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Quantitative Coronary Angiography
with Deformable Spline Models
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Abstract—Although current edge-following schemes can be
very efficient in determining coronary boundaries, they may fail
when the feature to be followed is disconnected (and the scheme
is unable to bridge the discontinuity) or branch points exist
where the best path to follow is indeterminate. In this paper, we
present new deformable spline algorithms for determining vessel
boundaries, and enhancing their centerline features. A bank of
even and odd S-Gabor filter pairs of different orientations are
convolved with vascular images in order to create an external
snake energy field. Each filter pair will give maximum response
to the segment of vessel having the same orientation as the
filters. The resulting responses across filters of different orien-
tations are combined to create an external energy field for snake
optimization. Vessels are represented by B-Spline snakes, and
are optimized on filter outputs with dynamic programming. The
points of minimal constriction and the percent-diameter stenosis
are determined from a computed vessel centerline. The system has
been statistically validated using fixed stenosis and flexible-tube
phantoms. It has also been validated on 20 coronary lesions with
two independent operators, and has been tested for interoperator
and intraoperator variability and reproducibility. The system has
been found to be specially robust in complex images involving
vessel branchings and incomplete contrast filling.

Index Terms— B-spline snakes, coronary angiography,
deformable models, dynamic programming, Gabor filters.

I. INTRODUCTION

CORONARY artery disease (CAD) causes in excess of
1.5 million cases of myocardial infarction annually, and

is the leading cause of death in the United States, resulting
in more than 500 000 deaths per year [43]. The accurate
diagnosis and quantification of CAD is critical to subsequent
treatment decisions, such as whether the patient should pursue
pharmacological treatment, other nonsurgical treatment such
as angioplasty, or bypass surgery.

A. Coronary Angiography

Direct visual examination of cine film coronary angiograms
and manual estimation of the degree of vascular stenosis
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were the unblemished “gold standard” examination of vascular
pathology until the mid 1980’s [48]; and they remain the
standard in clinical practice today [9], [33]. Beginning in
the mid 1970’s [14], [52] concerns were raised regarding the
accuracy and variability of measurement obtained subjectively
through manual reading, motivated by several factors. First,
as the basis for the standard of clinical practice, visual in-
terpretation needed some description of it’s appropriateness.
While angiographic findings were being used daily to make
vital patient care decisions regarding prognosis, treatment, and
disease progression, no studies had tested the assumptions that
vessel geometries by visual estimation were valid markers
for measuring the extent of CAD [43]. Studies attempting
to follow the slow, incremental progression of atherosclerotic
disease were complicated by the excessive variability and
insufficient accuracy in manual judgment. Changes in vessel
dimensions over time resulting from progression of CAD were
smaller than could be reliably be measured visually [16], [31].
Quantitative coronary angiography (QCA) has been developed
to apply the speed and precision of computer processing to the
analysis of coronary disease [50].

Angiography aims to indirectly measure the reduction in
oxygenating capacity of the coronary vasculature from the
vessel dimensions [20]–[23]. There are several technical lim-
itations which must be considered for their impact in subse-
quent analyzes of vascular pathology [36]–[38], [45]. These
include incomplete contrast filling of the vessels; vessel dila-
tion proximal to an obstruction and vasoconstriction along the
entire vessel, both resulting from the introduction of contrast;
penumbra effect (blurring of vessel edges in the image due to
the finite width of the x-ray beam; magnification of the vessel
dimensions due to the diverging x-ray beam; and, finally,
pincushion distortion resulting from electronic limitations.

B. QCA System Goals

Historically, studies have shown a statistically significant
correlation between the absolute measures of minimum diame-
ter and minimum area, and physiological effect [15], [18], [19],
[25]. More recent studies, using QCA, have also been able to
show a significant correlation between the percent stenosis
measures and physiological effect [49].

In order to assess the clinical utility of any QCA system, a
set of minimum capabilities for any system must be defined.
These minimum capabilities serve as a basis for assessing
different approaches and may serve to identify targets for sys-
tem improvement. Performance benchmarks for accuracy and
precision can be determined based on angiographic follow-up
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studies measuring the progression of disease, as well as physi-
ologic experiments measuring the decline of vessel response to
a vasodilatory stimulus, i.e., coronary flow reserve (CFR) [20].
These studies provide evidence for the expected magnitudes of
the vessel dimensions or incremental changes in dimensions.

Several studies have established tolerances for the accuracy
and precision of quantitative angiographic systems based on
clinical data. Rensinget al. [40] studied 350 patients with
single-vessel coronary artery disease who had undergone bal-
loon angioplasty. They compared functional status (recurrent
angina and/or electrocardiogram (EKG) changes with exercise)
with the results of angiography at six month follow up. Any
one of the following was found to have the highest accuracy in
predicting anginal status: minimal lumen diameter of 1.45 mm
(the vessels studied had a median reference diameter of 2.63
mm), percent-diameter stenosis of 45.5%, an interval luminal
narrowing of 0.30 mm, and an interval change in percent-
diameter stenosis of 10%. Essentially identical results were
found for the prediction of exercise tolerance.

Wilson et al. examined the CFR of 50 patients with a single
vessel lesion by the administration of a potent vasodilator via
coronary angiographic catheter [49]. The resting and maximal
blood flow past the lesion were recorded with a Doppler
catheter. A minimum luminal area of less than 2.5 mm,
percent-area stenosis greater than 70%, and percent-diameter
stenosis greater than 60% correlated with a physiologically
significant decrease in the coronary flow reserve. A minimum
luminal area of 2.5 mmcorresponds to a minimum diameter
less than 0.9 mm.

Both of these studies establish the minimum digital quantita-
tive angiography (DQA) system requirements from a clinical
perspective. In order to predict accurately functional status,
any DQA system must be capable of accurately measuring
stenoses on the order of 1.4 mm with a resolution better than
0.3 mm required to evaluate interval changes. Thus precisions
(which reflect repeatability of the system and the spread of
possible errors) must be less than 0.3 mm to detect interval
change. In order to predict functional impairment even at a sub
clinical level, it must be able to accurately measure absolute
luminal diameters down to less than 0.9 mm. Any new DQA
system should meet these minimal criteria.

C. Current Limitations

As advanced as the automated QCA systems have become,
they remain limited in their variability by virtue of requiring
operator input in order to “find” the vessel to be measured.
These systems are sensitive to the initial conditions imposed
by the operator. Some researchers have gone to great lengths
to reduce the dependence on initial conditions, notably Reiber
et al. [39] require only a beginning and end point of the
rough fit centerline. The system then tracks the centerline in
a low resolution version of the desired image and projects
this estimate of the centerline back onto the original image.
Interoperator variability is a direct consequence of system
sensitivity to initial conditions.

The QCA systems of Reiber [39], Brown [5]–[7], Figueiredo
[17], and van der Zwet [54] all use least-cost edge following

to identify the vessel borders for subsequent analysis. Edge
following schemes can be very efficient, but they may fail
when the feature to be followed is disconnected (and the
scheme is unable to bridge the discontinuity) or branch points
exist where the best path to follow is indeterminate. In the
analysis of coronary vasculatures, these situations may arise
when there is incomplete contrast filling of vessels, where
vessels branch, or when vessels at different depths appear to
overlap one another.

Unfortunately, in the majority of cases, studies have selected
vessels of simple geometry with discrete disease for system
analysis, a situation which represents less than 30% of cases
actually encountered in clinical practice [21]. Recently, Gurley
et al., explored operator- and patient-dependent factors which
impacted the performance of a commercially available system
(General Electric DCX-ADX, Schenectady, NY) [24]. They
discovered that fully automatic border detection only worked
on 20 of 38 lesions (from 25 consecutive patients) unani-
mously selected as stenoses by a panel of four angiographers.
The 18 failures involved tracking over regions of compli-
cated geometry: 72% involved a stenosis at vessel branch
point, 44% involved an excessively tortuous vessel or overlap,
22% involved both tortuosity and overlap, and 28% involved
poor image quality. Automatic border detection and vessel
measurement failed in 52% of sequential clinical angiograms.

These two problems highlight the need for further improve-
ment in QCA systems. In this paper, we describe a unique
edge identification algorithm which robustly measures vessel
geometry over a wide spectrum of vessel lesions from discrete
to diffuse, and geometries from simple to complex. The system
also aims to reduce the bias introduced by the operator with
an eye toward eventual full automation of vessel boundary
mapping.

II. PROPOSEDALGORITHM

A. Energy Minimizing Snakes

Energy minimizing splines, commonly called snakes, offer
clear advantages over edge following methods as they in-
corporate both local image and expected contour information
[28]. As was previously stated, edge following methods are
prone to failure when the edges are disconnected or multiple
alternate paths are present (at vessel overlaps or branches).
These methods are vulnerable because they only utilize local
image information; they do not incorporate any higher level
information—such as the expected length or shape—which
could guide the path over breaks or past indeterminate so-
lutions. Snake algorithms are relatively tolerant of the local
discontinuities in image intensity information and ambiguities
in path which hamper other techniques.

Snakes are deformable curve models which lock onto nearby
edges and accurately localize them. They are guided to their
best fit conformation by a balance between external forces
imposed on them by the image, and internal shape constraints
which keep them smooth. Snakes have an associated energy
function which can be written

(1)
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Fig. 1. Spanwise cubic B-spline with three spans (shown separated by vertical bars) and six control points. The first span is controlled by pointsp0–p3,
the second by pointsp1–p4, and the last by pointsp2–p5.

(2)

for a snake, , of length . The total energy, , reaches
a minimum value as the snake locks onto a salient image
contour. The snake energy, as originally proposed by Kasset
al., was the sum of an external energy

(3)

where is the local image gradient operator, and an internal
energy derived from a combination of derivatives along the
spline which enforced smoothness [28]. Snakes and other de-
formable boundary models have been used to track movement
in magnetic resonance [1], [2] and X-ray [3], [10] images; and
accurately locate neural dendrites in electron micrographs [8],
facial features in photographs [51], and cardiac silhouettes in
ultrasound images [44].

B. B-Spline Snakes

As the basis functions for energy maximizing snakes, B-
splines have several characteristics which make them well
suited to describing vessel contours as well as optimization
using dynamic programming: 1) they are smooth,1 continuous
curves which are in general less dependent on internal energy
constraints (and, hence, the additional weighting termsand
in (2), 2) they are completely specified by few control points,
and 3) individual movement of the control points will only
affect them locally [2], [34] (Fig. 1). B-splines are given by
the following expression:

(4)

where is a column vector of powers of , the spline
parameter, is a sequence of control points, andis a matrix
which blends the control points. B-splines can be constructed
of any order (with the complexity of the possible conformation
increasing with spline order), but second- (quadric) and third-
order (cubic) are most often encountered. Quadric and cubic
B-splines exhibit a favorable tradeoff between their shape com-
plexity for describing natural curves and computational burden

1Please note that although this is the case, one can create corners in such
curves by placement of coincident knot points.

required to solve them. To increase the shape complexity of
the B-spline without dramatically increasing computational
burden, any number of quadric or cubic B-spline segments
can be strung together to create a piecewise quadric or cubic
spline (Fig. 2).

To identify the edge features in the image, the following
expression must be minimized along the B-spline curve

(5)

where is appropriate image-derived information. The
specific image-derived information in our QCA system is
explained in Section II-D.

For a piecewise cubic B-spline, (5) may be written in the
form

(6)

where are the B-spline control points, is the total number
of control points, and are the energies for each span. Note
that as defined here, the shape and, thus, the energy, of each
piecewise cubic span depends only on four adjacent control
points. It would be possible to impose derivative smoothness
penalties on the B-spline curve as in (2); however, for the
application at hand, the derivative penalties are felt not to
be needed. furthermore, the added smoothness penalties will
require additional weight terms that will need to be adjusted,
leading to variability in the results.

C. Dynamic Programming

Dynamic programming (DP) is a very efficient method for
optimizing problems which can be broken down into a number
of independent steps [1], and dramatically reduces the number
of calculations over exhaustive enumeration. Given a cubic B-
spline with total control points and possible positions for
the control points, the total number of possible solutions
is . However, the total number of steps needed to find the
optimum solution by DP is O . Thus, for any number of
control points greater than four, DP offers dramatic increases
in efficiency. And, as more control points are added, the
number of steps increases linearly; while the total number of
possible solutions increases exponentially.
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(a) (b)

Fig. 2. B-splines with (a) four control points and one span and (b) with five control points and two spans. This figure demonstrates the increase in
complexity, needed to match image contours, which can be attained by increasing the number of piece wise cubic spans.

The QCA systems of Reiber and van der Zwet also employ
DP [39], [47]. In the case of least-cost edge following of
Reiber, the number of steps required to find the optimum
solution is O assuming a simple path constrained only
by the last point found. In the case of the least-cost scheme
presented by van der Zwet, the number of steps required is
O . Note that both of these implementations depend
heavily on the total length of the edge to be followed,, since
each point along the path can be considered an independently
variable control point of a linear spline. As the edge length
increases linearly, the number of steps to find the solution
increases linearly. In contrast, the number of steps to solve
the B-spline snake is independent of the actual length of the
edge, since the same number of control points can be used to
span any distance. Thus, in the case of line following, is
much greater in practice than in the case of B-spline snakes.

Dynamic programming may be used to optimize the con-
tinuous B-spline curve in the control point space to minimize

using the following recurrence:

(7)

for , and

(8)

In general, for an order-B-spline, is a function of control
points [2]. This minimization yields the optimal open spline,
as is the case for a vessel border. This algorithm is easily
extended to include closed splines, which are useful for area
and volume measurements.

In practical terms, the iterative optimization scheme
for spanwise cubic B-spline snakes can be summarized as
follows. Beginning with the first span, the locations of all
four control points are varied systematically within a limited
window and the energy corresponding to each conformation
is calculated. These energies are minimized over the first
control point. The procedure is repeated for the next span,
the conformation of which is controlled by the last three
control points of the previous span and the next control point
in the sequence. Energies corresponding to all of the possible

locations of these four control points are calculated from the
spline energy plus the minimum energies from the first span.
This scheme continues until all the control points have been
varied, and the minima of all the remaining conformations
can be sought. Stepping back through stored optimal control
point locations reveals the lowest energy state conformation.
This optimization process is repeated until the overall spline
energy reaches a minimum; i.e., there is no lower energy
state than the one occupied by the snake.

Iterative DP Algorithm for B-Spline Snakes:

1) Initialize B-Spline, in the image.
2) Minimize using (7) and

(8).
3) For all , update .
4) If MAX or

THRESHOLD, then HALT.
5) .
6) Goto Step 2).

where is the iteration index. Note that each control point is
optimized within a pixel window.

D. Image Filtering

1) Traditional Techniques:Both the least-cost algorithms
and the snake algorithms use image intensity information to
determine their optimal paths. Costs and energies may be
derived from the image itself (i.e., image gradients, as have
been traditionally used), or from enhanced images where the
application of digital filtering techniques has increased the
contrast between the features of interest and the background.

Many different methods for enhancing object edges in
images have been used in computer vision applications, as
well as in QCA systems described in the literature. Ellis
et al. [16] apply a first derivative to the image intensity
along scanlines drawn perpendicular to an initial, rough-fit
centerline. However, this has been shown to result in under-
estimation of vessel width. Reiber [39], Mancini [32], and
others combine first and second spatial derivatives along a
similar series of centerline perpendiculars to locate potential
vessel edges. The added requirement of the vessel centerline
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(a)

(b)

Fig. 3. (a) Even and (b) odd Gabor and S-Gabor functions and their Fourier transforms. Note that the magnitude of the Fourier transform of the even
Gabor filter is nonzero at a frequency of zero, revealing the nonzero dc response of this filter. By comparison, the magnitude of the Fourier transform
of the even S-Gabor filter is zero.

and the relative weights of the first and second derivatives
(which must be determined empirically) can be potential
drawbacks to these approaches.

Other digital filters used in computer vision for edge de-
tection are more global in extent and include the derivative
of gaussians (DOG) [42], laplacian of Gaussians (LOG) [35]
and quadrature pair filters [30], [41]. These filters combine
image information over a wide area (typically100 pixels).
Quadrature pair filters are gaining in popularity as they provide
the most accurate models of natural vision systems, based on
experimental data [11], [30].

2) Gabor Filters: Gabor filters belong to the family of
quadrature pair filters [30]. They enhance line and edge
features, are selective for orientation and frequency, and their
outputs may be combined to produce a robust external energy
term for snake optimization. Additionally, they have a number
of advantages over the spatial derivative, DOG, and LOG
edge enhancement schemes described earlier [12], [13]. The
Gabor filters can be two-dimensional (2-D) filters and can be
designed to enhance edges of any orientation. These filters
do not require empirically weighted averaging functions to
accurately locate edge features, and they accurately enhance
both lines and edges. The Gabor-filter outputs are well suited
to identifying vascular features and driving the optimization
of snakes.

The one-dimensional (1-D) Gabor-filter pair is defined as
follows [26]:

(9)

(10)

where is the distance along the axis,determines the width
of the Gaussian envelope and is the modulation frequency.

defines the odd, antisymmetric function and defines
the even, symmetric Gabor function. The 1-D Gabor filters can
be extended to two dimensions by simply multiplying the 1-D
Gabor functions by a Gaussian lowpass filter in the orthogonal
direction [30].

3) S-Gabor Filters: Heitger et al. proposed an extension
of Gabor filters to address the issue of nonzero dc response
existing with the even Gabor filter by including a sweep to
lower frequency in the sine and cosine functions [26]. The
enhancement of small vessels and sharp edges of large vessels
would be compromised by a nonzero dc filter. Their 1-D
S-Gabor (“Stretched-Gabor”) functions can be written

(11)

(12)

with

(13)
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where is the relative contribution of the frequency sweep
and determines the rate of the frequency sweep. Heitgeret
al. further state that for a given , and with
there exists at least onewhich will satisfy the condition of
zero dc, namely, that the integral over the length of the even
filter is zero. The function has the effect of increasing the
wavelength of the sine and cosine functions with increasing
distance from the origin, adding weight to the negative side
lobes of the even filter. This adds sufficient negative area to
make a zero integral solution possible (Fig. 3).

The 1-D S-Gabor filters can be extended to two dimensions
by two separate methods. The first method extends the filters
to two dimensions by multiplying the 1-D kernels with a
Gaussian kernel in the direction [30]. The effect of the
Gaussian envelope oriented perpendicular to the major axis of
the Gabor filter is one of averaging or summing the intensity
information along the edge or line features to be enhanced. In
this case, the orientation of the filter is set by application of a
rotation matrix of the appropriate angle to the 2-D filter

(14)

(15)

(16)

The choice of the widths of the Gaussian envelopes,and
, determine the frequency and orientation selectivity of the

2-D S-Gabor filter, respectively. controls how long and
continuous, as well as how closely oriented to the filter’s major
axis a feature must be to be enhanced.controls how sharp,
or quickly arising from the background the edge or line must
be to be enhanced. A ratio of was derived by
Kulikowski et al. from single cat striate cortical cell recordings
[30].

A second method for extension of the S-Gabor filters
to two dimensions was proposed by Heitgeret al. which
simultaneously enforces polar separability and sets the filter
orientation [26]. This method involves constructing a polar 2-
D operator in the Fourier domain by assigning the 1-D Fourier
transform of the 1-D S-Gabor filter (which is a function of filter
frequency only) to the radial variation, , and multiplying
it by a power of a cosine function

(17)

where sets the filter orientation, and m the sharpness of
the orientation selectivity. This function in and is then
discretely sampled onto the Cartesian coordinate plane using
bilinear interpolation. Taking the inverse Fourier transform of
the Cartesian-sampled filter, then completes the construction
of the 2-D filter.

E. Energy Field

The magnitude and direction of variations in image intensity
describe line and edge features contained in an image. The
intensity of the S-Gabor filtered image at each point may
be used to drive an energy minimizing snake onto contours

(a) (b) (c)

Fig. 4. Vector magnitude of the S-Gabor filter outputs at three different
orientations for a synthetic circle. (a) The even filter response, (b) the odd filter
response (except in the center where the original image has been substituted),
and (c) the energy field.

within the image. The energy field, is defined as the vector
magnitude of the filter outputs obtained by convolving the even
and odd S-Gabor filters of orientationwith the image,

(18)

This square law nonlinearity has been shown to exhibit a
single peak response to edges, lines, and features combining
elements of both. It should be noted that the location of
the peak energy corresponds exactly to the location of these
characteristic features. However, theenergyconveys no infor-
mation as to the particular type of feature which generated
the response [26]. Thephaseconveys the character of the
feature—whether it is more like a line or more like an edge

(19)

To create an energy field of enhanced even and odd features
of any orientation, a bank of filters at different orientations
may be convolved with the image and the energy computed
for each orientation. The maximum energy response across the
bank of filters at each point in the image defines a composite
energy field

(20)

This results in a composite image of enhanced edge and line
features of all orientations spanned by the range ofin the
bank of filters. The number and spacing of orientations within
the bank depends on the orientation selectivity of the filter. The
narrower the range of orientation selectivity, the more closely
the filters will be need to be spaced in order to enhance all
possible orientations. The energy field provides the external
forces which pull the energy minimizing snake onto the image
contours.
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(a) (b)

Fig. 5. Energy field resulting from the convolution of a region of a clinical
angiogram with a bank of 12 evenly spaced S-Gabor filters, each specific to
a particular orientation.

Fig. 6. Example screen of interactive image processing package developed
to implement the S-Gabor filter and B-spline snake algorithm.

Fig. 4 displays the result of convolving S-Gabor filters with
a synthetic image of a circle. In this figure, the output of
the S-Gabor filter pairs in three different orientations can
be viewed. Each of the images in Fig. 4 demonstrates edge
enhancement which is selective for orientation: edge features
oriented along the major axis are enhanced, while those away
from this orientation are suppressed. The image in Fig. 5 is
the energy field resulting from convolving the image with
a bank of 12 evenly spaced S-Gabor filters and taking the
maximum intensity across the bank at each point. The energy
field contains edge features of all orientations, and reveals
features suppressed in the single filter images.

F. Summary

The system proposed in this paper identifies vessel bound-
aries using energy minimizing snakes by integrating local
image intensity information over a large spatial extent. These
snakes use piecewise cubic B-splines as their basis functions,
which efficiently and accurately describe natural contours such

as those encountered in coronary angiography. Their piecewise
continuous description of complex borders makes them well
suited to optimization with the dynamic programming scheme
described. To provide the external energy to drive the snakes
onto the vessel boundaries, we have chosen to combine
the outputs of a bank of S-Gabor filters. These filters are
tuned to characteristic vessel dimensions, accurately enhance
both lines and edges simultaneously, and are selective of
feature orientation, capturing the tortuosity of blood vessels.
The unique combination of described methods produces a
powerful tool for accurate and robust identification of complex
boundaries of vessels in coronary angiograms; a tool which
is relatively insensitive to vessel intersections and branches
which confound similar systems.

III. M ETHODS

A series of validation experiments was designed and carried
out to determine the performance of the S-Gabor filter and
DP B-spline snake vessel dimension measurement system.
Parameters evaluated included the overall accuracy and preci-
sion of the system, and the ability of the system to robustly
identify the vessel contours regardless of the initial snake
placement. First, phantom studies were performed to measure
system accuracy and precision under ideal conditions with a
single operator. Splines before and after optimization were
compared for overall fit. Next, the system was applied by
two independent operators to a random sequential series of
angiograms performed at the Yale-New Haven Hospital digital
coronary catheterization lab, and precision was evaluated. The
fit of the splines between runs for each operator were also
compared.

An OpenWindows based imaging software package has
been developed to implement the presented edge identification
system (Fig. 6). All development and analysis was carried
out on a Sun Sparc Classic UNIX-based workstation with the
C programming language. The developed image processing
system allows interactive filter design, convolution, spline
positioning and editing, and optimization. The system allows
the storing, retrieving, and printing of filters, snakes, and
images. It provides measurement results both superimposed
on the image and logged to disk.

A. Filter Construction

The parameters of (14)–(16) define the shape, and thereby
the response of the S-Gabor filters. A series of filters with a
characteristic width, , were constructed in order to determine
the most appropriate filter for the anticipated vessel dimen-
sions, approximately 0.5 to 5.0 mm for coronary arteries [36],
[37]. Given a rough estimate of the resolution of the expected
images of five pixels/mm, expected vessel dimensions within
the images were on the order of 2.5 to 25 pixels. Fig. 7 shows
the result of convolving a bank of Gabor filters with in
the range 1–8 with lines of decreasing width (from 25 to
three pixels) shown in profile. Note that only the smallest
filter ( ) enhances edges at the smallest scale, three
pixels. Filters with identify the center of the 3-pixel
line, rather than its edges. For this reason, all filters used in the
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Fig. 7. S-Gabor filter response [energy, refer to (18)] for�x = 1 to 8 for the lines of decreasing width shown in profile at the top. The units displayed are pixels.

analysis of phantom and angiographic images were constructed
with .

Of the remaining parameters, was arbitrarily set at 0.5,
and was chosen such that . was chosen
to yield a filter with orientation selectivity similar to natural
vision systems: [30]. Finally, with all of the
other parameters fixed, was determined numerically with
bisection search to produce an even filter which integrated to
zero (satisfying the desirable quality of zero dc response).

B. Feature Identification

Once an image had been filtered and the energy field con-
structed, the operator manually positioned the control points
to draw two B-spline snakes close to the opposing vessel
edges, spanning the region of interest. The snakes could be
initialized with reference to the composite energy field, a user
defined energy field built from any number of the available
filter outputs, or the original (nonenhanced) image depending
on which view afforded the best perspective. The number
of piecewise cubic spans making up each snake could be
increased or decreased at the discretion of the operator in order
to best approximate the overall conformation of each vessel
edge. Each snake was initialized by the operator in 15–30 s,
depending on vessel complexity.

The splines were each independently optimized to the
underlying composite energy field following the dynamic
programming scheme discussed previously. Energy values
between integer pixel locations in the energy field were
calculated using bilinear interpolation. The total spline energy
was calculated by numerically integrating the energy values
along the length of the spline, and dividing by the length of the
spline. Normalization of the total spline energy (with respect to

length) eliminated the tendency for the snake to oscillate back
and forth in space over a feature, decreasing energy solely
by virtue of its increasing length. Each control point (with the
exception of the end control points) was allowed to vary within
a nine pixel window on each iteration. This nine pixel window
confined possible control point positions to the current pixel
and the eight nearest neighbors. For the analysis presented
in this paper, the end points remained fixed in the location
set by the operator when the spline was initialized, although
the system does allow full movement of all control points.
Fixing the end points prevented the possible migration of the
spline away from, as well as extension of the spline beyond
the region of interest. Fixing the end points reduced the time
needed to converge on the optimum solution by reducing the
total number of degrees of freedom of the system. Each snake
converged on the optimal solution in 2–5 min on the Sun
Sparc Classic workstation.

C. Vessel Measurement

Following optimization of the splines, characteristic mea-
surements of the identified vessel were determined: minimum
diameter, reference (normal) diameter, and percent-diameter
stenosis. Only the overlapping sections of the two snakes
were considered in the analysis. The minimum diameter and
its location were found by searching for the shortest distance
between the two splines within the overlapped region. Since
the end points were fixed, the extent of the analysis along
the vessel edges was determined exclusively by the operator,
and did not reflect performance of the system. The beginning
of the overlap at each end was defined by the shorter of the
two shortest distances from the beginning of each snake to
anywhere on the other.
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Fig. 8. Centerline calculation uses a rotating T-shaped construct. The ori-
entation which results in equal length arms of the “T” defines the next
point.

Vessel Centerline Construction:Next, the centerline falling
between the two identified edges was calculated. Several dif-
ferent approaches have been used by other authors to construct
the centerline. Gurleyet al. [24] follow the contiguous path
of lowest image energy corresponding to center of the vessel,
a method similar to other skeletonizing schemes. Reiberet
al. [39] start with a user-defined centerline and refine the
estimate after the edges have been detected. Of note, both
of these systems rely on the centerline as a reference from
which to search for the vessel edge along perpendicular
scanlines. In contrast, in the described algorithm the edges
have already been detected and the centerline simply serves
as a convenient construct from which to make measurements
of vessel diameters.

In this analysis, centerlines were defined mathematically
[27] as a line drawn between two edges such that, at any
point along its length, its perpendiculars intersect the edges at
equal distances from itself, and were constructed following the
method of Bolsonet al. [4], [5] which proceeds as follows.
First, an estimate of the first point of the centerline is made.
The midpoint of the line connecting the beginning points
of the two splines within the overlapped region was chosen
for convenience. Then, in an iterative process, new points
along the centerline are sought using a T-shaped structure
with long arms perpendicular to a short stem (see Fig. 8)
which is anchored at its base to the last centerline point. The
“T” is rotated and an orientation sought in which the two
resulting distances along the arms to the edges are equal. The
intersection of the stem and arms of the “T” then becomes the
next point on the centerline. This process is repeated until the
end of the overlapped region is reached.

D. Phantom Studies

Phantom studies were undertaken in order to validate the
accuracy and precision of the system under ideal conditions.
A Plexiglas precision-drilled, contrast-filled model and a series
of flexible, contrast-filled tubes were imaged in the Yale
New Haven Hospital (YNHH) digital catheterization lab and
subsequently analyzed by a single operator.

A solid 1 cm 10 cm 10 cm plexiglas block was
precision-drilled to yield a series of parallel holes with
minimum diameters of 1.00, 1.50, 2.00, 3.00, 4.00, and 5.00
mm. Each hole was widened to 5.00 mm at each end to

a depth of 1.5 cm to simulate normal pre- and post-stenotic
vasculature. The modeled percent-diameter stenoses, therefore,
ranged from 0–80%. These dimensions cover the range in size
of normal and pathologic vessels commonly encountered in
clinical practice, and have been used previously in other
phantom experiments. The phantom was imaged with two of
the stenotic sections centered in the image at a time with a
window of 4.5 in at 75 keV, the standard energy level used
in clinical procedures at YNHH, and filled with Hypaque-
76 (Winthrop Pharmaceuticals, New York, NY) radiographic
contrast.

Additionally, 1/32-in, 1/16-in, and 1/8-in inside diameter
Tygon tubes were filled with Hypaque-76 and sealed at both
ends. The tubes were taped to a solid surface in a randomly
curved configuration and imaged along with the fixed-stenosis
phantoms. The images were digitally recorded in short, 3–5 s
bursts with automatic exposure control. Later, single frames
from each of the phantom imaging runs were selected at
random and transferred over local network to the Sun Classic
workstation.

In the first validation series, a single operator filtered,
initialized, and optimized the snakes for each of the phantoms
at least four times, recording the resulting minimum and
ninetieth-percentile diameters, percent-diameter stenosis and
the shape and location of each optimized spline. In order
to test the ability of the system to repeatably settle into the
same spline configuration independent of the initial conditions,
the 2-mm minimum diameter fixed-stenosis phantom was
analyzed once, and the resulting optimized splines recorded
as a standard reference; then, in ten independent trials, single
or multiple control points were randomly displaced from
their optimized reference locations, and the resulting splines
recorded. The displaced splines were then reoptimized and
their final position compared both to the displaced position and
the original reference with regard to the minimum diameter,
ninetieth-percentile diameter, percent-diameter stenosis, and
the circumscribed area measure described earlier. This scheme
was repeated for a single image of the 1/32-in ID tubing, as
well.

E. Angiographic Studies

Angiograms of twenty coronary vascular lesions (including
eight matched pre- and post-angioplasty lesions) were selected
from eight sequential patients evaluated in the digital catheter-
ization lab at YNHH. The images selected exhibit a range
from normal to severely stenosed lesions, discrete to diffuse
disease, and simple to complicated vessel geometries. Each
image was analyzed independently by each of two operators
twice with a washout period of several days between repeat
analyzes. The resulting optimized splines were recorded; mini-
mum diameter, ninetieth-percentile diameter, percent-diameter
stenosis, and area circumscribed by each spline before and
after optimization were calculated and recorded.

One angiogram was chosen to test the ability of the algo-
rithm to repeatably settle into the same spline configuration
regardless of the initial conditions in a manner identical to
that described above for the phantom studies. This test was



KLEIN et al.: QUANTITATIVE CORONARY ANGIOGRAPHY 477

TABLE I
ACCURACY AND PRECISION FORFIXED-STENOSIS AND CURVED TUBE PHANTOMS

Phantom Measure 90th-precentile
diameter

minimum
diameter

Percent-
diameter
stenosis

accuracy N/A �0.14 mm 2.85%Fixed
precision N/A 0.07 mm 1.35%

Curved accuracy 0.33 mm �0.25 mm 12.18%
precision 0.38 mm 0.13 mm 8.30%

TABLE II
ACCURACY AND PRECISION FORTWO INDEPENDENT OPERATORS

Operator Measure
90th-

precentile
diameter

minimum
diameter

Percent-
diameter
stenosis

1 accuracy �0.05 pixels �0.31 pixels �3.01%
precision 0.89 pixels 0.54 pixels 5.80%

2 accuracy 0.86 pixels �0.39 pixels �5.07%
precision 3.16 pixels 1.16 pixels 15.5 %

performed by a single operator and repeated ten times. Areas
between the displaced splines and the reference spline, and
between the optimized splines and the reference spline were
recorded.

IV. RESULTS

A. Fixed-Stenosis Phantoms

The minimum diameter, and percent-diameter stenosis ac-
curacy and precision of the system for the fixed-stenosis
phantoms were calculated and are presented in Table I. The
ninetieth-percentile diameter, which measured the diameter of
the pre- or post-stenotic sections of the phantom (and had a
true dimension of 5.00 mm for each phantom), was used to
scale the minimum dimension for each phantom image.

Fig. 10 summarizes the optimization of the two snakes to
the 2 mm minimum diameter phantom from initialization
[Fig. 10(a)], through the 20 iterations required in this case
for convergence. The snakes are shown after 5, 10, 15,
and 20 iterations in Fig. 10(b)–(f). Fig. 10(f) shows the final
optimized control point locations and snake conformation, and
a line connecting the initial and final locations for each control
point.

The sum of the areas between the two initialized and final
optimized spline pairs for each run was calculated. This area
is a reflection of the initial displacement of the splines from
the final optimized locations. Chi-square analysis revealed
a modest probability of association between error in mini-
mum diameter stenosis and initial displacement ( ,

). There was little probability of association
between percent-diameter stenosis and initial displacement
( ).

B. Curved Tube Phantoms

The accuracy and precision of the ninetieth-percentile diam-
eter, minimum diameter, and mean diameter were calculated
for the curved tube phantoms. The results are presented in

Fig. 9. Area between the initial reference spline and the displaced spline
versus the area between the initial reference and the final optimized spline.

(a) (b)

(c) (d)

(e) (f)

Fig. 10. Optimization of snakes on 2.00 mm fixed-stenosis phantom: (a)
initialized, (b) after five iterations of DP algorithm, (c) after ten iterations,
(d) after 15 iterations, (e) after 20 iterations, and (f) optimum reached at 23
iterations, lines connect initial control point locations and optimized locations.

Table I. The sum of the areas between the two initialized
and optimized spline pairs for each run was calculated. Chi-
square analysis revealed no probable associations between
ninetieth-percentile diameter ( ), minimum diameter
( ), or percent-diameter stenosis ( ) and
initial displacement.

C. Angiograms

Twenty coronary vascular lesions from nine sequential pa-
tients were analyzed with the algorithm. The series had a mean
ninetieth-percentile diameter of 12.7 pixels, mean minimum
diameter of 6.4 pixels, and mean percent-diameter stenosis of
49%. Figs. 11–13 show the results of the system on selected
angiograms. These images demonstrate the robust behavior of
the snakes, even in challenging situations. Accuracy and pre-
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TABLE III
VARIABILITY AND MEAN DIFFERENCESCOMPARING RUNS BY TWO INDEPENDENT OPERATORS

Measure 90th-precentile diameter minimum diameter Percent-diameter stenosis Area between splines

Bias 0.38 pixels �0.19 pixels �3.79% N/A
Variability 2.28 pixels 0.53 pixels 8.03% N/A

Difference in means
±95% confidence limits

�0.91± 1.56 pixels 0.08± 0.61 pixels 2.06± 7.84% �37.1 ± 47.1 pixels

cision measures were calculated for each of two operators and
are presented in Table II. Bias between operators (the mean of
the differences in mean measurements for each angiogram),
variability between operators (the standard deviation of the
differences in mean measurements for each angiogram) and
differences and 95% confidence levels in the mean differences
of ninetieth-percentile diameter, minimum diameter, percent-
diameter stenosis between runs, and error in identified contours
between runs (spline 1, run 1–spline 1, run 2; etc.) for each
of the operators are presented in Table III. There were no
significant differences between the means ( ) for any
of the four quantities measured.

One image from the fixed-stenosis phantoms, one from the
curved-tube phantoms, and one from the angiogram series
were further analyzed to determine the repeatability of the
algorithm under widely varying initial conditions. Splines
were optimized on each of the images and recorded as a
reference. Thereafter, one or more control points of one of
the two splines were displaced and the spline reoptimized.
Areas were calculated between the reference spline and the
initially displaced spline position (averaging approximately
375 pixels), and between the reference spline and the resulting
optimized spline (averaging approximately 100 pixels for all
cases, but only 15 pixels when the optimization appeared
to correctly reidentify the vessel border). Fig. 9 shows the
results of these area calculations. Fig. 10 provides a subjective
example of the magnitude of initial displacements which was
typical for this analysis. Chi-square analysis of the pooled data
revealed no probable association between initial and final areas
( ).

V. DISCUSSION

A. Intraoperator Accuracy and Precision

Two phantom types were studied to measure the accuracy
and precision of the vessel measurement system. The system
exhibited better than pixel accuracy (1 pixel0.16 mm 0.16
mm) for minimum diameters for both the precision-drilled,
fixed-stenosis and flexible-tube phantoms. The accuracy com-
pares favorably with published results (Reiber, van der Zwet)
summarized in Table IV.

While the precision was excellent for the fixed-stenosis
phantoms, it was somewhat disappointing in the flexible
tube phantoms with accuracies and precisions about half and
twice those for the fixed-stenosis phantoms, respectively. This
result is of dubious significance, however, considering true
dimensions of the tubing along their lengths were unknown,
confounded by possible squeezing or flattening in any number
of places.

In the protocol described earlier, the operator was instructed
to place the initialized splines “close” to the enhanced vessel
edges. However, no strict definition of “close” was given, and
it was up to the operator to interpret “closeness.” In order
to explore the relationship between initial closeness of the
spline and the ultimate optimized shape, the area between
the initialized spline and the optimized spline was calculated.
This quantity was then correlated with the measurement error
using chi-square analysis. Except in the case of minimum
diameter error of fixed stenosis phantoms, there were no
associations found between initial area and measurement error.
The association found, however, was modest, and may be the
result of chance. Thus, the error in measurement of vessel
dimensions was independent of the initial distance away from
the contour that the snake was placed.

B. Sources of Error

Several sources of error may be inherent in the vessel
measuring algorithm and are important to identify in the
interest of future system refinements. The first is that the S-
Gabor filters do not consistently localize edges across different
scales, i.e., at different widths of the Gaussian envelope,

in (14) and (15). Nor is it likely that do they do so
inherently accurately at any scale. As increases relative
to the vessel being imaged, a point is reached at which the
filter begins to see the vessel as a single line rather than
as two edges (as the even filter begins to dominate the odd
filter). To minimize this effect, we took , making
the S-Gabor filter system an edge detector for vessels of the
scale being imaged. While the overall accuracy attained in the
phantom studies was0.14 mm, the precision was 0.07 mm.
Thus the system underestimated the vessel minimum diameters
on average, but did so in a very consistent fashion. Linear
regression of true versus measured minimum diameter for the
fixed-stenosis phantoms revealed a fixed offset of 0.08 mm
such that . This correction was
independent of the measured mean dimension ( ).

A very important source of error involves the choice of
the number of piecewise cubic spans used to construct the
B-spline snake. The order of the spline spans (in this case,
cubic) determines the possible spanwise conformation of the
snake. Increasingly complex shapes can be mapped either by
increasing the spanwise order of the B-spline function, or
by increasing the number of spans. The latter method is the
only practical solution, and the one that takes advantage of
the efficiency of DP. When fitting initial curves “close” to
the enhanced feature, using the developed image processing
software the operator can add or subtract spans from the snakes
as they see fit.



KLEIN et al.: QUANTITATIVE CORONARY ANGIOGRAPHY 479

Fig. 11. Result of system operation on set of pre- and post-angioplasy images (top and bottom, respectively). Filtered regions are shown on left with
splines (solid lines) and ninetieth-percentile diameter location (dashed line) superimposed. Note the small arteries which branch off within the region of
interest. The system easily spans these discontinuities.

(a) (b)

Fig. 12. (a) Filtered region and (b) original angiogram with results of vessel border identification superimposed. Note the complexity of this lesion: a
discrete narrowing bisected by an overlapping vessel.

Trying to match a feature with too few or too many spans
leads to problems. When too few spans are specified, the
optimized snake will understate the complexity of the vessel.
This may lead to overstatement of minimum diameters, and

understatement of reference diameters, especially in the case
of diffuse disease. Specifying more spans than required to
match the feature unnecessarily increases computation time
for optimization. It may also, for unclear reasons, lead to
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(a) (b)

Fig. 13. (a) Filtered region and (b) original angiogram with results of vessel border identification superimposed. Note the complexity of this lesion: multiple
branching vessels, overlapping catheter, and sharp notch at the proximal end.

TABLE IV
SUMMARY OF QCA SYSTEM PERFORMANCE DESCRIBED IN LITERATURE

Author Edge detection Pixels/mm Accuracy Precision Interoperator precision

Reiber [37] Weighted 1st and 2nd difference 13.9 0.03 mm (0.42 pixel)* 0.09 mm (1.25 pixel)* 0.20 mm (2.78 pixel)*
van der Zwet [46] Gradient field transform 13.9 0.06 mm (0.42 pixel)* 0.004 mm (1.58 pixel)* 0.14 mm (1.95 pixel)*

* approximate, based on reported image resolution.

optimization failures. It may be that the excessive number of
spans gives the snake sufficient degrees of freedom to detour
out and follow extraneous features and return to the remainder
of the feature of interest. This was occasionally observed at
vessel bifurcations or overlaps and in cases where the fixed
starting or endpoints were incorrectly placed off to the side
of the feature (rather than directly on it) allowing a loop of
snake to slip past.

Another type of error occurs because there may be more
than one locally optimal snake conformation in the region
surrounding the best fit (globally optimal) conformation. The
factor most likely to influence this result is the size of the
window within which the DP algorithm moves the control
points as it samples the various conformations. In all ex-
periments described in this paper, the DP algorithm varied
the control points within a nine pixel window. Increasing the
window increases the total number of conformations examined
by the DP algorithm and thus reduces the likelihood that the
snake will settle into an isolated, nonglobally optimal solution.
Increasing the window, however, comes at the expense of
rapidly increasing computation time [from – ,
etc.].

Finally, the choice of reference diameter affects the accuracy
and precision of the algorithm. In the analysis of the phantoms,
the ninetieth-percentile diameter was assumed to represent
the width of the nonstenosed phantom vessel segment. This
was in turn used to scale the image dimensions to real world
dimensions (each nonstenosed segment was drilled to 5.00 mm
in diameter). Given that the ends of each spline were fixed in
each of the experiments, it is conceivable that the ninetieth-
percentile diameter may, in some cases, have depended more
on the initial placement by the operator than by the results of

the optimization. This would likely be the case if the endpoints
were placed too widely, thus biasing the diameters toward an
artificially large size.

C. Interoperator Bias and Variability

In order to deliver consistent, accurate results, a quanti-
tative coronary angiography system should be as insensitive
as possible to potential biases introduced by the operator.
Measurements made by one operator should be consistent with
measurements made by the same operator at some other time,
as well as those by a different operator. In this analysis, a
series of 20 coronary artery lesions from random angiograms
of eight patients was analyzed by two independent operators
twice in order to gauge the impact of operator bias. The
interoperator bias, or the systematic difference in minimum
diameter between the two operators was0.19 pixels. The
interoperator variability in minimum diameter measurement
was 0.53 pixels, which compares very favorably with results
reported by Reiberet al. (Table IV). There were no significant
differences between the mean differences in the parameters
measured (ninetieth-percentile diameter, minimum diameter,
percent-diameter stenosis, and error areas) for operator 1 and
the mean differences for operator 2. These results indicate that
operator influence is minimal for the described system.

Of note, while the accuracy and precision in minimum diam-
eter measurement were similar for the two operators, the same
was not true for ninetieth-percentile diameter and percent-
diameter stenosis measurements. The ninetieth-percentile di-
ameter measurement depends heavily on the extents over
which the system is applied. When analyzing a lesion, the
operator must first choose the stenosis to span with the snakes,
and then choose how far to match the vessel contours to either
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side of the stenosis. The latter choice determines the possible
range of reference diameters that can be selected by the system.
The fact that the interoperator minimum-diameter variability
was low indicates that the choice of stenoses was consistent
between the operators. The greater interoperator variability
and threefold difference in precision in ninetieth-percentile
diameter, however, indicates that the choice of extents was
not consistent. The threefold difference in percent-diameter
stenosis variability is a direct consequence of the variability
in ninetieth-percentile diameter.

The choice of the extent of the analysis is a difficult one
and one that is clearly vulnerable to operator bias. Despite this,
however, the accuracies in all three measured quantities were
similar for both operators. Thus, while one operator exhibited
wider variation in the extent of the lesion analysis, the end
results, on average, were not as different as one might expect.

D. Robustness and Influence of Initial Conditions

The next step forward in the development of DQA systems
will clearly be the advent of full automation and, thereby, the
elimination of all operator bias in the measurement process.
To date, all systems require some form of user initialization
whether as a rough centerline estimate, end points, etc. Also,
present systems exhibit high rates of failure (approaching
50% by some estimates [24]), especially when applied to
complicated lesions such as occur in diffuse disease, or at
branching or overlapping vessels. Systems which search a cost
matrix to find the least-cost path from one end of a lesion to the
other are vulnerable to following an incorrect path, especially
in the cases cited.

A deformable vessel boundary model approach, such as the
B-spline snake presented here, is less vulnerable to such fail-
ures as it can span complicated regions and then settle into the
lowest energy state. Rather than begin at one point and follow a
connected path to some other end point, snakes represent entire
paths from starting point to end point. Optimization draws
the snake into a conformation along that general path which
minimizes the snake’s energy and best fits the underlying edge
contour.

Several of the experiments presented in this paper were
designed to evaluate the ability of the algorithm to repeatably
draw the deformable snake into the same optimal, minimum
energy conformation, independent of the initial displacement
away from that optimum. Phantom studies revealed no strong
associations between the area circumscribed by the initial
and optimal splines and variability in the measurements of
ninetieth-percentile diameter, minimum diameter, or percent-
diameter stenosis. Thus, the final result was insensitive to
the initial spline placement which implies minimal operator
introduced bias.

Another set of experiments performed on both phantoms
and angiograms further tested the association between initial
placement and optimized result. Two area measures (chosen to
quantify the differences in spline locations along their entire
extent) were compared. The first was the area circumscribed
by an optimal reference spline and that same spline displaced
some distance away. The second area was circumscribed by

the reference spline and the result of optimizing the displaced
spline. While no association between the two areas was found
on the basis of chi-square analysis, the following observation
should be noted. Optimization resulted either in a spline
closely fitting the original reference, or it resulted in an
entirely different result. There is no continuous range of final
areas resulting from optimization: either the displaced splines
converge on the initial reference splines, or they fail to locate
the vessel edges catastrophically.

Locally optimal solutions may be encountered even in a
random background. The spline algorithm appears to be more
likely to encounter these false, locally optimal but globally-
poor solutions the further the spline is displaced from the
globally optimal solution. As stated earlier, increasing the
size of the control point search windows would alleviate this
problem.
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