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Abstract

Purpose—High-Resolution chest CT (HRCT) is essential in the characterization of interstitial

lung disease (ILD). The HRCT features of some diseases can be diagnostic. Longitudinal

monitoring with HRCT can assess progression of ILD; however, subtle changes in the volume and

character of abnormalities can be difficult to assess. Accuracy of diagnosis can be dependent on

expertise and experience of the radiologist, pathologist or clinician. Quantitative analysis of

thoracic HRCT has the potential to determine the extent of disease reproducibly, classify the types

of abnormalities and automate the diagnostic process.
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Materials and Methods—Novel software that utilizes histogram signatures to characterize

pulmonary parenchyma was used to interrogate chest HRCT data, including retrospective

processing of clinical CT scans and research data from the Lung Tissue Research Consortium

(LTRC). Additional information including physiologic, pathologic and semi-quantitative

radiologist assessment was available to allowcomparison of quantitative results with visual

estimates of disease, physiologic parameters and measures of disease outcome.

Results—Quantitative analysis results were provided in regional volumetric quantities for

statistical analysis as well as a graphical representation. Analysis suggests that quantitative HRCT

analysis can serve as a biomarker with physiologic, pathologic and prognostic significance.

Conclusion—It is likely that quantitative analysis of HRCT can be used in clinical practice as a

means to aid in identifying probable diagnosis, stratifying prognosis in early disease, and

consistently determining progression of disease or response to therapy. Further optimization of

quantitative techniques and longitudinal analysis of well-characterized subjects would be helpful

to validate these methods.
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Introduction

Lung diseases, including interstitial lung diseases (ILD), remain a major cause of morbidity

and mortality1. Radiologic evaluation through high-resolution CT (HRCT) has become

increasingly essential to the characterization and classification of ILD. The characteristic

imaging findings can be diagnostic for some pathologic processes such as idiopathic

pulmonary fibrosis/usual interstitial pneumonitis (IPF/UIP). The ability of radiologic

evaluation to differentiate between diseases such as UIP, that have an associated mortality

approaching 75% five years after the diagnosis, and other diseases with less ominous

prognosis has played a key role in patient management2. Other ILDs such as

hypersensitivity pneumonitis, nonspecific interstitial pneumonitis, acute interstitial

pneumonitis, desquamative interstitial pneumonitis, respiratory bronchiolitis-associated

interstitial lung disease, lymphoid interstitial pneumonia and cryptogenic organizing

pneumonitis can all exhibit differentiating features on HRCT. However, these distinctive

disease processes often have a very similar clinical phenotype, and can also have

indeterminate pathologic and radiographic appearances. In addition, some patients can have

mixed restrictive/fibrotic and destructive/obstructive processes, such as in combined

pulmonary fibrosis and emphysema syndrome3, which confound physiologic testing and for

which biopsy results can vary wildly based on the location of sampling. The fundamental

clinical problems of how to consistently detect, characterize, and differentiate the various

ILDs remain diagnostic challenges. Yet, all of the various ILD and mixed parenchymal

diseases have distinctly different prognoses and opportunities for therapy4 and it is

increasingly clear that specific therapy targeted on a particular pathological process will be

key to altering the progression of these generally inexorable diseases. Furthermore, how

even known processes can be consistently characterized and quantified over time and, more

importantly, how these changes can predict prognosis all remain largely unanswered

questions. The promise of early and appropriate application of therapy so as to significantly

affect prognosis has not been achieved despite many efforts, and assessment of response to

therapy has been difficult in even well-designed, randomized prospective trials – in part due

to lack of robust non-invasive biomarkers for ILD.

The general rationale for developing a method for quantitative analysis of the lung

parenchyma derives from the knowledge that the generic term ‘ILD’ includes multiple
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different diseases with numerous different imaging features in variable distribution. In many

cases, the patterns and distribution of disease may allow differentiation of these processes.

Specifically, HRCT is able to demonstrate features of disease, with visual patterns such

ground glass opacities, reticular infiltrates and honeycombing that enable the differential

diagnosis to be narrowed5. The impact of HRCT on clinical management is reflected in the

decreased need for surgical lung biopsy between the diagnostic workflow proposed in the

ATS/ERS consensus statement in 20026 and more recent evidence-based guidelines for

diagnosis and management in clinical practice7,8. Even in cases where the HRCT images

lack the specific features that reflect the cellular infiltration, fibrosis and architectural

distortion with honeycombing typical of a process such as UIP, HRCT remains a useful non-

invasive technique to reveal the abnormal parenchymal densities resulting from microscopic

morphological changes9–15 and can provide guidance for the optimal site to obtain a biopsy

of characteristic or active disease12. Similarly, it is generally accepted that the extent of

visual abnormalities correlates with extent of pathological involvement as well as the

severity of physiologic abnormalities16, and therefore longitudinal HRCT can be useful in

the monitoring of disease progression and response to therapy17–19.

The complex morphological patterns of ILD that can change in extent and/or appearance

over time can be challenging to assess. Similarly, manual classification and evaluation of

extent is tedious and not reproducible. Evaluation is complicated by significant in inter- and

intra-observer variation in the diagnosis of ILD20,21. Clearly, there are differences in the

skill and experience of physicians involved in the process of determining a diagnosis, but

there are more complex inherent differences in perception, interpretation of visual features

of disease and ‘reader error’ which lead to variable description of findings and

characterization of disease that may not be surmountable by any degree of training or

advances in imaging technology22–24. Specifically, the final clinical diagnosis of ILD has

been shown to be variable based on the training and experience of the radiologist, clinician

and pathologist working independently or involved in the multidisciplinary evaluation of

disease despite the presence of accepted criteria and clinical pathways even in a well-

controlled investigation with well-characterized subjects. These variations are even more

prevalent in real-world patient care within- and across-specialty physicians from academic

and community health centers25. Even diagnosis by consensus of multiple experts and

utilization of continuous learning techniques, which do improve consistency to some degree,

does not assure dependable results26.

The variability in clinical evaluation of ILD is an opportunity for automation, computer-

aided detection and quantitative image analysis. Specifically, there are opportunities to use

current image processing technology on CT data to optimize detection of the abnormalities

recognized to represent pathological changes on HRCT and enable reproducible

quantification and characterization of the manifestations of ILD. These quantitative results

have promise as biomarkers and could result in more consistent diagnosis, more sensitive

disease monitoring and accurate determination of prognosis27. There have been many

different efforts using different methods to robustly characterize the discernible patterns in

chest x-rays and CT scans over the last several decades but the assessment of results from

some early texture-based analysis remains generally unchanged: “…classification and
quantification of interstitial lung disease is difficult, and even experienced chest radiologists
frequently struggle with differential diagnosis. Automated schemes that indicate a
percentage of affected lung or the probability of a certain disease would certainly be
welcome, but require much more research”28. Encouragingly, quantitative methods used to

assess the severity of emphysema and other features of COPD on CT have become more

robust over the last 20 years, with evolution and optimization of various techniques. These

quantitative analysis results can play a significant role as biomarkers used in the diagnosis of

COPD phenotypes, assessment of disease progression and prognosis29. However, since ILD
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changes on HRCT are even more complicated than the density changes seen with

emphysema, the development of quantitative CT-based measures for lung fibrosis has been

more challenging27–30 and results less encouraging. In general, simple methods based on

pixel counting, first order features based on density masks or whole-lung histogram analysis,

methods using multiple higher-order features or texture methods, and even more

sophisticated classification techniques including continuous learning with physician-in-the-

loop are only partially successful for evaluation of specific diseases or even simple

determination of normal vs. abnormal regions30–32. Furthermore, many of the current

methods used in evaluation of ILD for research purposes are computationally intense and

require processing times that may take hours or even days. These real-world limitations

make those techniques difficult to translate into routine clinical practice.

The purpose of the effort to develop software for analysis of thoracic HRCT is to provide a

reproducible way to quantify and characterize the extent of diffuse parenchymal disease. We

hypothesize that the results of parenchymal analysis can be correlated with radiologist visual

assessment, accepted physiologic features of pulmonary disease, and clinical outcomes. The

quantity, type and distribution of abnormalities by an automated tool should provide utility

in clinical practice by aiding in non-invasive diagnostic determination, detecting change in

disease over time, and stratifying risk of progression or mortality.

Methods

Towards addressing the need for improved quantitative analysis tools that can be utilized for

both research analysis and clinical practice, a multidisciplinary team of Mayo Clinic

clinicians, scientists and engineers at the Mayo Biomedical Imaging Resource have

developed CALIPER (Computer Aided Lung Informatics for Pathology Evaluation and

Rating): a computational platform for the near-real-time characterization and quantification

of lung parenchymal patterns on CT scans. The following briefly outlines the computational

components and methods utilized to test the efficacy of CALIPER.

Initial handling of data within CALIPER involves segmentation and extraction of anatomic

regions as a pre-processing step towards the eventual characterization and quantification of

the pulmonary parenchyma. The segmentation of the lungs in datasets was achieved using

an adaptive density-based morphology. Lung extraction was performed using optimal

thresholding to identify low density fields in the scans, region growing and void filling33.

Three-dimensional connected low density components that touch the edge of the volume

were assumed to be air outside of the thorax and eliminated from the volume of analysis.

The lungs were isolated through connected component analysis and three dimensional hole

filling was used to fill the lung cavities created by the elimination of normal blood vessels

during the thresholding process. In the event the left and right lung continue to be connected

after the above steps, layers of edge voxels were removed from the segmented lungs using

morphological erosion iteratively, so as to break the connectivity of the lungs. When the

eroded structures are separate, the removed edge voxels were re-assigned using conditional

dilation. The lung borders were subjected to a final smoothing step using morphological

closing with a 23×23×5 elliptical structuring element so as to close the gaps in the lung

volumes along the mediastinum created by pulmonary arteries and veins.

The airways were automatically segmented by iterative application of increasingly

restrictive constraints to a thresholding and 3D region growing process. The goal of the

iterative process is to segment the most complete tracheobronchial tree while excluding

other low density lung regions such as emphysema, honeycombing or other gas-filled

structures such as the stomach or colon. Airway extraction was first attempted utilizing the

1×1×3 neighborhood grey scale minimum, with a threshold of −950 HU and 26 neighbor

Bartholmai et al. Page 4

J Thorac Imaging. Author manuscript; available in PMC 2014 September 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



connectivity. Each axial slice of the result was then checked for the number of 2D connected

components. If the number of connected components exceeded 50, the segmentation was

assumed to include regions extraneous to airways and was rejected. In such cases, the

segmentation was repeated using more restrictive parameters such as 6-neighborhood

connectivity and −960 HU thresholding.

Pulmonary vessels were segmented using an optimized multi-scale tubular structure

enhancement filter based on the eigenvalues of the Hessian matrix34. These filters calculate

2nd-order derivatives within the neighborhood of each of the lung voxel. The eigenvalues of

the Hessian matrix constructed from the derivatives were analyzed to determine the

likelihood of the underlying voxel belonging to a dense tubular structure and hence a vessel.

Given that there are visually distinct normal anatomic and disease-specific morphological

manifestations apparent on HRCT scans, parenchymal classification is typically approached

though texture analysis, computer vision-based image understanding of volumetric

histogram features and 3D morphology of the classified voxels. In general, the classifier

results are determined by methods used to solve content-based information retrieval

problems28,35–40. Central to all these schemes is the selection of representative expert-

labeled volumes of interest (VOIs) as a training set for a classifier. The features of these

VOIs are then used by the classifier on subsequent input to reproduce the expert labels.

Descriptors based on histogram statistics, co-occurrence matrices, run length parameters,

and fractal measures are typically used to enumerate the features. Artificial neural networks,

Bayesian classifiers, support vector machines and k-neighborclassifiers are used to classify

the features41–43.

The detection and quantification of pulmonary parenchyma by CALIPER is based on

histogram signature mapping techniques trained through expert radiologist consensus

assessment of pathologically confirmed datasets obtained through the Lung Tissue Research

Consortium (LTRC). The LTRC is a NIH/NHLBI sponsored, multi-site initiative dedicated

to helping investigators develop a better understanding of ILD and COPD through

development of a repository of clinical data (including demographics, questionnaire

responses, medical history), physiologic data, pathological specimens, blood and tissue

characterization, CT scan data. The LTRC also provides central expert review of the

clinical, radiologic, pathologic data. The data and tissue specimens on the well-characterized

subjects in the LTRC are available at no cost to qualified investigators through a

standardized process overseen by the NIH/NHLBI (requests can be made at http://

www.ltrcpublic.com/data_requests.htm). For our training VOIs, HRCT scans from fourteen

subjects were selected from the LTRC repository to create a set of 976 VOIs. The VOIs

were selected through independent characterization by four subspecialty thoracic

radiologists, with instructions to determine if visual appearance of 70% or more of the given

VOI spanning 15×15×15 voxels was normal, contains emphysema or belonged to one of the

characteristic ILD parenchymal CT patterns: ground glass opacities (GG), reticular

infiltrates (RI), or honeycombing (HC). Based on this criterion 80, 150, 187, 265 and 294

VOIs were determined by consensus agreement selected to represent emphysema, ground

glass, honeycombing, normal and reticular infiltrates, respectively.

Quantitative discriminability of a number of pairwise dissimilarity metrics based on the VOI

histograms was examined using multi-dimensional scaling (MDS)44. Parametric and non-

parametric dissimilarity metrics tested to evaluate the optimal dissimilarity included first and

second order statistics and measures of effectiveness45 such as Fechner-Weber contrast

measure, target-reference inference ratio, Fisher distance, correlation coefficient, scale

invariant normalized mean square error and normalized mutual information. Non-parametric

dissimilarity metrics were based on pairwise histogram distances such as Manhattan,
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Euclidean, Bhattacharya, Kolmogrov-Smirnoff and Cramer Von Mises Distance (CVM), chi

squared distance, Kullback-Liebler divergence, Jeffrey divergence, and histogram

intersection46. Of all the metrics, MDS representation of CVM (the squared L2-metric

between cumulative density functions) was found to be most consistent with the expert

groupings and, consequently, was chosen as the dissimilarity metric used by CALIPER in

the automated classification. Figure 1 shows the three dimensional MDS projection for the

pairwise CVM dissimilarity measure of the expert-characterized VOI histograms, revealing

the natural orderliness with which the MDS representation of CVM metric projects the VOIs

to align with expert consensus. Concordance between the consensus radiology labeling

(columns) and the affinity propagation based, unsupervised clustering of the pairwise

Cramer Von Mises (CVM) dissimilarity metric (rows) for the 976 Volumes of Interest used

to train CALIPER (Computer Aided Lung Informatics for Pathology Evaluation and Rating)

was assessed using the Kappa statistic. Multi-category analysis such as this requires the

evaluation of the degree of agreement category by category and, therefore, a K × K tables

method for agreement as described by Agresti47 was utilized to assess the agreement index

for each category (i.e. the proportion of agreements observed).

Having established the qualitative equivalence of CVM and expert groupings and verified

the results with expert visual validation, quantitative equivalence was evaluated using

automatic clustering of CVM similarities. This process was utilized to group the VOIs into

natural clusters. To create an unbiased stratification of VOIs into natural clusters, affinity

propagation48 was used. Affinity propagation uses message passing to iteratively find

clusters, given pair-wise similarities of n-dimensional data. The clustering based on affinity

propagation yielded ten natural clusters. In addition to resolving the clusters, this

methodology identifies the exemplar that is most ‘central’ to each of the clusters in feature-

space. The most ‘central’ within type of each cluster was identified as the fundamental type

of its exemplar class. Since more natural clusters were found than classes of visual

abnormalities described for ILD, multiple clusters were shown to correspond to some visual

classes: 1, 2, 2, 2, and 3 respectively for emphysema, ground glass, honeycombing, normal

and reticular.

The local histograms computed from the 15×15×15 neighborhood of each of the

parenchymal voxel were compared against the histogram of the 34 exemplars identified in

the training phase. CVM dissimilarity measure was used in the comparison and the

fundamental type of the exemplar with the least CVM distance was assigned as the

parenchymal class of the underlying voxel. The number of voxels belonging to each of the

parenchymal classes was calculated across the whole lung and the individual lungs. The

voxels identified as vessels were included as normal to account for the total lung volume.

Meaningful representation of the volumetric classification and quantification of

abnormalities are key factors in the utility and acceptability of results in clinical practice.

Despite the continuing progress in quantitative imaging in many areas of imaging science,

the lack of unambiguous visualization with accurate, relevant cues severely hinders the

clinical adoption of many potentially useful computational tools. In typical clinical practice,

it can be difficult for a radiologist to describe thespecific appearance of the manifestations of

ILD on HRCT in textas part of the necessary interpretation and reporting results. The

description or graphical representation of the type, extent and anatomical/morphological

distribution of abnormalities or computational features of disease in 3D space when there are

multiple different classes is even more challenging.

There are examples of advanced summary visualization of complex physiologic or

morphologic parameters that have been incorporated into routine medical practice, such as

the overlay of multi-color PET or SPECT data on anatomic information through image
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fusion and depiction of perfusion data in coronary artery disease49 and brain maps50 as

iconic glyphs. However, there has been no attempt to visualize multi-variable, spatial,

temporal, physiologic and pathological information in lungs as summary glyphs. Towards

enabling an unambiguous understanding of the health of a patient’s lung as derived from

multispecialty data, including pulmonary function tests, demographics and high resolution

CT, CALIPER uses a lean visualization approach based on “thin-slicing” and semiotic

theory of stimuli processing51. “Thin slicing” is an information filtering approach that

enables rapid decision making by converging to the most critical factors from an

overwhelming number of variables. Using this process, information from millions of voxels

is succinctly aggregated into a comprehensive and easily comprehensible patho-spatio-

temporal glyph that provides an unambiguous representation.

A glyph similar to a radial space filling plot52 was developed to provide an iconic summary

of the volumetric parenchymal classification. The glyph provides a global overview of

parenchymal characteristics and lung volumes as well as distribution of the components that

facilitates comprehension of the multidimensional source data. As shown in Figure 3, the

glyph is partitioned with dark radial lines to illustrate the relative volumes of the left and

right lungs and further divided into three regions, each representing the individual lobes or

upper/middle/lower lung zones, depending on the type of segmentation performed. The

asymmetry, if any, between the left and right lungs can be easily observed in the glyph. The

individual lobes span through angles proportional to their respective volumes. Within each

lobe, the distribution of the computed parenchymal class is represented by color-coded

sectors whose size is proportional to the percentage distribution of that pattern in that lobe.

Concentric circles are drawn at 20% intervals to enhance visualization. The area of the glyph

is chosen to represent the computed total lung volume. Using predictive equations and

subject specific demographics information, the normative lung capacity is calculated using

guidelines53 and is overlaid as a distinctive white ring on the glyph. This provides a succinct

comparative overview of the subject vis-a-vis the subject’s stratified group. Figure 4 shows

a mosaic of the glyphs from 372 CT scans from different subjects from the LTRC cohort.

The diseases and parenchymal abnormalities include subjects with a primary diagnosis of

ILD including usual interstitial pneumonitis (UIP), nonspecific interstitial pneumonitis

(NSIP), and hypersensitivity pneumonitis (HSP), subjects with a primary diagnosis of

COPD (various morphological subtypes of emphysema including panlobular emphysema,

obstructive airway disease such as bronchiolitis and mixed phenotypes of parenchymal and

airway disease), control subjects that do not carry a primary diagnosis of ILD or COPD but

may have subclinical or secondary diagnosis of parenchymal disease (such as lung cancer or

indeterminate nodules), or subjects with mixed or multiple diagnoses such as combined

pulmonary fibrosis and emphysema (CPFE). Accounting for the number of voxels classified,

it is worth noting that information from 82 gigabytes of HRCT data has been represented in

this mosaic space. Even at this resolution, the glyphs provide a succinct overview of the

entire database of LTRC subjects with volumetric HRCT at the time of our analysis, and

highlight the ease with which the intra- and inter-subject disease distribution can be made

apparent. The regional extent of low attenuation due to air trapping or emphysema

corresponds to blue areas in the glyphs and therefore differentiation of morphology such as

upper-lobe-predominant emphysema vs. diffuse or panlobular disease can be determined at a

glance for each subject. Similarly, the regional distribution of the manifestations of ILD and

presence or absence of specific features such as honeycombing can be easily determined on

each glyph. Moreover, by quantitatively characterizing the pairwise dissimilarity of the

regional distributions of the parenchymal patterns, the glyphs and the underlying CT scan

data can be automatically stratified into natural groups towards enabling potential

quantitative biomarkers to objectively diagnose pathology, track progression and assess

pharmacologic response within and across patients54,55.
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As part of the processing of the parenchymal classifiers for each scan, the CALIPER

software also determines the centroid of the dominant cluster for each parenchymal class in

each of the lung regions. These positional references are tagged to the respective coded

regions of the glyph so as to enable navigation from the glyph to the region within the

original dataset computed to demonstrate the characteristic parenchymal class. This linking

of the summary results to the source data allows the glyph to be more than a simple

representation of quantitative results. Specifically, since the results apparent in the glyph

remain linked to regions within original volumetric data, positioning the cursor in the

classified region of glyph facilitates the ability to shift between summary overview, more

granular interrogation of detail, and visual validation of results with on-demand detailed

analysis of the HRCT or classification down to the voxel level. Such functionality provides

an optimal explorative paradigm for facile visualization and human understandingof not-so-

easily comprehensible multidimensional medical datasets56,57.

For enhanced visualization, the color code corresponding to the parenchymal classifier is

displayed as a transparent overlay on the HRCT data. To facilitate understanding of the

quantity of each class within a region, the volume of each class is displayed by hovering

over the different colors represented in the glyph. Figures 5 demonstrates how the

representation of results in the summary glyph is linked to the underlying three dimensional

scan data.

The utility of a summary glyph can be even more powerful when used for evaluation of

volumetric data over time. The distribution patterns of the disease and changes in the extent

and characteristics of the disease are apparent when the summary glyphs are viewed side by

side, and thereby allowing simultaneous interrogation of the quantity of visible pathology,

3D spatial distribution of disease and temporal changes within multiple datasets. For

example, Figure 6 is an illustration of glyphs of a subject with progressing interstitial lung

disease at four successive time points.

To validate the results of the quantitative analysis, associations between CALIPER

measures, PFTs, and radiologists’ scores were assessed using Spearman’s correlation

coefficient. In longitudinal and survival analysis, selected patients evaluated at Mayo Clinic

Rochester from January 2000 to December 2010 with IPF as diagnosed according to the

latest international consensus guidelines (with or without surgical lung biopsy) and for

whom at least two serial HRCT obtained within a 3 to 15 month interval were included.

HRCT obtained at the time of acute exacerbation, pneumonia, fluid overload or

thromboembolic disease were excluded. Changes in CALIPER measures from between the

two CT scans of each subject were calculated for total volume of normal lung, GG, R, HC,

total lung volume, total ILD volume (GG+R+HH), and percent ILD. The association of

change in CALIPER measures and change in radiologists’ assessments of regional semi-

quantitative findings and overall impression of progression, regression or stability of disease

with survival was assessed using Cox proportional hazards regression. A landmark survival

analysis was performed with survival indexed from the date of the second CT. Both

univariable and multivariable analyses including gender, pack years, baseline PPFVC,

baseline PPDLCO, and time between CTs were performed. Quantitative efficacy of the

clustering was established by computing the ANalysis Of SIMilarity (ANOSIM).58 Similar

to the more commonly used ANalysis Of VAriance between groups test (ANOVA), the

ANOSIM test is based on comparing distances between groups with distances within

groups. The ANOSIM test statistic (R) is a measure of the strength of difference among

groups, and in our specific usage this statistic indicates the magnitude difference between

clusters. An R value of 1 indicates that the communities completely differ among defined

groups; a value of 0 indicates no difference among groups. In all cases, two-sided p-values

<0.05 were considered statistically significant.
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Results

The natural clusters and the groupings were highly correlated to the consensus groupings of

the VOIs determined by experts as shown in the confusion matrix in Table 1. The tightness

of the clusters was evaluated by computing the mean dissimilarities between the exemplars

and the mean dissimilarities between the candidates of the individual clusters. The mean

intra-cluster and inter-exemplar values shown in Figure 2 highlights the compactness of the

individual clusters and significant feature space discriminability of the individual exemplars.

The combined ANOSIM R value for the five clusters was found to be 0.962 +/− 0.017, with

p < .005, highlighting the very high level of agreement of candidates within each of the

clusters. The results of this exercise attest to the optimality of the chosen dissimilarity metric

and clustering technique to automatically and independently group the VOIs into classes

derived through expert consensus.

The VOIs within each of the classes were re-clustered independently, again using

unsupervised affinity propagation, to obtain the respective class specific fundamental

exemplars. This process resulted in a total of 34 fundamental exemplar VOIs corresponding

to the visual features of pulmonary parenchyma: 5 for emphysema, 5 for ground glass, 6 for

honeycombing, 9 for reticular and 9 for normal parenchyma. These exemplars were

subsequently used as the reference VOIs to identify the label that best matches with the

15×15×15 neighborhood centered around each voxel of the test dataset to be classified.

A subset of subjects (N=119) with proven diagnosis of interstitial lung disease was selected

from the LTRC database to perform the correlation studies59,60. The studies used as training

datasets to determine the exemplar/reference ROIs for the classifier were not used in the

analysis. Significant correlations were noted between CALIPER characterization and

multiple physiologic parameters that are currently accepted as biomarkers for disease

severity in ILD. Specifically, percent involvement of reticular infiltrates correlated with

significant (p < 0.001) changes in 6-minute walk total distance (r = −0.32), FVC pre-

bronchodilator (r = −0.63), DLCO (r = −0.65) and TLC (r = −0.44). Similarly, significant (p

< 0.001) inverse correlation existed between lung classified as normal and physiologic tests,

including 6-minute walk test (r = 0.32), FVC pre-bronchodilator (r = 0.66), DLCO (r = 0.59)

and TLC (r = 0.56).

To verify that the automated classification of the abnormalities matched those of expert

radiologist description of disease, regional matching to severity and character of disease

determined by the interpreting radiologist for the LTRC was performed. Specifically, the

LTRC database records semi-quantitative scores of visual abnormalities for each subject

with CT data. These scores are coded from 0–4 to respectively represent 0%, 0–25%, 25–

50%, 50–75%, and 75–100% of abnormality type in each of 12 regions: the central and

peripheral zones of right and left upper, middle and lower lobes (lingula on the left).

Spearman’s correlation analysis was performed for the individual regions between visual

scores and quantitative volumes for Ground Glass (GG), honeycomb (HC), reticular

infiltrates (RI), the sum of (GG+HC+RI) and (HC+RI). The regional visual scores correlated

significantly (p < 0.001) for (GG+HC+RI) (r = 0.38–0.58), (HC+RI) (r = 0.31 – 0.65) and

inversely for normal parenchymal class. Significant correlations were found for GG, HC and

RI quantitative scores and corresponding visual scores: GG (r= 0.19– 0.42, p < 0.039), HC

(r=0.27–0.56, p < 0.003), RI (r =0.18–0.47, p < 0.05).

Discussion

The potential for quantitative analysis to reliably characterize and quantify parenchymal

abnormalities of HRCT in the setting of ILD is enormous. Ideally, computational tools can
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yield an objective biomarker thatmay allow for more consistent characterization of disease,

with a mapping of specific characteristics and parenchymal abnormalities. Initial

investigations on well-characterized data from the LTRC and retrospective analysis of

clinical data in subjects with ILD demonstrate correlation with other biomarkers of

pulmonary disease such as physiologic testing and also show promise as an independently

significant predictor of outcomes. In particular, previously published data with retrospective

analysis of a small cohort of 55 subjects with UIP using an earlier version of the CALIPER

software showed the potential for quantitative ILD analysis to provide an independent

biomarker that can predict survival based. The clinical high-resolution CT scans of these

subjects and corresponding pulmonary function test (PFT) data were assessed baseline and

follow-up (at least two serial HRCT obtained within a 3 to 15 month interval, with PFT data

obtained within 30 days of CT scan). Clinical follow-up of the subjects was reviewed for

transplant or mortality, with median transplant-free survival of 2.1 years (range, 1.1 to 3.4)

from the second HRCT time point. The HRCT scans were also independently evaluated by

subspecialty thoracic radiologists blinded to the clinical data by the same semi-quantitative

scale for regional visual abnormalities as the LTRC. The results of this study61 indicate that

interval change in volume of reticular densities (Hazard Ratio (HR) 1.91, P = 0.006), total

volume of interstitial abnormalities (HR 1.70, P = 0.003) and percent total interstitial

abnormalities (HR 1.52, P = 0.017) as quantified by CALIPER were predictive of survival,

even with adjustment for smoking history (pack-years), gender, percent predicted FVC and

DLCO and time between HRCT scans. Interestingly, the changes in total extent of ILD and

total reticulation scores as assessed semi-quantitatively by radiologists were not found to be

predictive of survival, although the overall qualitative assessment of ‘worsening’ by the

radiologist was predictive.

Demonstration of progression of disease or response to therapy that may not be obvious to a

radiologist would be helpful in clinical management. Similarly, determination of a quantity

of disease or characteristic pattern that is independently predictive of mortality could be

used to triage patients for transplant or other therapy. Assessment of results for multiple time

points in a prospective longitudinal study or examination of previously characterized

subjects involved in a longitudinal study will likely be necessary for additional validation of

the CALIPER tool. Adequate visualization of quantitative results is also extremely

important to real-world utility and acceptance of these results for patient management. A

summary that provides unambiguous pathological, spatial and temporal information enables

multivariate, multidimensional data to be intelligible. The ability to evaluate the results in

context to the original CT data such as demonstrated in the CALIPER glyphs adds to the

utility of these results.

The variability of input data to any classification scheme is an inherent problem for any type

of quantitative analysis. CT scan parameters that significantly alter the pixel values through

edge-enhancing kernels and filters often cause significant differences in the classifier output.

This is predictable since the CALIPER process relies on volumetric histogram analysis and

uses a training set obtained from non-edge-enhanced HRCT data. Image analytics strategies

to understand the nuances of CT reconstruction parameters62 and consequently,

standardization of the techniques used to reconstruct image data across vendors or scanner

versions would greatly simplify the task of developing a reliable quantitative analysis tool,

and will likely be necessary not only for assessment of ILD but also for any processing of

CT that relies on densitometry or histogram analysis.

It is interesting to note that the correlation of CALIPER results with physiologic parameters

was generally stronger than with the semi-quantitative radiologist assessment of disease type

and severity. Presumably, this analysis is confounded by the lack of ground truth for

subjective semi-quantitative findings and the reality that there is inter- and intra- rater
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variability between the radiologists preforming interpretations for the LTRC. It is notable

that the correlation of the classifier with the radiologist score is similar to the inter-

radiologist correlation seen with blinded semi-quantitative scoring performed by multiple

expert radiologists40. In addition, review of the areas of discrepancy between the automated

classifier typically appeared to be in regions that are often confusing to even a human, such

as areas of subtle ground glass, course reticular densities or areas of traction bronchiectasis

that appear similar to honeycombing or areas of emphysema in subjects with pulmonary

fibrosis in which either honeycombing or emphysematous regions could be mis-classified.

With the optimizations in software and employment of modern computational hardware,

CALIPER is able to complete segmentation, classification and calculate results for a

volumetric HRCT of more than 600 slices in approximately 1 minute. Transitioning these

tools from primarily a research role to clinical practice remains a challenge, however. As

with all quantitative analysis tools, this transition will require recognition of the legitimacy

of results, creation of new workflows and dataflows within clinical systems, and

optimization of the technology so that results are available in clinically relevant time. It is

hoped that the more robust future validation, acceptance of these results and those of other

automated tools being developed throughout the community of medical imaging scientists

will soon substantiate the utility of quantitative analysis in clinical practice.
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Figure 1.
2D projection of the 3D MDS for the pairwise CVM dissimilarity of the 976 color-coded

VOIs used to train CALIPER.
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Figure 2.
Representative glyph provides summary of distribution for 5 characteristic CT patterns

(color-coded) in lung parenchyma. The first letter (R/L) denotes the right and left lung, the

second letter (U/M/L) denotes, respectively, the upper, middle, and lower lung zones

defined on the basis of the automatic detection of carina. The radius of the glyph is

proportional to the lung volume. The white outer circle denotes the predicted total lung

capacity of the subject.
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Figure 3.
The montage of glyphs for CT scans of 372 LTRC subjects demonstrates the spectrum of

parenchymal abnormalities. Subjects in the LTRC shown here represent a variety of ILD,

COPD, and mixed parenchymal and/or airway diseases including UIP, nonspecific

interstitial pneumonitis, hypersensitivity pneumonitis, emphysema, bronchiolitis, and

combined pulmonary fibrosis and emphysema. COPD subjects generally have more blue

(representing low-attenuation/emphysema regions), whereas ILD or mixed parenchymal

diseases demonstrate more yellow, orange, and red (GG, RI, and HC, respectively). There

are few, if any, truly “normal” subjects in the LTRC database, and therefore only a minority

of glyphs exhibit predominantly green throughout all regions.
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Figure 4.
Location tagging of the summary glyph (top) to the underlying 3D scan data (bottom). In

this example, clicking on the emphysema (blue)—left upper (LU)—region of the glyph

reveals the triplanar view of the most characteristic emphysema region in the left upper lobe.

The first letter (R/L) indicates the right and left lung, the second letter (U/M/L) denotes,

respectively, the upper, middle, and lower lung zones.
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Figure 5.
Patho-spatio-temporal glyph illustration for a subject with progressing fibrotic ILD. The

decreasing lung volume (radius of the glyph) with respect to the outer white circle (predicted

total lung capacity), loss of normal parenchyma, and increasing proportion of HC and RI

densities in the volume is apparent. Volume loss in the right lung is relatively greater than in

the left. The first letter (R/L) indicates the right and left lung, the second letter (U/M/L)

denotes, respectively, the upper, middle, and lower lung zones.
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Figure 6.
Graph revealing that the mean pairwise CVM dissimilarity distances between the pattern-

specific exemplars are significantly higher than the mean dissimilarity distances within the

VOIs belonging to the individual cluster. The high interexemplar and low intracluster values

signify high cluster validity. Quantitative efficacy of the clustering was established by

computing the similarity statistic (R) by the ANOSIM method. The combined R for the 5

clusters was found to be 0.962±0.017, with P<0.005. E indicates emphysema; N, normal.
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