental step is 

ligation of a single-stranded oligonucleotide to the 3′ end of the TCR cDNA. This allows 

amplification of all possible rearrangements using a single set of primers per locus. It 

also introduces a unique molecular identifier to label each starting cDNA molecule. This 

molecular identifier is used to correct for sequence errors and for effects of differential 

PCR amplification efficiency, thus producing more accurate measures of the true TCR 

frequency within the sample. This integrated experimental and computational pipeline 

is applied to the analysis of human memory and naive subpopulations, and results in 

consistent measures of diversity and inequality. After error correction, the distribution of 

TCR sequence abundance in all subpopulations followed a power law over a wide range 

of values. The power law exponent differed between naïve and memory populations, but 

was consistent between individuals. The integrated experimental and analysis pipeline 

we describe is appropriate to studies of T cell responses in a broad range of physiological 

and pathological contexts.

Keywords: T cell receptor, repertoire analysis, naive T cells, memory T cells, unique molecular identifier

INTRODUCTION

�e adaptive immune system of jawed vertebrates uses imprecise somatic DNA recombination to 
generate a rich and diverse array of antigen speci�c receptors on B cells (BCR) and T cells (TCR). 
Although the mechanisms for the generation of diversity have been studied in great detail, the very 
diversity of the sequences coding for the receptors prevented a global analysis of the repertoire of 
B or T cell antigen receptors using conventional DNA sequencing techniques. �e rapid advances 
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in high-throughput DNA sequencing (HTS) over the past 
decades, and speci�cally the introduction of reliable massively 
parallel technologies [reviewed in Ref. (1)] have opened the way 
for increasingly robust and extensive BCR and TCR repertoire 
studies. Repertoire analysis provides a powerful tool for the 
study of both fundamental and translational immunology (2–5). 
Nevertheless, repertoire analysis provides many experimental 
and computational challenges, for which various solutions have 
been proposed (4, 6–8). Logistic considerations such as cost, ease 
of use, robustness, and versatility, as well as more scienti�c issues 
such as accuracy and coverage, may contribute to which solution 
is optimal for di�erent laboratories.

In this paper, we present an integrated experimental and 
computational pipeline for TCR repertoire analysis and use it to 
provide a quantitative description of the repertoire in di�erent 
sorted populations of human memory and naïve T cells. We do not 
present here a side-by-side comparison of this pipeline with other 
available techniques, although a study is currently in progress. 
Rather, we present a protocol which we and others have found 
useful with the hope that others in the community may also �nd 
it useful. All steps of the protocol are fully open source and as such 
can be used as they are, or developed further. We provide a series 
of quality control (QC) procedures which can be used to check 
the protocol at each step. �e protocol is economical, robust, and 
has proved adaptable to di�erent input sources of RNA, including 
whole blood, isolated peripheral blood (PB) lymphocytes, and 
solid tissue samples (including skin and lymph node biopsies, and 
tumor resections). �e de�ning feature of the protocol is that it 
uses single-stranded cDNA ligation mediated by RNA T4 ligase 
(9), which we demonstrate to have a high e�ciency, in order to 
incorporate unique molecular identi�ers (UMIs) (10–12). UMIs 
can be used both for sequence error correction and to mitigate 
for inherent PCR heterogeneity (13). �is allows quantitative 
estimates of TCR gene abundance. A suite of so�ware tools (in 
Python) are provided for demultiplexing the output of Illumina 
sequencers, V and J gene assignment, error correction, and CDR3 
extraction. �ese tools can be run individually or as a continuous 
pipeline.

�e combined pipeline has been used here to analyze sorted 
naïve, central memory, and e�ector memory human PB T  cell 
populations. Contrary to some previous reports, we �nd that 
a�er error correction, the naïve CD4 and CD8 population are 
made up predominantly of rare clones, of which over 95% are 
found only once in the sample analyzed. A�er error correction, 
the population structure of both memory and naïve T  cells 
can be well-described by a power law distribution. �e power 
law exponent of naïve populations is >4, while that of e�ector 
memory populations is around 2. Interestingly, CD4 central 
memory populations fall on a distribution of intermediate slope, 
while the distribution of CD8 central memory is similar to that 
of CD8 e�ectors. �e corrected distributions also give robust and 
reproducible estimates for diversity indices. Finally, we demon-
strate the presence of rare CMV-speci�c CDR3 sequences in the 
repertoire of two CMV positive individuals. Although a number 
of public or semi-public CMV CDR3s can be observed in the 
repertoires, the largest expansions of CMV-speci�c CDR3s only 
occurred in one individual. �e study demonstrates the potential 

of this method to generate economic, robust, and quantitative 
TCR sequence data without recourse to proprietary technologies.

METHODS

Sample Collection
�is study was carried out in accordance with the recommenda-
tions of the UK Research Ethics Committee with written informed 
consent from all subjects. All subjects gave written informed 
consent in accordance with the Declaration of Helsinki. �e 
protocol was approved by University College London Hospital 
Ethics Committee 06/Q0502/92.

PB Fractionation
Peripheral blood mononuclear cells (PBMC) of three donors 
were sorted into memory and naïve CD4+ and CD8+ popula-
tions. Brie�y, 120  ml of blood was collected from consenting 
healthy volunteers and PBMC were isolated by density-gradient 
centrifugation using Ficoll-Paque PLUS (GE Healthcare 
Lifescience). CD4 positive selection using Miltenyi beads was 
followed by CD8 positive selection of the CD4 negative fraction 
following the manufacturers’ instructions. CD4+ and CD8+ 
PBMC were stained with the following antibodies (all BD 
biosciences): CD3-PE-Cy7, CD4-V450, CD8-AF700, CD45RA-
PE-CF594, and CD27-APC, as well as the �xable nearIR live/dead 
cell stain (Invitrogen). Cells were gated on lymphocytes, singlets, 
live cells, CD3+ and either CD4+ or CD8+ and then sorted 
into naïve T  cells (CD45RA high, CD27+), central memory 
(CM, CD45RA−, CD27+), e�ector memory (EM, CD45RA−, 
CD27−) and e�ector memory RA-expressing revertants (EMRA, 
CD45RA+, CD27−) on an Aria II (BD). Sorted cell populations 
were centrifuged, the supernatant was removed and the cells were 
lysed and RNA stabilized in RLT bu�er (Qiagen) following the 
manufacturer’s instructions. RNA was isolated using an RNeasy 
extraction kit following the manufacturer’s instructions (Qiagen) 
and stored at −80°C. Details of the samples collected and the 
RNA yield are shown in Table S1 in Supplementary Material.

�e CMV status of donors was obtained by the overnight 
stimulation of fresh PBMCs with CMV viral lysate and identi�ca-
tion of IFNγ production by CD4+ T cells as described previously 
(14). �ere was total concordance between IFNγ responses and 
seropositivity from IgG serology obtained from the diagnostic 
laboratory of University College London Hospital.

KT2 T Cell Clone
�e KT2 T  cell clone which is speci�c for tetanus toxoid was 
a kind gi� of Dr. Antonio Lanzavecchia and was cultured as 
described (15). �e alpha and beta chains were ampli�ed using 
steps 1–6 of the pipeline described below and cloned into pGEM 
T Easy Vector. �e insert, which contains the full-length alpha 
and beta transcripts running from the alpha and beta RC1 prim-
ers until the 5′ end ligated to the SP2 ligation oligonucleotide, 
was cut out using the NotI sites on each side of the cloning site. 
�e insert fragment was puri�ed, quanti�ed by spectrometry and 
then a series of dilutions were made up for use as standards for 
PCR1 and PCR2. �ese plasmids are freely available from the 
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FIGURE 1 | The laboratory pipeline for T cell receptor (TCR) sequencing. 1. RNA is extracted from cells or tissues, using standard protocols, quantified and checked 

for integrity. 2. Residual DNA is removed by DNAse treatment, and TCR RNA is then reverse transcribed into cDNA using primers close to the 5′ end of the constant 

region. 3. An oligonucleotide containing the Illumina SP2 sequencing primer, and a unique molecular identifier (UMI) consisting of two sets of six random nucleotides 

separated by spacers as shown, is ligated to the 3′ end of the cDNA using T4 RNA Ligase I. 4. The ligated product is amplified by four rounds of PCR, using nested 

primers in the alpha and beta C region in combination with the SP2 primer. 5. The product is further amplified and extended to incorporate the SP1 sequencing 

primer, indices for multiplexing and adaptors as shown. The final purified product is mixed with other indexed samples to give the final library, analyzed by capillary 

electrophoresis and sequenced on an Illumina MiSeq or Nextseq. PuX indicate the various purification steps.
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authors, and the full sequences and restriction maps are available 
at https://github.com/innate2adaptive/KT2-TCR-sequences.

Skin Biopsies
Skin biopsies from tuberculin skin tests (TST) or saline-injected 
controls were collected and processed for RNA extraction as 
described in Ref. (16, 17).

Unfractionated Whole Blood Samples
For whole blood analyses, 2.5  ml of PB from consenting adult 
healthy volunteers was drawn into Tempus tubes, and RNA 
extracted as per the manufacturer’s instructions (�ermo�sher 
scienti�c).

TCR Library Preparation
A diagrammatic outline of the pipeline is shown in Figure 1, and 
detailed descriptions of each step are outlined below.

Step 1 (Figure 1, line 1). Extract high-quality total RNA from 
a population of T cells, using standard silica membrane columns 
(typically RNeasy Mini or Micro kits, Qiagen). RNA should then 
be quanti�ed �uorometrically (e.g., using the Qubit with RNA 
BR reagents, �ermoFisher Scienti�c) and integrity assessed 
using a Bioanalyzer or Tapestation (Agilent Genomics) or gel 
electrophoresis.

Step 2 (Figure 1, line 2). DNase treatment. Mix 8 µl RNA, 1 µl 
RQ1 DNase (Promega, #M6101), and 1 µl RQ1 10× Bu�er for 
30 min at 37°C. Add 1 µl RQ1 DNase stop bu�er and incubate 
at 65°C for 10 min in order to inactivate all DNase activity. �e 
RNA should be diluted as necessary in RNase-free water to 
give a �nal volume of 8 µl, aiming for a �nal total amount of 
1–1000 ng. If the RNA has been treated with DNase separately, 
this step is omitted, and the protocol starts at step 3 with 11 µl 
total RNA.

Step 3 (Figure  1, line 2). Reverse transcription (RT). Add 
RNase-free water (4 µl), dNTPs (1.5 µl of a stock solution at a 
concentration of 10 mM for each dNTP, Promega) and RT prim-
ers alpha RC2 and beta RC2 (1.5 µl of each 10 µM stock, Table S2 
in Supplementary Material) to the 11 µl of DNase treated RNA 
from step 2. �e primer mix is denatured by heating to 65°C for 
5  min, and then immediately and rapidly cooled on ice. Add 
Superscript (SS) reverse transcriptase (Invitrogen �ermoFisher) 
(1.5 µl), RNasin (1.5 µl, Promega #N2111), dithiothreitol (1.5 µl, 
0.1 M), and Superscript FS bu�er (6 µl of 5× stock) and incubate 
at 55°C for 30 min, and then 70°C for a further 15 min. Most of 
the experiments shown in this paper were carried out with SS III 
enzyme. However, the samples shown in Figure 4C were reverse 
transcribed with SSIV, according to the manufacturer’s protocol 
(10 min at 55°C, then 10 min at 80°C).
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FIGURE 2 | The efficiency of T4 RNA ligation. (A) Schematic of ligation assay. A long (250 bp) oligonucleotide (LO) coding for a short version of the Jurkat TCRβ 

gene was ligated to the unique molecular identifier (UMI)-SP2 oligonucleotide as described in the Section “Methods.” After ligation and bead purification the total 

amount of LO and the amount of ligated LO were measured separately by SYBR Green qPCR using βRC1 and V1 or βRC1 and SP2 primers, respectively.  

The efficiency is calculated as the ratio of ligated product, relative to total LO in the reaction, as determined by the βRC1-SP2 and βRC1-V1 amplification qPCRs. 

(B) A representative result showing the CT values obtained at two concentrations of LO, in two repeat qPCRs (blue: ligated product; green: total LO). (C) The 

efficiency of the ligation as a function of ligation time. (D) The efficiency of the ligation as a function of final polyethylene glycol (PEG) concentration in ligation mix.

4

Oakes et al. Sequencing the TCR Repertoire

Frontiers in Immunology | www.frontiersin.org October 2017 | Volume 8 | Article 1267

It is o�en useful to be able to quantify the amount of TCR 
mRNA in the sample. �e alpha and beta RC2 primers are close 
to the start of the J region, and the resulting fragment of constant 
region cDNA produced is too short for quantitative real-time 
PCR (qPCR). However, alternative constant region primers 
(hTRAC_Q_R and hTRBC_Q_R, Table S2 in Supplementary 
Material) can be used for the RT reaction, and the resulting 
cDNA can be quanti�ed using the additional hTRAC and hTRBC 
forward and probe oligonucleotides (Table S2 in Supplementary 
Material). �ese primer sequences were obtained from Ref. (18).

Step 4 (Figure 1 Pu1) Puri�cation 1. �e RT mixture (30 µl 
total volume) is diluted with 150 µl of PB bu�er from the MinElute 
PCR puri�cation kit (Qiagen, # 28004) and the cDNA puri�ed 
following the manufacturer’s instructions. Puri�ed DNA is eluted 
in 10.5 µl water, which should be allowed to stand for 1 min prior 
to centrifugation as detailed in the Qiagen instructions.

Step 5 (Figure 1 Line 3). Ligation. It is important that eluted 
cDNA samples be used for ligation within 24 h of puri�cation, 
since substantial losses have been observed if samples are frozen 
and then thawed. �e ligation mixture contains T4 RNA ligase 
1 (2  µl, NEB, #MO204), T4 RNA ligase bu�er (3  µl), bovine 
serum albumin (BSA)/hexamine cobalt chloride (HCC) mixture 
(1 mg/ml BSA; 10 mM HCC, 3 µl), 10 mM ATP (1 µl), ligation 
oligonucleotide (1 µl, 10 µM stock), PEG8000 (10 µl, 50% stock 
solution, supplied with T4 RNA ligase 1), and 10 µl of puri�ed 
cDNA from step 3. �e ligation mixture is very viscous due to the 
high concentration of PEG8000, and requires slow and thorough 
mixing. �e ligation mixture is incubated at 16°C for 20–24 h, and 
then stored at 4°C until the puri�cation.

�e standard ligation conditions are based on Ref. (19, 20). 
�e e�ciency and sensitivity to various parameters has been 
explored using a quantitative ligation assay as described below 

and Figure  2. �e ligation oligonucleotide sequence is shown 
diagrammatically in Figure 2A and the full sequence is given in 
Table S2 in Supplementary Material. It contains the Illumina SP2 
primer region (which acts to prime the reverse sequencing read 2),  
followed by an 8 base spacer, and a 12 base UMI. �e 12 nucleo-
tide UMI consists of two stretches of six random nucleotides, 
separated by an eight-base spacer that acts to prevent hairpin 
formation within the UMI. �e ligation oligonucleotide is phos-
phorylated at the 5′ terminus, which is a requirement of T4 RNA 
ligase 1, and blocked at the 3′ terminus with a Spacer C3 moiety 
to prevent oligonucleotide concatemerization (Figure 2A).

Step 6 (Figure 1 Pu2). Puri�cation 2. It is critical to remove as 
much of the ligation oligonucleotide as possible prior to subse-
quent ampli�cation steps. �is puri�cation, and all subsequent 
puri�cation steps are carried out using Agencourt AMPure XP 
magnetic beads (BeckmanCoulter A63880) according to the 
manufacturer’s instructions. Since there is PEG in the ligation 
mixture, and there is also PEG in the AMPure magnetic bead 
puri�cation solution, the relative volumes of beads and DNA solu-
tion have been altered as described. �e beads must be allowed 
to warm up to room temperature for at least 30 min before use.

�e ligation mix (30 µl) is diluted by addition of 70 µl RNase-
free water and mixing well. 50 µl AMPure beads are added to 
100  µl of diluted ligation product, and mixed thoroughly by 
pipetting up and down 10 times or until homogeneous. �e 
bead/DNA mixture is le� to stand for 5  min at room tem-
perature. �e beads are collected by placing tubes (for small 
numbers of samples) or plates (for larger number of samples) 
on a magnetic stand for 2  min. �e liquid above the beads is 
carefully aspirated and discarded. �e beads are washed twice 
with 300 µl of fresh 80% ethanol (EtOH), air-dried for less than 
5 min (typically 3–4) and the DNA is eluted in 33 µl molecular 
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grade H2O. Quantitative measurements of cDNA concentrations 
before and a�er puri�cation indicate the puri�cation yield at this 
step is between 0.5 and 0.7.

Step 7 (Figure 1 line 4). PCR1. If possible PCR1 should be set 
up on the same day as the puri�cation of the ligation mixture. 
31 µl of the puri�ed ligation mixture is mixed with dNTPs (1 µl, 
10 mM stock), primers (2.5 µl, 10 µM stock), Phusion High Fidelity 
proofreading DNA polymerase (0.5 µl �ermo�sher, #F530), and 
Phusion HF bu�er (10 µl, 5× stock). �e PCR mixture (�nal vol-
ume 50 µl) contains three primers (see Table S2 in Supplementary 
Material), SP2—which anneals to the corresponding sequence 
introduced by the ligation oligonucleotide plus alpha RC1 and 
beta RC1, which hybridize to the constant region of the alpha 
and beta genes, respectively. Note that these oligonucleotides map 
5′ to the constant region primers used for the RT, thus acting 
as nested primers in relation to the RT step. �is proved to be 
an essential feature of the protocol, signi�cantly increasing the 
speci�city of the ampli�cation step. Note further that the beta 
RC1 primer is an equimolar mixture of two oligonucleotides, beta 
RC1.1 and beta RC1.2. �is provides coverage of both the TRBC1 
and TRBC2 beta chain constant region alleles, which di�er by 
2 bp in this region (21), while avoiding the additional sequences 
and unknown relative concentrations that would be produced by 
ordering an oligonucleotide with a degenerate sequence.

PCR cycling parameters are heated lid (typically 105°C), 98°C 
3 min denaturation step, followed by 4 cycles of 98°C, 15 s dena-
turation, 69°C, 30 s annealing, and 72°C, 40 s extension; followed 
by 72°C, 5 min �nal extension. �e samples can be stored at −20° 
a�er this step if required.

Step 7a (optional QA). In order to test whether the ligation step 
has been successful, a qualitative PCR can be performed, using 1 
or 2 µl of puri�ed ligation mix, and the same PCR conditions as 
above (make up to total volume of 50 µl with water). �e PCR 
should be run for 30 cycles and should generate a band of about 
550 bp.

Step 8 (Figure  1 Pu3). Puri�cation 3. Mix the whole of the 
PCR1 mixture (50 µl) with 40 µl AMPure XP beads (prewarmed 
and thoroughly resuspended). Proceed with bead puri�cation 
protocol as for puri�cation 2. Elute in 31 µl water.

Step 9 (Figure  1 line 5). PCR2. An extension PCR that 
incorporates the Illumina sequencing adaptors P5 and P7 
and the sequencing primer SP1 (sequencing read 1) sequence.  
In addition, it incorporates two indexing sequences that allow 
multiplexing of many di�erent samples on the same sequencing 
run. �e index 5′ to SP2 is read by Illumina sequencers during 
an additional short sequencing step between sequencing reads 
1 and reads 2 (index read 1). An additional index is used in this 
protocol, inserted immediately 3′ to the constant region, which 
is read at the beginning of sequencing read 1. One representative 
index sequence we have used at each index position within the 
amplicon is shown in Table S2 in Supplementary Material, but 
other indices can be used as required. �e Illumina sequencing 
technology requires diversity in the �rst few bases in order to 
obtain good cluster identi�cation. An additional 6 random bp are, 
therefore, incorporated immediately 5′ to SP1 as shown.

T cell receptor alpha and beta chains are processed separately 
from this stage. 12.4  µl of puri�ed PCR1 ligation mixture is 

mixed with dNTPs (0.62 µl, 10 mM stock), ROX reference dye 
(0.5 µl, �ermo�sher # 12223012), SYBR Green solution (2.5 µl), 
primers SP1-P7, P7-IX-SP2 (1.25  µl, 10  µM stock, IX refers to 
an index number), primer SP1-6N-IX-aRC1 or SP1-6N-IX-bRC1 
(1.25 µl, 1 µM stock, Table S2 in Supplementary Material, X refers 
to another index number), Phusion High Fidelity proofreading 
DNA polymerase (0.25 µl �ermo�sher, #F530), and Phusion HF 
bu�er (5 µl). Total volume 25 µl.

PCR cycling parameters are heated lid, 98°C 3 min denatura-
tion step, followed by cycles of 98°C, 20 s denaturation, 69°C, 30 s 
annealing, and 72°C, 40  s extension. �e reaction is stopped 
when the �uorescence signal reaches a prespeci�ed threshold 
(see below). �e samples can be stored at −20° a�er this step if 
required.

�e PCR mixture (�nal volume 25 µl) contains three primers 
(see Table S2 in Supplementary Material; Figure 1). �e two outer 
primers SP1-P5 and P7-IX-SP2 are used at a stock concentration 
of 10 µM, while the inner SP1-6N-IX-aRC1 or SP1-6N-IX-bRC1 is 
present at 10-fold lower concentration to favor the outer reaction.

�e SYBR Green stock solution (SYBR Green I Nucleic Acid Gel 
Stain 10,000× concentrate in DMSO, Invitrogen/�ermoFisher) 
is �rst diluted 1:100 in DMSO. �is solution is stored is at −20°C, 
and then an aliquot is further diluted 1:50 in water immediately 
before addition to PCR mixture.

A DNA fragment standard (typically 12.5 pg) of a DNA frag-
ment consisting of a ligated KT2 TCR sequence from the SP2 to 
the RC1 sequence (see above and Figure 1) is ampli�ed in parallel 
to new samples in PCR2 as part of QC. �is sequence is produced 
through the extended ampli�cation of PCR1 using KT2 mRNA 
as a target.

PCR2 is typically carried out as a SYBR Green qPCR, allowing 
the progress of the reaction to be observed in real time, and the 
cycler stopped when the signal reaches a predetermined threshold 
(see example of run in Figure S1 in Supplementary Material; the 
threshold is selected to lie within the logarithmic expansion phase 
of the ampli�cation). In this way, over ampli�cation is prevented. 
In cases with su�cient T cell numbers/RNA concentration, this 
standard PCR2 produces enough library DNA for sequencing, 
in which case these preparations can proceed directly to step 10.

In samples with low T cell/TCR mRNA input, PCR2 can be 
carried out as a conventional end-point reaction (typically for 6 
cycles). �is PCR2 product is then puri�ed using puri�cation 3 
protocol (PU3, step 8), and further ampli�ed in a qPCR using 
P5s and P7 primers. For PCR3 we use 13.6 µl sample + 11.4 µl 
mastermix, containing bu�er, enzyme, dNTP, Rox, and Cyber 
green as described for PCR2, plus 1.25  µl P5s primer (10  µM 
stock) and 1.25 µl P7 primer (10 µM stock) using the reaction 
conditions described above.

Step 10 (Figure 1 Pu4). Puri�cation 4. Mix the whole of the 
PCR2 mixture (25 µl) with 20 µl AMPure XP beads (rewarmed 
and thoroughly resuspended). Proceed with bead puri�cation 
protocol as for puri�cation 2. Elute in 31 µl water.

Step 11 (Figure  1, line 6). Sequencing. �e concentration 
of each DNA sample a�er ampli�cation is quanti�ed by spec-
troscopy (dsDNA high-sensitivity Qubit kit, �ermoFisher 
Scienti�c). Samples are also analyzed by micro-electrophoresis 
using a high-sensitivity D1000 TapeStation screen tape (Agilent). 

http://www.frontiersin.org/Immunology/
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FIGURE 3 | The computational pipeline for T cell receptor (TCR) analysis. A diagrammatic representation of each of the four stages of analysis, each performed by 

an independent software module as shown. 1. Demultiplexor takes raw FASTQ files generated by the Illumina sequencer, extracts the unique molecular identifier 

(UMI) sequence from read 2 and combines it with the TCR sequence from read 1, and then demultiplexes the reads into sets of FASTQ files each containing data 

from only one indexed sample. 2. Decombinator takes individual FASTQ TCR reads and identifies the relevant V and J genes, and the V–J junctions (which 

encompass the D genes for beta chains, but do not explicitly identify them). Each TCR is assigned a five-part identifier, Vi, a number denoting the V region 

(corresponding V region names according to IMGT nomenclature are given in Table S3 in Supplementary Material); Jp, a number denoting the J region 

(corresponding V region names according to IMGT nomenclature are given in Table S3 in Supplementary Material); Vdel, the number of nucleotides deleted from the 

3′ end of the genomic V gene sequence; Jdel, the number of nucleotides deleted from the 5′ end of the genomic J gene sequence; and insert, the nucleotide 

sequence between the end of the V and the beginning of the J (which includes any remaining D region nucleotides for beta and delta chains). These five identifiers 

together uniquely identify the recombined TCR nucleotide sequence. The unique UMIn incorporated into each TCR read is appended to each TCR identified.  

3. Collapsinator takes Decombinator output and uses the UMIs to correct both for sequencing errors and for frequency errors that arise from PCR heterogeneity.  

4. CDR3Translator converts the Decombinator five-part identifier into nucleotide sequence, translates this sequence into amino acid sequence, and then extracts 

the CDR3 region based on their C-terminal and N-terminal motifs.
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Typical pro�les are shown in Figure S1 in Supplementary 
Material. Successful library preparation yields a major peak 
of approximately 650  bp as predicted from the combined size 
of the recombined TCR variable gene, together with the short 
sequence of constant region and various adaptors/indices. �e 
peak molecular size as determined on the Tape station is used 
to convert the concentration from ng/μl to nM. �e �nal librar-
ies are prepared by mixing samples with di�erent indices, such 
that each sample is present at 4 nM in the �nal library. Typically, 
12 samples are run in parallel, typically yielding 1–2 million 
reads per sample when using a v2 kit (2 × 251 paired end) on 
an Illumina MiSeq. However, greater depth can be achieved by 
running fewer samples per �ow cell where needed. �e number 
of UMIs in a sample increases with read depth (Figure S2 in 
Supplementary Material) although as shown the number begins 
to saturate around 1–2 million reads for PB repertoires. Where 
necessary, samples can be further concentrated either by adding 
additional PCR cycles (amplifying with P5 and P7 primers a�er 
PCR2), or by drying DNA down to a smaller volume. �e �nal 
4 nM library is then prepared for sequencing using the standard 
Illumina MiSeq protocol. 5–7% PhiX DNA is added to the library 
to increase diversity and improve cluster recognition.

TCR Analysis Protocol
A diagrammatic outline of the analysis pipeline is shown in 
Figure 3. A detailed description of each step is outlined below:

�e analysis of the FASTQ �les is carried out using a suite of 
Python scripts available at https://github.com/innate2adaptive/
Decombinator. �e repository also contains help �les and test 
data. �e core TCR assignment is based on a modi�ed version of 
the original Decombinator so�ware (22), which uses a tag-based 
recognition method based on the Aho-Corrasick algorithm (23). 
�e processing is broken down into four steps, which can be 
run independently (with separate scripts) or combined using a 
Make�le.1

1. Demultiplexor.py (Figure  3, top line). Illumina machines 
produce 3 read �les from the libraries generated as described 
above: Read 1 (R1) contains the V(D)J sequence and a demulti-
plexing index (the SP1 index, Figure 1); Read 2 R2 contains the 
UMI sequences and reads into the 5′ UTR; Index 1 (I1) contains 
the second demultiplexing index (the typical Illumina index read, 
giving the SP2 index). �e three �les are converted to FASTQ 

1 https://github.com/innate2adaptive/automate-decombinator.
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format using the Illumina bcl2fastq conversion so�ware.2 Note 
that in order to produce single R1/R2/I1 �les for the entire runs, 
the run must either be performed without providing demultiplex-
ing indexes or the reads from all samples must be pooled a�er-
ward. Production of separate I1 index �les may also not be set as 
a default option on most users’ sequencing machines, which may 
require alteration of con�guration �les (which should be done by 
an experienced Illumina user).

�e Demultiplexing script extracts the relevant sequences 
from each sequence and combines them into a single sequence, 
containing the �rst 30 bp of read 2 (covering the random bar-
code and spacer nucleotides), followed by two sets of hexamers 
(Illumina index read and index from R1), and the whole of R1 
(which contains the end of the constant region and the majority 
of the variable region—see Figure 1). �e script then searches for 
combinations of the indices speci�ed by the user and separates 
out the reads into a set of separate FASTQ �les, named according 
to corresponding sample identi�ers supplied by the user. �e 
output is, therefore, a set of FASTQ �les, each corresponding to a 
distinct biological sample (optionally also a distinct TCR chain), 
plus a log �le which summarizes the output.

�e script requires the location of the three original FASTQ 
�les R1, R2, and I1; and a CSV �le containing the sample names 
and corresponding index sequence numbers as de�ned in Table 
S2 in Supplementary Material. �e output is a series of FASTQ 
�les, each containing a set of UMI and associated TCR sequences 
from a single biological sample. �e �le names incorporate the 
operator-determined sample names. �ese names will be carried 
downstream throughout the analysis, and so should be chosen 
with care. Including the chain (e.g., “alpha”) in the �le name will 
allow auto-detection in subsequent scripts (if only one chain is 
used per �le).

Further details about the data input and setting addi-
tional optional �ags can be found as annotation inside the 
Demultiplexor script and in the accompanying README �le.

2. Decombinator.py (Figure  3, line 2). �is module is an 
improved version of the original Decombinator algorithm which 
is described in detail in Ref. (22). �e algorithm uses a fast, key 
word-based algorithm to search FASTQ reads (e.g., produced 
through Demultiplexor.py) for rearranged TCR chains, assign 
V and J genes, and determine the junctional deletions/additions 
relative to the genomic gene sequence. Assignment is done by 
matching to V and J gene speci�c tags, allowing a single base pair 
mismatch as described in detail in the original paper.

Decombinator can currently analyze both human and mouse 
TCRs, analyzing both alpha/beta and gamma/delta chain 
rearrangements.

�e input (provided via command line arguments) should 
include FASTQ �les produced by Demultiplexor.py (unzipped or 
gzipped). Data produced from other sources can also be analyzed, 
but users will need to consult the documentation to correctly set 
the non-default settings. �e TCR chain locus to look for can be 
explicitly speci�ed using the -c �ag and users can specify chain 

2 https://support.illumina.com/downloads/bcl2fastq_conversion_so�ware_184.

html.

identi�ers from a/b/g/d/or alpha/beta/gamma/delta or/TRA/
TRB/TRG/TRD/or TCRA/TCRB/TCRG/TCRD. If no chain is 
provided (or if users wish to minimize input arguments), the script 
can infer the chain from the FASTQ �lename, e.g., “alpha_sample.
fq” would be analyzed for alpha chain recombinations.

�ere are several other optional input �ags which control the 
output and analysis and can be found within the Decombinator.
py script or can be accessed by viewing the help data, by running 
Decombintator.py –h.

�e output is a CSV �le, with a name based on the �le name 
allocated in Demultiplexor, and the default extension.n12 (refer-
ring to the 12 random nucleotides of the UMI). Each line of 
output corresponds to a distinct TCR sequence and contains the 
following 10 �elds:

 1. A number denoting the V region (corresponding V region 
names according to IMGT nomenclature are given in Table 
S3 in Supplementary Material).

 2. A number denoting the J region (corresponding V region 
names according to IMGT nomenclature are given in Table 
S3 in Supplementary Material).

 3. �e number of nucleotides deleted from the 3′ end of the 
genomic V gene sequence.

 4. �e number of nucleotides deleted from the 5′ end of the 
genomic J gene sequence.

 5. �e nucleotide sequence between the end of the V and the 
beginning of the J (which includes any remaining D region 
nucleotides for beta and delta chains).

 6. �e Illumina FASTQ line identi�er, so as to be able to link the 
output back to the original raw sequence data if necessary.

 7. �e complete nucleotide sequence between the V gene and 
J gene tags used for V and J identi�cation (the “intertag 
sequence”), which is used for error correction.

 8. �e corresponding quality of each base in the intertag 
sequence as determined by the Illumina sequence (as Phred 
score).

 9. �e �rst 30 bases of the R2 read, containing the spacer and 
UMI sequences from the ligation oligonucleotide as shown 
in Figure 2.

 10. �e corresponding read quality of the UMI sequence.

�e script also outputs a log �le, which summarizes the 
statistics for the sample, and includes a lower bound estimate of 
error rate per base pair around the relevant portion of the TCR 
molecule/read, obtained by counting the number of single base 
pair mismatches between tag and read sequences.

Collapsinator.py (Figure  3, third line). �is script takes the 
output �les of Decombinator and performs qualitative and quan-
titative error correction mitigating for both sequencing error and 
PCR ampli�cation heterogeneity.

 1. �e output from Decombinator is grouped according to UMI, 
and within each UMI group the TCR sequences are error-
corrected as follows:

 a. �e TCR sequences are ordered in descending abundance 
order, and the most common is considered �rst (or if 
there are multiple sequences of equally large abundance, 
one is chosen arbitrarily). All other reads within the UMI 

http://www.frontiersin.org/Immunology/
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group are considered in turn, and those with an intertag 
sequence that di�ers from the most common by less than a 
pre-assigned proportion of their bases are assumed to have 
derived from the same single TCR mRNA molecule by a 
process of PCR or sequencing error. As such these reads 
are incorporated into the most common TCR sequence 
within the UMI and do not represent di�erent TCR 
rearrangements in the sample. We assume that the most 
frequent variant, rather than any of the minor variants, 
represents the true TCR sequence since most errors are 
likely to occur later during the PCR process (when more 
molecules are present) or during the sequencing and, thus, 
will appear as in the sequencing output as minor variants, 
see Ref. (24). Any sequences that were not incorporated 
into the �rst common TCR get set aside for subsequent 
iterations.

 b. �e process described in (a) is repeated on the remaining 
TCR sequences within the UMI, taking the remaining next 
most abundant TCR as the reference sequence, proceeding 
iteratively until all sequences within the UMI have been 
considered.

 2. Next, where the same (or similar, to a preset number of mis-
matches) TCR is associated with multiple UMIs, this set of 
UMIs is considered to see whether they likely derived from the 
same labeled TCR cDNA molecule by sequence/PCR error. 
Where UMIs di�er in only a preset threshold of bases, they 
are assumed to represent the same initial TCR molecule and 
are clustered together.

�is process provides, for each UMI, a set of TCR sequences 
that have likely derived from separate TCR cDNA (and, hence, 
separate mRNA) molecules. In practice, because of the diversity of 
UMIs, UMIs associated with more than one distinct TCR are rare.

�is process provides UMI–TCR pairs that are believed to 
represent sequence output from a single initial TCR molecule. 
�e number of di�erent UMIs paired with a single TCR sequence 
provides the “clone size” of that TCR, giving a corrected estimate 
of the actual abundance of that molecule in the original ligation 
reaction. In addition, the number of Decombinator output lines 
that have been incorporated into each UMI–TCR pair provides a 
measure of the PCR ampli�cation that the experimental pipeline 
has applied to the initial single TCR molecule. �e number of 
sequences incorporated into each UMI–TCR pair is observed to 
be very heterogeneous (see Figure S3 in Supplementary Material), 
illustrating the considerable amount of PCR heterogeneity as we 
described previously (13).

�e output of this script is a csv �le, with a name based on 
the �le name allocated in Demultiplexor, and the extension.
freq. Each line of the output �le contains the �rst �ve �elds of 
the Decombinator output (see above), which provide unique 
TCR identi�ers for the error-corrected sequences, with a sixth 
�eld containing the number of times this TCR is found within 
the sample. �e script also generates a log �le which contains a 
summary of the �le statistics.

CDR3Translator.py (Figure  3, fourth line). �is script takes 
the output �les of Collapsinator.py or Decombinator.py and 
determines the corresponding protein sequence of the CDR3 

hypervariable loop. �is is de�ned by convention as the region 
from the second conserved cysteine encoded in the 3′ of the  
V gene to the phenylalanine in the conserved “FGXG” motif in 
the J gene of a given rearrangement. Some non-canonical CDR3 
motifs have also been reported. �e algorithm also identi�es “non-
productive” TCR sequences, i.e., those that contain stop codons, 
are out-of-frame, or lack any CDR3 motifs (for a full discussion 
of what constitutes a functional or productive TCR see http://
www.imgt.org/IMGTScientificChart/SequenceDescription/
IMGTfunctionality.html).

�e algorithm takes the unique 5-part identi�er produced by 
Decombinator (�elds 1–5 de�ned above) and converts these into 
a full DNA sequence, based on de�ned sets of sequences for each 
V and J regions. �ese can be hosted locally during analysis or 
be automatically downloaded from https://github.com/innate2a-
daptive/Decombinator-Tags-FASTAs (�les ending with a.fasta 
extension). �e full DNA sequence is then translated into protein 
sequence, and the CDR3 sequences extracted. �e identi�cation 
of CDR3 motifs uses an additional set of �les which de�ne the 
position and sequence of V and J terminal motifs for each known 
V and J gene, which can also be found at the same repository as 
above (�les ending with a translate extension). �ese �les allow 
non-canonical CDR3s to be included.

�e output consists of either cdr3 �les, which consist of the 
unique productively-rearranged CDR3s from the original �le, 
with their frequency, or “.dcrcdr3” �les, which contains the �ve-
part Decombinator index before the CDR3 and its frequency; this 
option is provided as multiple TCR rearrangements can encode 
the same CDR3 sequence. �e choice of which �le format is 
used is decided through use of the “dcroutput” variable (via the 
“-do” �ag). �e script also outputs some simple statistics about 
the number of productive rearrangements, and the frequency of 
di�erent genes.

Further details of all the so�ware, the current annotated 
versions of the scripts and all necessary accessory �les can be 
found at the Innate2Adaptive GitHub repository. Note that the 
“Decombining” and translation functionalities can also be called 
from other Python modules, allowing incorporation of V/J 
assignment and CDR3 extraction into more complex bespoke 
analysis procedures.

All the sequences analyzed in this manuscript have been 
submitted to the Short Read Archive3 as experiments SRP108840 
(KT2 sequences); SRP109035 (naive/memory), and SRP108891 
(Skin samples).

RESULTS

Library Preparation and Sequence 

Analysis
�e twin pipelines for library preparation and subsequent 
sequence analysis are summarized in Figures 1 and 3. �e details 
are described in the methods section above. �e key features are 
outlined below:

3 https://www.ncbi.nlm.nih.gov/sra.
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TABLE 1 | The list of reagents and costs per sample (in pounds sterling) for the 

TCR library preparation.

Reagent UCL cost per sample

Ampure beads 0.87

Bovine serum albumin 0.00

Cyber green 0.02

DNa away 0.12

dNTPs 0.14

Ethanol 0.00

Ligation oligo (HPLC) 0.01

Lowbind tubes 0.36

Mini elute kit 1.22

oligos 0.09

Phusion polymerase 1.04

Pipette tips 0.97

Qubit reagents 0.72

Q-PCR stripes 0.21

Qubit tubes 0.19

RNA ligase reaction buffer (+PEG/ATP) 0.32

Rnase away 0.04

RNAse-free water 0.02

RNAsin 0.70

Rox 0.03

RQ1 DNase 0.04

Superscript III RT mix 4.26

T4 RNA ligase 0.06

Tapestation reagents 0.53

Tapestation ScreenTapes 1.55

TapeStation Tips 0.18

13.70

Further details of individual reagents are given in the protocol as detailed in Section 

“Methods.”
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 1. cDNA synthesis. �e protocol uses RNA rather than DNA, 
since this allows straightforward introduction of UMIs. �e 
use of RNA also increases the likely coverage of the reper-
toire since each cell contains several molecules of TCR mes-
senger RNA. �e method is potentially sensitive to changes 
in RNA message associated with T  cell activation and 
di�erentiation. However, several studies have demonstrated 
that such changes are small and transitory and are, therefore, 
unlikely to have a major impact on repertoire (24–27). We 
used a constant region qPCR to measure the number of TCR 
molecules per T cell in six samples of PBMC from healthy 
volunteers (Figure S4 in Supplementary Material). �ere 
were 180 ± 50 molecules of TCR alpha cDNA (mean ± SD, 
n = 6) and 400 ± 90 molecules of TCR beta cDNA per T cell. 
�e ratio of beta to alpha was 2.3 ± 0.5. �is �gure is broadly 
consistent with similar measurements of mouse TCR beta 
chain message (24, 28) levels, and is also consistent with 
single-cell studies showing that TCR message is highly 
expressed (29, 30). We have also seen similar di�erences in 
alpha and beta message abundance when analyzing TCRs 
in total RNAseq data (not shown). �e implications of RNA 
abundance and repertoire coverage are discussed in more 
detail below.

 2. �e ligation of an oligonucleotide to the 3′ end of the cDNA 
permits introduction of UMIs before PCR ampli�cation 
and also avoids the need for multiplex PCR and the biases 
this can generate. �is greatly increases the �exibility of the 
protocol because T  cells from di�erent species or gamma/
delta TCRs—or indeed any target transcript—can be easily 
processed simply by changing the constant region primers. 
Although T4 RNA ligase is o�en described as having low e�-
ciency for single-stranded DNA, we were unable to discover 
any publications with direct measurements of this e�ciency. 
We, therefore, developed an assay for ligation e�ciency, using 
as substrate a long (250  bp) oligonucleotide which coded 
for a shortened TCR beta chain from the Jurkat cell line.  
As shown in Figure 2, this assay suggested that the T4 ligase 
had e�ciencies >10% under optimum conditions. We con-
�rmed this by measuring ligation e�ciency using full-length 
cDNA extracted from Jurkat cells. �us, at least one in 10 TCR 
cDNA molecules should be ligated a�er overnight ligation 
using this method.

 3. PCR. We carried out the ampli�cation protocol in two steps. 
All PCR steps were carried out using Phusion high �delity 
proofreading polymerase. We observed that we could signi�-
cantly increase e�ciency by introducing a washing step a�er 
four cycles of PCR1. �is was not due to inherent low e�ciency 
of this PCR, because ampli�cation of an appropriate standard 
(a previously cloned TCR) showed PCR e�ciencies >1.9.  
We speculate that residual oligonucleotide from the ligation 
step may remain a�er the �rst bead washing step and interfere 
with the ampli�cation. �e second PCR was carried out using 
a qPCR SYBR Green protocol (Figure S1 in Supplementary 
Material), so that ampli�cation could be observed in real 
time. In this way, the ampli�cation could be stopped when 
the amount of product reaches a predetermined threshold, 
corresponding to a su�cient yield of DNA for sequencing. 

�is avoids excessive ampli�cation, which could bias against 
some rare TCR sequences in the starting pool and minimizes 
the burden of erroneous sequence production.

 4. PCR2 introduces several features required for subsequent 
sequencing on the Illumina platform, including the �rst 
sequencing primer SP1, an Illumina index for sequence mul-
tiplexing and the two Illumina anchor sequences P5 and P7. 
A random hexamer is introduced immediately downstream of 
SP1 to increase diversity at the beginning of the �rst sequence 
run, which greatly improves cluster identi�cation. A second 
multiplexing index sequence is also introduced immediately 3′ 
of the constant region. �e option to introduce two independ-
ent indices is important when considering high-throughput 
experiments with many samples using the NextSeq or HiSeq 
machines.

 5. �e cost of the protocol is an important consideration when 
large numbers of samples are to be processed. �e approximate 
costs of the various materials required for the protocol are 
summarized in Table 1 (exact costings will depend on local 
pricing agreements). �e current total cost is in the order of 
£14 (approximately 16–18 Euros or US dollars) per sample, 
excluding sequencing. �e most expensive component is the 
reverse transcriptase SuperScript III. We have not experi-
mented with other reverse transcriptases but it is possible the 
total cost could be further reduced by using a di�erent source 
of this enzyme.
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FIGURE 4 | Quantitative analysis of KT2 T cell receptor (TCRs). (A) KT2 cells were mixed with a fixed number of peripheral blood mononuclear cell (PBMC) to  

give a range of KT2:PBMC ratios as shown. The cell mixture was lysed, RNA extracted and TCRs amplified, sequenced, and analyzed as described in the Section 

“Method.” The figure shows the number of distinct KT2 alpha or beta TCRs identified per million TCRs, as a function of the number of KT cells per million PBMC.  

A distinct KT2 TCR is defined by a cluster of KT2 TCRs sharing a single unique molecular identifier. (B) Top two bars: 5 × 105 KT2 cells were lysed, the total RNA 

extracted and then the indicated amount of RNA was processed for TCR sequencing. Bottom bars: 5 × 103 KT2 cells were lysed, the total RNA extracted and 

processed for TCR sequencing. The bar chart indicates the number of distinct KT2 sequences identified from each sample. (C) Number of TCR alpha and beta 

sequences (after error correction) from whole blood or 3-mm skin punch biopsies. Data are expressed as total number of TCR sequences normalized against  

input RNA amount data points represent individual participants, and group medians are indicated by red lines [Blood, n = 10; tuberculin skin test (TST), n = 7; 

Saline, n = 3].
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 6. �e analysis pipeline is built around the Decombinator so�-
ware that has been described previously (22). DecombinatorV3 
is signi�cantly faster than previous versions, and by default 
uses an extended set of V and J regions described at https://
github.com/innate2adaptive/Decombinator-Tags-FASTAs. In 
addition to the 5 part identi�er described previously (V gene, 
J gene, number of V deletions, number of J deletions, and the 
sequence between the end of the V and J genes), it retains the 
�rst 30  bps of read 2 which contain the UMI sequence for 
subsequent analysis.

 7. �ree additional new utilities are provided. Demultiplexor 
uses a combination of the Illumina and the additional index 
sequence (provided by user) described above to separate 
di�erent samples which have been sequenced in the same 
run. Collapsinator implements a UMI-based error correction 
procedure that is described in more detail in the Section 
“Methods,” and outputs a set of unique 5 part identi�ers for 
each sample, together with their abundance in the sample. 
Finally CDR3translator translates and extracts the CDR3 from 
each error-corrected TCR. Each module provides a summary 

of the output in comma-delimited format. Each module can 
be run independently, or the full pipeline can be run simulta-
neously using a Make�le.

Pipeline Sensitivity and Versatility
�e sensitivity and accuracy of the pipeline were tested by “spik-
ing” a population of unfractionated PBMC with known numbers 
of a T cell clone, KT2, whose TCR had previously been sequenced. 
�e results are shown in Figure 4. �e numbers of KT2 alpha and 
beta sequences were a linear function of the input number of cells 
over several orders of magnitude, showing evidence of saturation 
only at very high numbers of KT2. �e analysis was able to detect 
KT2 sequences down to the lowest number tested (1 in 105).

�e total amount of input RNA in the spike-in experiment 
shown in Figure  4 was kept constant. In order to explore the 
sensitivity of the method using di�erent amounts of input RNA 
or cells, we made libraries using either low numbers of cells (5,000 
KT2 cells), or from very low amounts of RNA (Figure 4B). �e 
number of TCR sequences detected (a�er UMI-based error 
correction) was in the same order of magnitude as the number 
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FIGURE 5 | (A) The distribution of T cell receptor (TCR) abundances before and after error correction from the naive CD8 repertoire of one representative individual. 

Inset shows total number of distinct cDNA TCR sequences ×105, calculated before and after error correction. (B) Distribution of TCR clonotype size (the proportion 

of TCR alpha sequences which occur once, twice, etc.) for all subsets. (C) A bar plot showing the proportion of TCRs within different frequency ranges for each 

population. (D) The power law exponent for all subpopulations of CD4 and CD8 repertoires from three healthy volunteers (all HLA-A02 positive).
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of cells, suggesting the method was able to detect on average at 
least one transcript from every cell, even at low cell numbers. 
In order to explore the relationship between T cell number and 
TCR mRNA molecules further, we sequenced six samples of 
PBMC from healthy volunteers, in which the number of T cells 
was determined by �ow cytometry. �e average (±SEM) ratio of 
UMI: T cell for these samples was 3.8 ± 1 for TCRα and 3.3 ± 0.6 
for TCRβ.

Finally, in order to explore the robustness of the pipeline in 
samples where T cells are a minority population, we made librar-
ies from RNA extracted from skin biopsies from sites injected 
with saline (sampling the resident skin T  cell population) or 
injected with PPD in individuals showing a positive Mantoux 
test. TCR sequences could be recovered from both samples, 
with the large increase in number of TCRs in the latter re�ecting 
the T cell in�ltration associated with a positive delayed type IV 
hypersensitivity reaction (Figure 4C).

The TCR Repertoire of Human PB Naïve 

and Memory Subpopulations
We used the pipeline to compare the population structure of 
human naïve and memory T  cell populations. Although some 
previous studies have analyzed this question, di�ering reports 
have been published (31–34). In part, this re�ects the fact that 

most previous studies have fractionated PB T cells based only on 
the CD45 isotypes, even though CD45RA+ memory cell popula-
tions are well described. In addition, many previous studies have 
not used UMI-based error correction. We fractionated cells from 
three healthy volunteers into CD4 and CD8 T  cells, and then 
fractionated each of these populations into four subpopulations 
based on a combination of CD45RA isoform, and CD27 expres-
sion (Figure S5 in Supplementary Material). �is combination 
of markers has been used extensively to characterize naïve 
(CD45RA+ high, CD27+), central memory (CM, CD45RA−, 
CD27+), e�ector memory (EM, CD45RA−, CD27−), and e�ec-
tor memory RA+ (EMRA:CD45RA+, CD27−) (35) T cells.

In order to capture the overall population structure of the rep-
ertoires of these distinct populations, we plotted the proportion 
of TCRs that were present once, twice, etc. (Figure 5). Although 
strictly speaking, the term clonotype refers to an alpha/beta pair, 
for convenience we use the term to refer to each distinct TCR 
alpha or beta sequence. We refer to the number of times each such 
clonotype is found in a repertoire as the clonotype abundance. 
We �rst explored the e�ect of the UMI-based error correction 
on the clonotype abundance distribution (Figure 5A shows the 
results for TCR alphas from one naïve CD8 sample, Figure S6 
in Supplementary Material compares the e�ect on a naive and 
a memory CD4 and CD8 repertoire). As expected, the total 
number of distinct clonotypes, the maximum TCR abundance 
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observed, and the number of TCRs with large abundances (>100) 
was decreased following error correction. We compared the 
results of our analysis pipeline on this sample to an analysis of 
the same sample using another UMI-based analysis tool, MIGEC 
(11). Both the total number of UMIs detected, the number of 
unique TCRs and the clonal distribution of the corrected data, 
were similar for the two methods (see Table S4 and Figure S7 in 
Supplementary Material).

�e error-corrected distributions of the proportion of TCRs 
with given alpha and beta clonotype abundance for naïve, 
CM, EM, and EMRA CD4+ and CD8+ populations from one 
representative individual are shown in Figure 5B, and the data 
are summarized in histogram form in Figure 5C. �e distribu-
tions for alpha and beta chains in each case were very similar, 
giving some con�dence that the TCR sequence numbers re�ect 
the true underlying cellular distribution and not some feature 
of the library preparation. In each case, the distribution of the 
naïve population had a much steeper slope, with >95% TCR 
sequences appearing only once. �is is re�ected by the fact that 
almost all naïve TCRs are present at a frequency of less than 1 in 
104 (Figure 5C). By contrast, over 20% of all the memory TCRs 
are present at a frequency of greater than 1 in 104 (Figure 5C). 
�e distributions on the log–log plots (Figure 5B) appear to be 
linear for all except a few of the largest clones in each distribu-
tion. �is linear pattern is characteristic of power law distribu-
tions [f(x) = ax−b], which have frequently been linked to TCR 
repertoire distributions previously (36–39). We, therefore, �tted 
the data within the linear range to a power law equation, using 
maximum likelihood estimators as described (40, 41). �e �tted 
plots for one individuals’ CD4 and CD8 populations are shown in 
Figure S8 in Supplementary Material. �e exponent of the �tted 
power law for all subpopulations for three di�erent individuals 
are shown in Figure 5D.

�e estimated slopes (the power law exponent) were con-
sistent between all three individuals. �e naïve population had 
a very steep slope (exponent >3), with almost all the TCRs 
present less than 10 times. �e estimated parameter values 
for the naïve also showed the biggest variance, re�ecting the 
uncertainty in �tting a small number of data points, lying on 
a very steep slope. For CD4 cells, CM consistently showed a 
larger exponent than EM and EMRAs (T-test p  <  0.01). By 
contrast, for CD8 cells the slope for CM, EM, and EMRA were 
very similar (p > 0.05).

Above a certain limit, all distributions were over-dispersed, 
with a small number of TCRs present at very large abundances. 
In part, this re�ects the fact that the plots contain a lower 
frequency limit which is determined by the size of the sample; 
clonotypes cannot occur less than once in the sample. �e plot 
is, therefore, truncated at the lowest observable frequency which 
is given by 1/sample size. However, we noted that even naïve 
repertoires, especially in the CD8 population, contained a few 
larger clonotypes. �ese clones might re�ect memory cells which 
re-express CD45RA (42, 43). We, therefore, removed from the 
set of naïve TCRs any sequence which was also found in one 
or more of the memory subpopulations from the same donor. 
�is removed almost all large clones from the naïve repertoires 
(Figure 6A).

We next calculated a number of TCR repertoire population 
parameters that have been used previously in the characteriza-
tion of TCR repertoires (44). Since these diversity indices are 
a�ected by population size, we subsampled each repertoire to a 
�xed number of UMI-de�ned distinct TCR mRNA molecules. 
�e Gini index, which captures the inequality in clonotype size 
across the population is shown in Figure 6B. As predicted, both 
CD4 and CD8 naïve T cells have a very low Gini index (naïve < all 
other groups for both CD4 and CD8, p < 0.01, Student’s t-test, 
n = 6). �e index increases as one examines the CM, EM, and 
EMRA subpopulations, re�ecting the emergence of more highly 
expanded clones. �e Gini index for the alpha and beta chain 
is similar. �e Shannon Information Entropy and the Inverse 
Simpson index (Figures  6C,D), frequently used as measures 
of repertoire diversity, shows the inverse pattern, decreasing 
with the progression from naïve through CM, EM, and EMRA 
(naïve  >  all other groups for both CD4 and CD8, p  <  0.01, 
Student’s t-test, n = 6).

Finally, we examined whether we could detect evidence of 
antigen speci�c responses in these data sets. We downloaded 
the full set of annotated CMV-speci�c CDR3 sequences from 
the public repository VDJdb4 and from Chen et al (45), a total of 
7,322 distinct CDR3 sequences. We searched for these in the naïve 
and memory repertories from the three individuals described 
above (Figure 7). 2,375 TCRα and 1,010 TCRβ sequences were 
found at least once in our three individuals. �e majority of 
were present only as sporadic single sequences in any repertoire. 
However, a number of expanded CMV-associated CDR3s were 
observed. �ese CDR3s were generally absent or present only at 
low frequencies in naïve populations, but were found expanded 
in one or more memory populations (see histograms at bottom 
of Figure  7). Both private and public CDR3s were observed, 
although expansion of the public CDR3s was not necessarily the 
same in all individuals in which the CDR3 was present. Volunteer 
2 was CMV negative as measured by functional T cell responses, 
but expanded CDR3s were observed in this individual too.

DISCUSSION

�is paper describes an integrated experimental and analytical 
pipeline for the study of the T cell repertoire. As a practical exam-
ple, we apply the pipeline to compare the properties of naïve and 
memory subcompartments in human PB T cells. Since the advent 
of next generation massively parallel sequencing, a number of 
experimental (6) and computational (8) protocols for the analysis 
of TCR repertoire have been reported. A side-by side comparison 
of all these di�erent techniques would be challenging at both 
cost and complexity levels for any one laboratory. A collaborative 
project between a set of di�erent laboratories to carry out such 
comparisons on a single shared RNA sample is currently in pro-
gress, but lies outside the scope of this publication. Furthermore, 
it is di�cult to compare like-for-like, since some protocols use 
DNA, some RNA, and some have proprietary elements which 
cannot be readily reproduced. Instead, we highlight the major 

4 https://vdjdb.cdr3.net/.
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FIGURE 6 | (A) The distribution of T cell receptor (TCR) beta clonotype abundances in the naive CD8 population (one representative individual from three) before 
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Simpson diversity index calculated for each CD4 and CD8 subpopulation, for each of three individuals. All repertoires are subsampled to the same number of TCRs 

before calculating the index.
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di�erences between our methods and some of the others which 
have been reported in the literature.

�e �rst major feature of our protocol is that both experimen-
tal and computational methods reported here are open source, 
and details of all reagents and information are freely available 
to the community. �e majority of published high-throughput 
investigations of T cell repertoires outsource the TCR sequenc-
ing to commercial service providers, and the full details of the 
methods and the raw sequence data are frequently not available. 
�is makes analysis of the reproducibility of such studies, or 
comparison with other results, very di�cult. �is di�culty is 
compounded by the fact that commercial protocols do not gener-
ally incorporate UMI’s and rely on undisclosed algorithms which 
correct for potential PCR bias (see below).

Perhaps the most important technical feature of the protocol 
described above is the incorporation of UMIs, in which an oligo-
nucleotide containing a random dodecamer sequence is ligated 
to the 3′ end of each cDNA molecule. �e importance of such an 
identi�er has been emphasized previously (46, 47). In particular, 
it facilitates two types of corrections. �e �rst is corrections for 
PCR and sequencing errors, which can be largely identi�ed by 

comparison of TCRs with the same or very similar UMI. �e 
second is correction for bias introduced by di�erences in PCR 
e�ciency which, as we have shown previously (13), is an intrinsic 
feature of all PCR and would otherwise greatly distort the fre-
quency distributions of the population. Quantitative conclusions 
about TCR frequencies can be in�uenced by these corrections, 
and in some cases may in�uence the conclusions of such studies 
which do not include UMIs. �is is likely to be particularly true 
for the less frequent TCRs, which will comprise the majority of 
unique sequences for almost all physiologically relevant T  cell 
populations (see Figure S6 in Supplementary Material). For 
example, the power law distribution reported here and previ-
ously would be totally obscured without UMI correction. �e 
quantitative behavior of the pipeline reported here is supported 
by the results of the spike-in experiments using the monoclonal 
line KT2, which accurately detected speci�c TCRs within a large 
mixed pool over a broad range of clonotype abundance.

Another important aspect of our study was to develop an 
assay to measure the e�ciency of the key ligation step. T4 RNA 
ligase has been widely used for single-stranded DNA ligation in 
the context of RACE protocols since its introduction for library 
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preparation nearly three decades ago (19, 20). Although the 
ligase is o�en anecdotally described as having a low e�ciency 
when ligating DNA substrate, no measurements of e�ciency 
have been published. In fact, we found the e�ciency of the 
enzyme to be at least 10%, which is signi�cantly higher than the 
reported e�ciency of template switching RT-PCR, a commonly 
used alternative technique for introducing UMIs into TCR 
sequencing (11, 12). �e e�ciency of the �rst few steps of library 
preparation, prior to any PCR ampli�cation step, is crucial in 
the coverage of the library. Any molecules of cDNA which are 
not recovered during this step will be permanently lost from the 
�nal library. By contrast, once the cDNA molecules have gone 
through a few ampli�cation cycles, the likelihood of losing all 
copies of a TCR are much reduced. �e presence of multiple 
copies of each TCR mRNA within a T cell is advantageous in 
this regard, since it decreases the probability of all molecules 
from one cell being lost following lysis. As an example, one 
may consider a typical RNA sample prepared from one million 
cells. Based on qPCR results, we estimate that both the �rst two 
puri�cation steps in the protocol (PU1 and PU2 in Figure 1) 
may each result in recoveries of only 50% of the DNA from the 
preceding step (partly because the concentration of speci�c 
cDNA is very low at this point). Combined with a 10% recovery 
at the ligation step, this results in an overall recovery of 2.5% of 
the original input cDNA prior to PCR1. On the basis of 100 TCR 

mRNA molecules per cell, this would result in 1–3 molecules 
from each cell entering the ampli�cation step of the procedure, 
resulting in almost complete coverage of the sample repertoire. 
Further work is in progress to more accurately estimate likely 
repertoire coverage by computational simulations of the whole 
pipeline.

As a practical example, the technology is applied to an analysis 
of the TCR repertoires of di�erent subpopulations of human PB 
T  cells. A�er the UMI-based correction process, the di�erent 
subpopulations isolated from three di�erent individuals show 
some very characteristic properties. �e most striking di�erences 
are seen between naïve (de�ned as CD45RA+ high CD27+) 
and memory populations. �e clone size distribution of naïve 
CD4 and CD8 populations are almost identical, with very steep 
gradients and with over 95% of TCRs observed only once in each 
sample, and only a very few sequences observed more than �ve 
times. �e overwhelming presence of singletons or very small sets 
of identical TCRs is re�ected in a very low Gini index, and a very 
high Shannon entropy and Simpsons’ diversity index. By contrast, 
all the memory populations contained many more larger sets of 
identical TCRs and, hence, showed a larger Gini index and lower 
diversity indices. When comparing the di�erent subpopulations 
of memory cells, the picture becomes more complex. In general, 
the parameters of the TCR repertoire distribution of CM cells 
showed the most similarity to naïve cells, followed by EM and 
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then EMRA, consistent with the “self-renewing e�ector model” 
of memory T cell di�erentiation (48) as discussed further below.

Previous studies of human T  cell naïve and memory sub-
populations have given inconsistent results (31, 32, 49, 50), 
and in evaluating the results of our current analyses there 
is no “ground truth” to which we can compare our �ndings. 
Nevertheless, the results are at least compatible with current 
thinking about the T cell compartment. For example, the naïve 
cell repertoire is considered to be generated by a large number of 
diverse clones of small size (less than 100 cells) generated during 
intra-thymic selection and expansion. Against this background, 
naïve clone size heterogeneity can also develop, driven by clonal 
competition for self-antigens (51, 52). �is may perhaps explain 
the small number of more abundant TCRs we observed within 
the naïve population, even a�er removing from the naïve TCR 
populations those sequences that were also observed in memory 
compartments from the analysis. �e gradual increase in TCR 
abundance, increase in Gini and fall in Shannon entropy as one 
progresses from naive through CM, EM, and EMRA compart-
ments is also compatible with the process of antigen-driven 
clonal expansion, and speci�cally with the model of sequential 
di�erentiation of cells into CM, EM, and EMRA proposed on 
the basis of single-cell tracking experiments in mice (53). In 
this context, it was notable that HLA-A*02 CMV-associated 
CDR3s were observed in both HLA-2 CMV positive individuals 
analyzed, and in each case the same CDR3 was expanded in CM, 
EM, and in the majority of instances in EMRA populations as 
well. �e T  cells expanded by chronic exposure to this virus, 
therefore, populate all subpopulations of the memory compart-
ment (54).

In summary, we report the details of a new protocol for the 
ampli�cation and sequencing of a UMI-labeled cDNA TCR 
library, together with a set of so�ware modules for the subse-
quent analysis. We believe that the simplicity and �exibility of 
the pipeline, its relative low cost, and its incorporation of a UMI-
based correction pipeline will make the pipeline attractive to the 
growing number of researchers interested in exploring the TCR 
repertoire in various clinical preclinical settings. We hope that 
the publication of all protocol details, the sharing of key reagents 
and sequences, and creation of a repository containing all open 
source scripts will facilitate the development of a community of 

users. Interaction between members of such a community will 
further improve and validate the methods making them a useful 
resource for the entire immunological community.
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