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Abstract

Two CT features were developed to quantitatively describe lung adenocarcinomas by scor-

ing tumor shape complexity (feature 1: convexity) and intratumor density variation (feature

2: entropy ratio) in routinely obtained diagnostic CT scans. The developed quantitative fea-

tures were analyzed in two independent cohorts (cohort 1: n = 61; cohort 2: n = 47) of pa-

tients diagnosed with primary lung adenocarcinoma, retrospectively curated to include

imaging and clinical data. Preoperative chest CTs were segmented semi-automatically.

Segmented tumor regions were further subdivided into core and boundary sub-regions, to

quantify intensity variations across the tumor. Reproducibility of the features was evaluated

in an independent test-retest dataset of 32 patients. The proposed metrics showed high de-

gree of reproducibility in a repeated experiment (concordance, CCC�0.897; dynamic

range, DR�0.92). Association with overall survival was evaluated by Cox proportional haz-

ard regression, Kaplan-Meier survival curves, and the log-rank test. Both features were as-

sociated with overall survival (convexity: p = 0.008; entropy ratio: p = 0.04) in Cohort 1 but

not in Cohort 2 (convexity: p = 0.7; entropy ratio: p = 0.8). In both cohorts, these features

were found to be descriptive and demonstrated the link between imaging characteristics

and patient survival in lung adenocarcinoma.

PLOSONE | DOI:10.1371/journal.pone.0118261 March 4, 2015 1 / 14

OPEN ACCESS

Citation: Grove O, Berglund AE, Schabath MB, Aerts

HJWL, Dekker A, Wang H, et al. (2015) Quantitative

Computed Tomographic Descriptors Associate Tumor

Shape Complexity and Intratumor Heterogeneity with

Prognosis in Lung Adenocarcinoma. PLoS ONE 10

(3): e0118261. doi:10.1371/journal.pone.0118261

Academic Editor: Arrate Muñoz-Barrutia,

Universidad Carlos III of Madrid, SPAIN

Received: July 15, 2014

Accepted: December 12, 2014

Published: March 4, 2015

Copyright: © 2015 Grove et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any

medium, provided the original author and source are

credited.

Data Availability Statement: Quantitative features

data for Cohort 1 has been added to Suppl. materials.

Cohort 1 deidentified image data will be available via

TCIA, upon publication. The dataset can be found at:

https://public.cancerimagingarchive.net/ncia/login.jsf

Using Search, under Collection(s), the dataset is

available as LungCT-Diagnosis, and the DOI is

https://wiki.cancerimagingarchive.net/x/VIYiAQ.

Patient scan and clinical data for Cohort 2 is de-

identified and can be made available upon request.

Please contact Olya.Grove@moffitt.org, to establish a

data transfer protocol, for images.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0118261&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://public.cancerimagingarchive.net/ncia/login.jsf
https://wiki.cancerimagingarchive.net/x/VIYiAQ


Introduction

Lung cancer is the leading cause of cancer death in the U.S. and worldwide[1]. Despite thera-

peutic advances, the overall 5-year survival remains disappointingly low, at around 16%. Clini-

cal decisions for the treatment of lung cancer are largely based on patient characteristics such

as performance status, stage at diagnosis, and tumor histology. However, the clinical and bio-

logical heterogeneity within histological subtypes remain a major roadblock to successfully

treatment of the disease as histologically similar tumors display a wide range of treatment re-

sponse and metastatic behavior[2].

More recently, treatment strategies have begun to involve the subdivision of non-small-cell

lung cancers (NSCLC) into molecular subsets based on specific driver mutational status in on-

cogenes and tumor suppressor genes [3,4]. Recent works have demonstrated a link between im-

aging features and gene expression patterns[5–8] thus highlighting the potential of imaging

features to be used as independent prognostic or predictive biomarkers essential for enhancing

the clinical decision making process. It is expected that the changes at the molecular level will

be observable as related imaging phenomena[9]. Tumors within the same histological subtype

demonstrate variable and definable imaging characteristics [10]. We propose that these charac-

teristics can be quantified and used in addition to clinical and molecular characteristics to en-

hance medical decision-making process.

While complete genome profiling has not yet been adapted into the clinic, radiographic im-

aging is routinely performed on most patients. Computer tomography (CT) has remained an

important diagnostic tool used for initial tumor assessment and staging in lung cancer. CT im-

aging interrogates the entire tumor ‘in situ’ in the context of its environment and can thus be

used to assess the tumor globally. Additionally, it can be used to describe tumor heterogeneity

and sub-regional “habitats” within the tumor[11]. Due to the increasing number of therapy op-

tions for NSCLC patients, these patient-specific prognostic biomarkers have the potential of

individualizing and thus improving patient care and outcome.

NSCLC tumors are routinely characterized, using diagnostic imaging, based on their size,

shape and margin morphology, and the extent of internal enhancement and necrosis. However,

the terminology used in radiology to characterize the pathological findings remains subjective

and the underlying data are rarely quantified; hence, we contend that their full potential to sup-

port medical decision making is underutilized. Quantifying these observations with computer

assistance could provide systematic prognostic information with minimal inter- and intra-

reader variability. Furthermore, quantitative data can be stored in databases, allowing these

data to be mined to develop models for improved diagnosis, prognosis and prediction [12].

Although there has been an increase in research activity in the areas of lung nodule detec-

tion and classification using image processing and data mining algorithms, few investigators

have pursued the development of diagnostic CT-based prognostic imaging biomarkers in

NSCLC[9,13].In this work, we quantitatively analyzed diagnostic CT scans of lung adenocarci-

nomas to develop prognostic imaging features. In order to minimize genetic heterogeneity, we

focused our research on lung adenocarcinomas, the most common histological subtype of lung

cancer [14]. Diagnostic scans were collected retrospectively and augmented with patient infor-

mation and clinical follow-up data, which enabled us to develop and test models to predict sur-

vival. Since the data were collected retrospectively as part of routine clinical practice, there was

variability in terms of instrumentation, image acquisition and reconstruction parameters. We

therefore recognized the importance of developing imaging features that were robust across the

wide variability encountered in clinically-acquired diagnostic scans.

The development of the proposed imaging features was driven by the hypothesis that tumor

shape and intratumor density variation reflect tumor biology and systematic quantification of
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these imaging characteristics can be used to describe tumor development and patient survival.

Both features consistently scored tumors according to the pursued characteristics and showed

prognostic behavior. Furthermore, the features were tested for reproducibility under standard

patient related variations which showed high degree of reproducibility.

Materials and Methods

Ethics Statement

The University of South Florida institutional review board approved this retrospective study

and waived the informed consent requirement. Data were collected and handled in accordance

with the Health Insurance Portability and Accountability Act. Patient data was anonymized

and de-identified prior to the analyses.

Study population and data

The protocol for this retrospective study, including the participation of the MAASTRO clinic,

was approved by the Institutional Review Board (IRB). Imaging and clinical data were obtained

on patients diagnosed with primary lung adenocarcinoma who were treated in the Thoracic

Oncology Program at the H. Lee Moffitt Cancer Center and Research Institute and the Maas-

tricht Radiation Oncology Clinic (MAASTRO). The Moffitt cohort (Cohort 1) included 61 pa-

tients and orthogonal MAASTRO cohort (Cohort 2) included 47 patients. Inclusion criteria

encompassed patients who underwent surgical resection and had corresponding pre-surgery

diagnostic CTs obtained within 60 days of the diagnosis.

For each patient, the cohorts included de-identified diagnostic pre-treatment contrast-en-

hanced CT scans acquired between years 2006 and 2009 as well as clinical data including de-

mographics, diagnosis, TNM stage, and patient survival.

Clinical data were obtained from Moffitt’s cancer registry, which abstracts self-report infor-

mation and clinical data from patient medical records including demographics, diagnosis,

stage, and treatment. Follow-up for vital status information occurs annually through passive

and active methods. Pathologic TNM staging was utilized when available and clinical stage was

used if these pathologic staging was missing. For this analysis smoking status was categorized

as self-report ever smoker (current or former smoker) or never smoker.

Tumor and lung segmentation

Patient CT scans were segmented to identify lung fields and tumors. The delineation of the

lung fields was carried out using single click ensemble algorithm developed using Lung Tumor

Analysis (LuTA) tool within the Definiens Developer XD© (Munich, Germany) software plat-

form. Target lesions were volumetrically segmented using semiautomatic approach. The resi-

dent radiologist (over 2 years of experience) oversaw the segmentation boundaries on the CT

slices. Performing semi-automatic segmentation not only decreased user interaction and elimi-

nated the need for a manually drawn boundary, but also provided robust, reproducible and

consistent delineation of the tumor region across the CT slices. We have previously demon-

strated that the single click ensemble segmentation algorithm reduced inter-observer variability

while capturing the intricacies and important details of the tumor boundary[15].

Algorithms for image feature extraction and quantification of the segmented tumor regions

were implemented in MATLAB (Mathworks, Natick, MA).

Imaging Biomarkers of Lung Adenocarcinoma
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Convexity morphological feature

Convexity algorithm (S1 Fig.) was developed to quantify shape variation of the tumor border.

Irregularities along tumor perimeter can result from intratumor heterogeneity and differences

in growth patterns, interaction with the surrounding environment and spiculations, multiple

finger-like projections into the parenchyma which are generally considered to be a poor prog-

nostic indicator[14,16].

The convexity of the tumor border was calculated as the ratio of the areas contained within

a) the tumor perimeter to b) the calculated convex hull (Fig. 1A). The convex hull was comput-

ed by defining the smallest convex polygon enclosing a planar tumor region of interest (ROI)

using the implementation of QuickHull algorithm[17]. Using tumor segmentation mask for a

given CT slice as input, the divide and conquer approach automatically computed a convex

hull vector of pixel locations. Intrinsically the ratio between the area of the tumor mask and its

convex hull described the amount of substantial protuberances and depressions along the

tumor border.

In order to account for all sequential slices containing tumor ROI, the calculation was per-

formed individually on each slice and a mean score was computed using all slices for the

tumor. A convexity score of one corresponded to a shape that does not present with any con-

cavities along its perimeter. Convexity scores less than one measure the degree of deviation

from a convex shape.

Since tumor pressing against the pleural wall can compromise the appearance of tumor

morphology, automatic pleural attachment detection was incorporated into the convexity fea-

ture algorithm. For each CT slice, perimeters from segmented tumor and lung regions were ex-

tracted (S2 Fig.). Pleural attachment was determined if perimeters overlapped. If for a

particular slice more than half of the tumor perimeter pixels were also in the lung perimeter, its

convexity score was eliminated from the mean score calculation. This step allowed us to ac-

count for significant cases of shape smoothing that resulted from tumor pressing against the

pleural wall.

Fig 1. Convexity feature was developed to quantify tumor shape.Convexity is computed as a ratio of
tumor border (blue) to convex hull (red) (a). Convexity feature tracks the change in tumor morphology (b).
Convexity is predictive of patient overall survival when dichotomized at the median value (c).

doi:10.1371/journal.pone.0118261.g001
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Entropy Ratio of intratumor intensity variation feature

Entropy ratio feature (S1 Fig.) was developed to score heterogeneity of pixel attenuation coefficients

across the tumor. The entropy filter is the implementation of Shannon entropy. In the image pro-

cessing context, entropy is the measure of variation computed on the pixel histogram distribution

within a given ROI. It is defined as
Pn ¼ 255

i ¼ 1
�pilog2pi where pi represents the probability (normal-

ized frequency) of the given intensity value i. In our study we used a 256 intensity bins.

Segmented tumor mask was subdivided into two distinct regions: core and boundary. The

subdivision was driven by the hypothesis that these distinct regions reflect unique, spatially ex-

plicit biological processes, e.g. necrosis in the core and proliferation along the periphery, and

should therefore be assessed separately. Tumor growth and interaction with the surrounding

microenvironment has been shown to lead to intratumor changes observable in radiographic

scans[5]. In addition, the introduced spatial constraint helped account for edge effect manifest-

ing itself in higher changes in intensities at the tumor interface which would otherwise skew

the calculations had the summary statistics across the entire tumor ROI been applied.

Core and boundary masks were generated automatically from the original tumor segmentation

using a series of morphological operations, erosion and dilation (S3 Fig.). Two disk-shaped structural

elements with radii of 3 or 5 pixels were used. A binary segmentation mask for each tumor slice was

first dilated using a disk with a 3 pixel radius. This produced a dilated mask which was then eroded

using a disk with a 5 pixel radius to generate the core region mask. The ‘doughnut shape’mask for

the boundary region was produced by subtracting the core mask from the dilated mask (S3 Fig.).

Prior to entropy filtering, each CT slice containing tumor was converted to its normalized

grayscale equivalent. Binning Hounsfield units into 256 discrete intensity bins allowed the meth-

od to normalize tumor intensity ranges and to emphasize the differences in intensity gradient

over small local pixel intensity variations. For each pixel within the tumor, an entropy coefficient

was computed in its 7-by-7 pixel surrounding neighborhood. The mean of the coefficients was

computed for pixels in the boundary and core regions as ensemble scores to represent them

(Fig. 2). Entropy ratio feature was computed by dividing entropy score of the boundary region by

the entropy score of the core region in order to characterize the contrast between them.

Fig 2. Entropy ratio was developed to quantify intensity variations across the tumor.While some
tumors present with consistent mean entropy across the core and the boundary (a), others have a distinct
difference in the values (b).

doi:10.1371/journal.pone.0118261.g002
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Image feature reproducibility analysis. Since feature stability is an important trait for a

biomarker, we tested the developed metrics against typical patient variations using the Refer-

ence Image Database to Evaluate Therapy Response (RIDER) dataset. The RIDER project was

a National Cancer Center (NCI) sponsored project to create consensus across institutions and

help in harmonization of the quantitative features. The dataset was downloaded from the

NBIA National Biomedical Imaging Archive [18]. Unenhanced thoracic CT images for 32 pa-

tients in the test-retest dataset (baseline and follow-up) were acquired within 15 minutes of

each other, using identical CT scanner and imaging protocol[18]. GE Medical Systems Light-

speed 16 or VCT scanner with 16/ 64 detectors in 28/4 patients were used, respectively. The

dataset was matched with equal number of early and late stage tumors with equal mixture of

men and women in the study.

Tumors were delineated by a semi-automated segmentation tool with boundary markings

finalized by a radiologist. Convexity and entropy ratio features were extracted independently

from baseline and follow-up scans of the RIDER dataset and consistency of the assigned score

was examined. For each proposed feature, concordance correlation coefficient (CCC) was com-

puted to quantify reproducibility between two scans performed on each patient. The concor-

dance correlation coefficient measures deviation from the 45 degree line which has been shown

to be superior to the Pearson correlation coefficient for comparing repeated experiments[19].

We then computed the Dynamic Range (DR) for each feature, which is defined as the average

difference between measurements to the observed biological (inter-patient) range in the data

set. The method has been first proposed and used to find informative feature set [20].

Statistical analyses

The imaging feature data, demographic information, and vital status data were merged into a sin-

gle file for subsequent statistical analyses using Stata/MP 12.1 (StataCorp LP, College Station,

TX). Student’s t-test and ANOVA were used to test for differences in imaging features by the de-

mographic features and imaging parameters. A correlation matrix was used to assess dependency

between the imaging features. Survival analyses were performed using Cox proportional hazard

regression and Kaplan-Meier survival curves; statistical significance was computed using the log-

rank test. The imaging features were dichotomized into two groups using the median score value.

Results

Demographics and imaging parameters by imaging biomarkers

Table 1 captures the variability of key clinical and imaging parameters for Cohort 1. This vari-

ability is representative of clinical applications that rely on patient imaging captured during the

course of clinical care rather than for research purposes.

There were no statistically significant differences in the imaging biomarkers by age, gender,

stage, or by the imaging parameters including KVP, convolution kernel, slice thickness, or

pixel resolution (Table 1). We however observed significant differences for both imaging fea-

tures by stage (Convexity: p = 0.017; Entropy Ratio: p = 0.002) and for entropy ratio feature, by

convolution kernel (p = 0.026) in Cohort 2 (Table A in S1 File).

Convexity and Entropy Ratio features reproducibility confirmed by Test-
Retest analyses

Concordance correlation coefficients (CCC) and dynamic range (DR), averaged over the vol-

ume of the tumor, are summarized in Table B in S1 File. CCCs and DR for the features ex-

tracted from a single center slice of the tumor, matched by a radiologist between test and retest

Imaging Biomarkers of Lung Adenocarcinoma
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scans, are summarized in Table C in S1 File. Convexity feature showed high concordance in

the test-retest experiment (>0.88) in both single slice and volumetric evaluations. Entropy

ratio had a low CCC when averaged over the volume of the tumor. While entropy of the core

and boundary regions had high CCC (>0.81), the concordance metric penalized their ratio as

Table 1. Distribution of study population demographics and imaging parameters by imaging biomarkers in Cohort 1.

Characteristic 1 No. (%) Imaging biomarkers

Entropy ratio Tumor volume Convexity

Mean (SD) Mean (SD) Mean (SD)

Overall 61 (100.0) 1.41 (0.26) 7884.6 (11205.9) 0.87 (0.07)

Demographics

Age at diagnosis

< 65 20 (32.8) 1.42 (0.05) 11436.4 (3651.2) 0.87 (0.02)

� 65 41 (67.2) 1.40 (0.04) 6152.0 (1129.7) 0.86 (0.01)

P-value 0.834 0.084 0.829

Gender

Female 30 (49.2) 1.35 (0.04) 6467.9 (1462.0) 0.87 (0.1)

Male 31 (50.8) 1.46 (0.05) 9255.6 (2444.3) 0.87 (0.1)

P-value 0.102 0.336 0.995

Stage

Stage I 25 (41.0) 1.36 (0.27) 5875.2 (10830.4) 0.87 (0.07)

Stage II 19 (31.2) 1.44 (0.24) 9791.5 (10927.1) 0.86 (0.09)

Stages III and IV 17 (27.8) 1.42 (0.25) 8708.2 (12217.9) 0.87 (0.07)

P-value 0.590 0.493 0.817

Imaging Parameters

Voltage, KvP

120 57 (93.4) 1.42 (0.26) 8187.2 (11510.8) 0.87 (0.08)

130 or 140 4 (6.6) 1.22 (0.19) 3572.3 (3406.5) 0.85 (0.03)

P-value 0.124 0.431 0.761

Convolution kernel

B30F 8 (13.1) 1.47 (0.24) 3314.3 (4500.1) 0.845 (0.13)

B40f 19 (31.2) 1.31 (0.15) 11752.4 1(5712.3) 0.837 (0.07)

B41F 22 (36.1) 1.46 (0.25) 6487.3 (7959.1) 0.889 (0.05)

Other2 12 (19.7) 1.44 0.37) 7369.0 (10095.2) 0.884 (0.08)

P-value 0.222 0.269 0.101

Slice thickness, mm

<5.0 18 (29.5) 1.47 (0.26) 9836.8 0.844 (0.10)

� 5.0 43 (70.5) 1.38 (0.25) 7067.4 (11301.7) 0.875 (0.06)

P-value 0.181 0.383 0.142

Pixel resolution3, mm

< 0.6926 20 (32.8) 1.44 (0.25) 8013.6 (10733.4) 0.875 (0.06)

� 0.6926 to < 0.7785 20 (32.8) 1.36 (0.21) 10414.8 (14356.6) 0.878 (0.09)

� 0.7785 21 (34.4) 1.49 (0.29) 5352.1 (7636.5) 0.845 (0.09)

P-value 0.529 0.357 0.290

196.7% (No. = 59) of this study population were ever smokers and 96.7% (No. = 59) were White race
2Other includes B30s, B41s, B70s, CHST, FC01, FC13, LUNG, and STANDARD
3Distribution based on the tertile values

doi:10.1371/journal.pone.0118261.t001
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entropy ratio scores showed unproportional variation to the 45° line. The third column of

Table B in S1 File shows the statistics of the absolute percent difference between test and retest

feature values and it should be noted that the mean difference for entropy ratio feature is ap-

proximately 1.69%. Both convexity and entropy ratio showed high level of concordance

(>0.99) and dynamic range (>0.96) in single slice evaluation (Table C in S1 File).

The repeatability of the features confirms their ability to consistently score tumor character-

istics with respect to variability in the repeated experiments (S4 Fig.). The tumors in the

RIDER set are a diverse population of mixed stages and histology. The Bland-Altman plot for

the computed features (S5 Fig.) shows close bound (95% confidence) for the individual cases;

larger test-retest variations can be attributed to the above discussed challenges.

Overall Survival of Convexity Feature

A lower convexity score was reflective of a more irregular shape and expected worse survival.

Higher convexity scores describe convex shapes with fewer irregularities along the boundary.

Fig. 1B demonstrates tumor shape morphology ordered according to the computed convexity

score. Fig. 1C shows that high (>median) and low convexity separated patients with good and

poor overall survival time (p = 0.008). Convexity values for the Cohort 1 ranged from 0.57 to

0.97, with the median value = 0.89.

Overall Survival of Entropy Ratio Feature

Median score were used to discriminate between low and high entropy groups. Entropy mea-

sures for the entire segmented region were not statistically significant (p = 0.28) with respect to

overall survival. Evaluating entropy within the boundary region only was also not significant

(p = 0.96). Furthermore, it appeared that high entropy values in the border region skewed the

performance of the feature when calculated across the entire tumor region. While restricting

the calculation of entropy to the core region was not statistically significant (p = 0.059), tumors

with high (>median) core entropy tended to associate with worse overall survival. Entropy of

the core may capture important intratumor characteristics such as necrosis and heterogeneity.

While entropies of core and boundary regions were not statistically significant independently,

their ratio was associated with overall survival (p = 0.04, Fig. 3A). Tumors for which the

Fig 3. Entropy ratio between the core and border regions of the tumor is predictive of patient survival.
The tumors in the two prognostic groups (a) did not appear significantly different in the CT scans (b).

doi:10.1371/journal.pone.0118261.g003
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entropy was consistent throughout the core and boundary regions (i.e. ratio<1.41; S6 Fig.)

were associated with better survival outcome and tumors presenting with larger (>1.41) ratios

(S6 Fig.) were correlated with worse overall survival.

Representative CT slices of the tumors from the two prognostic groups, as defined by larger

than median entropy ratio of the core and boundary regions are shown in Fig. 3B. When visu-

ally inspected by resident radiologists, tumors from these two prognostic groups were not de-

scribed as being prognostically different. In fact, the tumor at the top in Fig. 3B might be

considered to have worse prognosis due to its attachment to the pleural wall[21], which is a

known negative prognostic indicator.

Cox Proportional Hazards Models

When the imaging biomarkers were analyzed independently in separate univariate models for

overall survival (Table 2) in Cohort 1, we noted statistically significant associations with tumor

volume (HR = 2.59; 95% CI 1.06–6.29) and convexity (HR = 0.34; 95% CI 0.14–0.82), and a

borderline significant association with entropy ratio (HR = 2.19; 95% CI 0.94–5.08). Age, gen-

der, and stage were significantly associated with survival in the univariable models. When all

three imaging biomarkers were included in a stepwise forward selection model (see methods),

tumor volume dropped out while convexity (HR = 0.32; 95% CI 0.13–0.78) and entropy ratio

(HR = 2.33; 95% CI 1.00–5.45) remained. Convexity and entropy ratio remained statistically

significant in the final multivariable model adjusting for age, gender, and stage. The final

model was replicated in Cohort 2. Although the hazard ratios for entropy and convexity were

not statistically significant, the point estimates trended in the same direction.

Imaging features s performance in an independent cohort

The distributions of the computed feature scores were compared between two independent co-

horts: Cohort 1 and Cohort 2 (Fig. 4). The convexity descriptor had a similar range in both co-

horts (Fig. 4A); however, Cohort 1 (green) distribution was skewed towards rounder and more

convex tumor shapes. In either of the cohorts, low convexity corresponded to more irregular

Table 2. Cox Proportional Hazards Models for Overall Survival.

Covariates1 Cohort 1 (N = 62) Cohort 2 (N = 47)

Unadjusted HR
(95% CI)2

P-
value

Multivariable HR
(95% CI)3

P-
value

Multivariable HR
(95% CI)4

P-
value

Multivariable HR
(95% CI)4

P-
value

Entropy ratio 2.19 (0.94–5.08) 0.07 2.33 (1.00–5.45) 0.05 2.36 (1.00–5.58) 0.05 1.24 (0.53–2.87) 0.62

Tumor
volume

2.59 (1.06–6.29) 0.04 — — — — — —

Convexity 0.34 (0.14–0.82) 0.02 0.32 (0.13–0.78) 0.01 0.31 (0.12–0.78) 0.01 0.82 (0.33–2.03) 0.67

Age 1.22 (0.50–2.96) 0.67 — — 1.11 (0.44–2.83) 0.82 1.54 (0.60–3.97) 0.36

Gender 1.25 (0.55–2.85) 0.60 — — 1.76 (0.73–4.23) 0.21 1.49 (0.65–3.46) 0.35

Stage 1.52 (0.92–2.53) 0.11 — — 1.45 (0.84–2.49) 0.18 2.73 (1.36–5.48) < 0.01

Abbreviations: Hazard Ratio, HR; Confidence Intervals, CI.

Statistically significant hazard ratios (p < 0.05) are shown in bold.
1The imaging features are dichotomized at their respective median values and age is dichotomized at 65 years
2Each imaging biomarker is analyzed independently in separate univariate models. The unadjusted HRs represent the main effects of each covariate.
3Based on forward selection, only two imaging biomarkers are included in the model but excluded age, gender, and stage.
4Only two imaging biomarkers are included in the model in addition to age, gender, and stage

doi:10.1371/journal.pone.0118261.t002
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tumor shapes, while high convexity scores were indicative of rounder shapes with fewer con-

cavities and irregularities along the tumor perimeter.

Histograms of entropy ratio scores were different between the cohorts (Fig. 4B). Contour

plots of entropy coefficients in the tumor regions were generated to visualize intratumor entro-

py differences in extreme imaging phenotypes. The phenotypes described by the low value en-

tropy ratio (Fig. 4B, left) were similar across both cohorts. Contour plot profile corresponding

to high entropy ratio (Fig. 4B, right) was consistent for both cohorts, as well.

Survival analyses were carried out on Cohort 2 strictly in accordance with the previously es-

tablished procedure for Cohort 1. This is a very stringent test of reproducibility, as the popula-

tions and acquisition conditions were different between the cohorts. Based on the median

splits derived from Cohort 1 (convexity = 0.89, and entropy ratio = 1.4), in Cohort 2 neither

convexity (p = 0.7) nor entropy ratio (p = 0.8) were associated with overall survival. In Cohort

2, convexity feature was statistically significant with respect to survival (p = 0.008) in univariate

Cox proportional hazards regression analysis.

The developed tumor descriptors consistently and objectively scored and ordered tumors

according to their shape (S7 Fig.) and intratumor intensity variation (S8 Fig.) in both datasets.

Discussion

The aim of this study was to develop objective and robust quantitative imaging descriptors that

were associated with patient survival. The developed CT features quantified lung adenocarci-

nomas based on their shape and intratumor intensity variations. The features systematically

scored tumors and identified imaging phenotypes which exhibited survival differences in two

independent cohorts. The features were extracted from routinely obtained CT images and were

reproducible and stable despite the inherent clinical image acquisition variability.

Outcomes after resection in early-stage NSCLC are poor, with 30–50% of the deaths due to

distant recurrence[22]. Current decision support for the use of adjuvant chemotherapy follow-

ing surgery is ill-informed. Gene signatures [2] have been developed to improve risk

Fig 4. Histogram of the two imaging features across cohorts.Convexity (a) shows similar range across
cohorts (training-green, test-blue) However, training cohort is enriched with round tumors. The range of
values for entropy ratio feature (b) is larger in training cohort. Both convexity (a) and entropy ratio (b)
consistently capture targeted tumor characteristics in both cohorts.

doi:10.1371/journal.pone.0118261.g004
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stratification of early stage NSCLC patients and while an improvement, the approach suffers

from sampling bias, as to all biopsy-dependent approaches. Incorporating additional knowl-

edge from individual patients’ scans into the post-operative decision making can potentially

identify distinct phenotypes of the disease and serve as a noninvasive approach to identify

high-risk patients who may benefit from additional post-surgical treatment such as adjuvant

chemotherapy. In addition, imaging features can be used as surrogates for tumor specific fac-

tors when limited pathological specimens are obtained from diagnostic biopsies [21]. Further-

more, we believe that inferring tumor biological activity and aggressiveness from minimally-

invasive imaging techniques can inform precision medicine strategies longitudinally where se-

rial biopsies may be too difficult to achieve.

In order to avoid data sparsity, we recognized the importance of keeping the number of im-

aging features reasonably low and reflective of the cohort. It has been recommended to keep a

rather stringent ratio between the number of patients in each prognostic class and the features

above 10[23]. In order to adequately relay tumor characteristics while coping with dimension-

ality restrictions, preference should be given to hypothesis-driven features predicated on avail-

able biomarkers and tumor biology associations[24].

Owning to the absence of a validation cohort with matching clinical and imaging parame-

ters, we could not adequately explore the prognostic behavior of the developed features. Valida-

tion of imaging features derived from retrospectively assembled cohorts presents an interesting

challenge as the field continues to mature. It is essential to refute spurious findings by validat-

ing imaging biomarkers in independent, previously unseen cohorts. However, the lack of ‘gold-

en standard’ for testing derived features is often coupled with a number of confounding factors

stemming from imaging variability and heterogeneity within patient cohort. It is therefore im-

portant to recognize that differences in patient population, quality and manner of data acquisi-

tion and subsequent processing can result in validation cohorts that are not adequate for fair

assessment. This also highlights the significance and merits of hypothesis-driven imaging fea-

ture design which can serve as additional validation criteria in an independent cohort. In our

study we have taken the effort to develop image based metrics to quantify observable

tumor characteristics.

Additional exploration of the prognostic utility was carried out in an independent cohort

(Cohort 2) from a partnering institution located on a different continent, with inherent differ-

ences in patient population. In both cohorts, extreme tumor phenotypes were identified based

on the distribution of the computed feature scores (Table D in S1 File). Patient subpopulations

were chosen using the opposite extreme quartiles of the convexity score distribution (<0.8 and

>0.9) from Cohort 1. Survival difference between the two phenotypes was statistically signifi-

cant for Cohort 2 (p = 0.02; Cohort 1: p = 0.06). Similarly, two subpopulations were identified

using low (<1.23) and high (>1.5) entropy ratio scores from Cohort 1. The difference between

the subpopulations was statistically significant for Cohort 1 (15 patients vs. 19 patients, p =

0.04). However, due to the differences in entropy score distributions (Fig. 4B), there were not

enough patients (n = 2) in Cohort 2 to represent the phenotype with high (>1.5) entropy ratio

scores. The survival significance found in the entire Cohort 1 and in Cohort 2, using quartile

split, is promising.

Our study had several limitations. The cohort sample sizes were small which limited our

ability to perform extensive stratified analyses. Additionally, the two cohorts are likely not

comparable since we have observed significant differences for the imaging features by stage

and convolution kernel in Cohort 2 but no difference by stage (or any other characteristic) in

Cohort 1. While patients in Cohort 1 were surgical candidates, predominantly stages I and II,

Cohort 2 consisted of radiotherapy planning patients with more advanced stages of the disease.

Furthermore, the overall survival trend for the cohorts differed (S9 Fig.). The differences
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between the two cohorts may explain why our multivariate model did not replicate in Cohort 2

(Table 2). Standardization of image protocols remains a challenge in image biomarker develop-

ment[25]. Variability in image acquisition and reconstruction parameters is inherent to retro-

spective imaging studies. Although this variability can be a significant limitation in studies,

ultimately for the computed tomographic biomarkers to be adopted into clinical practice and

utilized across multiple imaging centers, these biomarkers must be stable in the presence of

image acquisition variability[26]. The size of our cohorts and imaging parameter variability are

equivalent to other recently published studies [7,13,27,28]. The strength of our study was the

development of imaging features that were descriptive and reproducible using retrospectively

acquired clinical scans.

Our results suggest that quantitative imaging biomarkers can be used as an additional diag-

nostic tool in management of lung adenocarcinomas. Although more work is needed to deter-

mine clinical utility, it is clear that these descriptors are capable of quantifying and consistently

ranking key tumor characteristics. Imaging biomarkers, combined with RECIST measurements

and laboratory test results, will in the future be the de facto standard of a decision support pipe-

line employed to personalize and optimize treatment protocols.

Supporting Information

S1 Fig. Flowcharts were used to visualize the algorithms for the calculated features. Convex-

ity (a) and entropy ratio (b) algorithms are described.

(TIF)

S2 Fig. Automatic detection of tumor attachment to pleural wall was carried out by com-

paring the perimeter of the lung with tumor perimeter. The lung perimeter is outlined with

green unfilled circles and tumor perimeter—with red filled circles.

(TIF)

S3 Fig. Segmented tumor region is subdivided in order to quantify intratumor variation of

entropy. Original tumor segmented ROI (a) is subdivided into core and boundary sub-regions (c).

Tumor ROI (b, red) is dilated (b, pink) and eroded (b, green). Subtracting the core mask (b, bot-

tom, green contour) from the dilated region forms the boundary mask (b, bottom, pink contour).

(TIF)

S4 Fig. Tumor perimeters from RIDER Lung test-retest dataset were segmented using En-

semble algorithm. Representative slices from tumors with high (a,b) and low (c,d) convexity

scores are displayed. Tumor scores were computed on baseline scans: 0.54(a) and 0.92(c) and

follow-up scans: 0.6 (c) and 0.91 (d).

(TIF)

S5 Fig. Bland-Altman plot for the CT features (convexity, entropy of the tumor core, entro-

py ratio and entropy of the tumor boundary) demonstrates individual variability in the

test-retest experiment against the average measurement. The dotted lines show 95% confi-

dence limit for the features in the sample set.

(TIF)

S6 Fig. Contour plots of entropy coefficients were used to visualize their intratumor varia-

tion. Two classes of tumors were identified: tumors with low entropy ratio between core and

boundary regions (a) and tumors with high entropy ratio between core and boundary regions

(b).

(TIF)
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S7 Fig. Tumors were ordered based on their convexity score and show a progression from

irregular to convex shape with the increasing score. Convexity feature consistently scored

tumor shape in both cohorts (Cohort 1: a; Cohort 2: b).

(TIF)

S8 Fig. Color graphs were used to visualize entropy coefficients: their range was divided

into four sub-ranges and assigned a unique color. Tumors were ordered based on their entro-

py ratio score and showed similar patterns of entropy coefficient distribution in both cohorts.

Entropy ratio feature consistently scored intratumor density variation in both cohorts (Cohort

1: a; Cohort 2: b).

(TIF)

S9 Fig. Comparing survival trends between two cohorts. Overall survival trends for Cohort1

(a) and Cohort 2 (b) are different.

(TIF)

S1 File. Table A, Distribution of study population demographics and imaging parameters

by imaging biomarkers in Cohort 2. Table B, Concordance correlation coefficient (CCC) and

dynamic range for CT features in the test-retest experiment, averages over tumor volume.

Table C, Feature Reproducibility in test-retest analyses using matching center slice on the CT

image. Table D, Clinical parameters and feature scores for Cohort 1 patients.
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