Quantitative Derivation of the Gross-Pitaevskii Equation

Niels Benedikter
with Gustavo de Oliveira and Benjamin Schlein
Hausdorff Center for Mathematics
University of Bonn
universitätbonn
QMath 12, Berlin, September 13, 2013

Gas of N Bosons

- Wave function

$$
\psi_{N} \in L^{2}\left(\mathbb{R}^{3 N}\right)
$$

symmetric w.r.t. permutation of the N particles.

- Hamiltonian in Gross-Pitaevskii scaling, repulsive interaction $V \geq 0$:

$$
H_{N}^{\text {trap }}=\sum_{j=1}^{N}\left(-\Delta_{x_{j}}+V_{\text {trap }}\left(x_{j}\right)\right)+\underbrace{\sum_{i<j}^{N} N^{2} V\left(N\left(x_{i}-x_{j}\right)\right)}_{\text {rare but strong collisions }} .
$$

Physical phenomenon: Bose-Einstein condensation

At very low temperatures (i.e. when approximately in the ground state):

$$
\psi_{N} \simeq \underbrace{\varphi \otimes \ldots \otimes \varphi}_{N \text { factors }}, \quad \text { with } \varphi \in L^{2}\left(\mathbb{R}^{3}\right) .
$$

Ground State Properties

■ Energy (Lieb-Seiringer-Yngvason 2000): Define ground state energy

$$
E_{N}:=\min _{\substack{\psi_{N} \in L_{\text {symm }}^{2}\left(\mathbb{R}^{3 N}\right) \\\left\|\psi_{N}\right\|=1}}\left\langle\psi_{N}, H_{N}^{\text {trap }} \psi_{N}\right\rangle .
$$

Define the Gross-Pitaevskii energy functional on $L^{2}\left(\mathbb{R}^{3}\right)$

$$
\mathcal{E}_{\mathrm{GP}}(\varphi)=\int_{\mathbb{R}^{3}} \mathrm{~d} x\left(|\nabla \varphi|^{2}+V_{\text {trap }}|\varphi|^{2}+4 \pi a_{0}|\varphi|^{4}\right)
$$

a_{0} : scattering length, constant depending on interaction potential V.
Then

$$
\lim _{N \rightarrow \infty} \frac{E_{N}}{N}=\min _{\substack{\varphi \in L^{2}\left(\mathbb{R}^{3}\right) \\\|\varphi\|=1}} \mathcal{E}_{\mathrm{GP}}(\varphi) .
$$

Ground State Properties

- Bose-Einstein condensation (Lieb-Seiringer 2002):

Let $\gamma_{\psi_{N}}$ be the one-particle reduced density of the ground state ψ_{N} :

$$
\gamma_{\psi_{N}}:=\operatorname{tr}_{2, \ldots N}\left|\psi_{N}\right\rangle\left\langle\psi_{N}\right| .
$$

Let $\varphi_{\mathrm{GP}} \in L^{2}\left(\mathbb{R}^{3}\right)$ be the minimizer of the GP functional $\mathcal{E}_{\mathrm{GP}}$.
Then (in trace norm)

$$
\gamma_{\psi_{N}} \longrightarrow\left|\varphi_{\mathrm{GP}}\right\rangle\left\langle\varphi_{\mathrm{GP}}\right| \quad(N \rightarrow \infty)
$$

(We consider this the rigorous meaning of $\psi_{N} \simeq \varphi_{\mathrm{GP}} \otimes \ldots \otimes \varphi_{\mathrm{GP}}$.)

Dynamics of Bose-Einstein Condensate

- Experiment: Turn off the trap and watch evolution: e.g. cond-mat/0503044

Dynamics of Bose-Einstein Condensate

- Experiment: Turn off the trap and watch evolution: e.g. cond-mat/0503044

■ Mathematics: Solve time-dependent Schrödinger equation

$$
\begin{aligned}
& i \partial_{t} \psi_{N, t}=H_{N} \psi_{N, t}, \quad \psi_{N, 0} \simeq \varphi \otimes \ldots \otimes \varphi \\
& H_{N}=\sum_{j=1}^{N}-\Delta_{x_{j}}+\sum_{i<j}^{N} N^{2} V\left(N\left(x_{i}-x_{j}\right)\right)
\end{aligned}
$$

As $N \simeq 10^{3}-\ldots$, it is difficult to make predictions.

Effective Evolution Equation

- Approximate dynamics (Erdös-Schlein-Yau 2006-2008, Pickl 2010):

Assume bounded energy per particle

$$
\frac{\left\langle\psi_{N, 0}, H_{N} \psi_{N, 0}\right\rangle}{N} \leq C
$$

and condensation into an orbital $\varphi \in H^{1}\left(\mathbb{R}^{3}\right)$:

$$
\gamma_{\psi_{N, 0}} \longrightarrow|\varphi\rangle\langle\varphi| \quad(N \rightarrow \infty) .
$$

Let $\gamma_{\psi_{N, t}}$ be the reduced density associated with the solution of the Schrödinger equation

$$
\psi_{N, t}=e^{-i H_{N} t} \psi_{N, 0}
$$

Let $\varphi_{t} \in L^{2}\left(\mathbb{R}^{3}\right)$ be the solution of the Gross-Pitaevskii equation

$$
i \partial_{t} \varphi_{t}=-\Delta \varphi_{t}+8 \pi a_{0}\left|\varphi_{t}\right|^{2} \varphi_{t} \quad \text { with initial data } \varphi_{0}=\varphi
$$

Then

$$
\gamma_{\psi_{N, t}} \longrightarrow\left|\varphi_{t}\right\rangle\left\langle\varphi_{t}\right| \quad(N \rightarrow \infty)
$$

Rate of Convergence using Coherent States?

$$
\text { What is the rate of convergence, } \left.\quad \operatorname{tr}\left|\gamma_{\psi_{N, t}}-\right| \varphi_{t}\right\rangle\left\langle\varphi_{t}\right| \left\lvert\, \leq \frac{C(t)}{N^{\alpha}} ?\right.
$$

Rate of Convergence using Coherent States?

What is the rate of convergence, $\left.\operatorname{tr}\left|\gamma_{\psi_{N, t}}-\right| \varphi_{t}\right\rangle\left\langle\varphi_{t}\right| \left\lvert\, \leq \frac{C(t)}{N^{\alpha}}\right.$?
In analogy with mean-field systems (Rodnianski-Schlein 2009), one can try coherent states approach:

■ Embed in bosonic Fock space:

$$
\begin{gathered}
\mathcal{F}=\bigoplus_{n=0}^{\infty} L^{2}\left(\mathbb{R}^{3 n}\right)=\mathbb{C} \oplus L^{2}\left(\mathbb{R}^{3}\right) \oplus \ldots \oplus L^{2}\left(\mathbb{R}^{3 N}\right) \oplus \ldots \\
\mathcal{H}_{N}=\int \mathrm{d} x \nabla_{x} a_{x}^{*} \nabla_{x} a_{x}+\frac{1}{2} \int \mathrm{~d} x \mathrm{~d} y N^{2} V(N(x-y)) a_{x}^{*} a_{y}^{*} a_{y} a_{x} .
\end{gathered}
$$

- Study evolution of coherent states

$$
\psi_{N, 0}=W(\sqrt{N} \varphi) \Omega \in \mathcal{F}
$$

where $\|\varphi\|=1$ guarantees $\left\langle\psi_{N, 0}, \mathcal{N} \psi_{N, 0}\right\rangle=N$.

Rate of Convergence using Coherent States?

- If coherence approximately preserved by time evolution:
$e^{-i \mathcal{H}_{N} t} W(\sqrt{N} \varphi) \Omega \simeq W\left(\sqrt{N} \varphi_{t}\right) \Omega \Leftrightarrow \underbrace{W^{*}\left(\sqrt{N} \varphi_{t}\right) e^{-i \mathcal{H}_{N} t} W(\sqrt{N} \varphi)}_{=: U_{N}(t) \text { fluctuation dynamics }} \Omega \simeq \Omega$,
where φ_{t} would solve the Gross-Pitaevskii equation.
- By an elementary calculation

$$
\left.\operatorname{tr}\left|\gamma_{\psi_{N, t}}-\right| \varphi_{t}\right\rangle\left\langle\varphi_{t}\right| \left\lvert\, \leq \frac{C}{N^{1 / 2}}\left\langle\Omega, U_{N}^{*}(t) \mathcal{N} U_{N}(t) \Omega\right\rangle\right.
$$

- So it is sufficient to prove

$$
\begin{equation*}
\left.\left\langle\Omega, U_{N}^{*}(t) \mathcal{N} U_{N}(t) \Omega\right\rangle \leq C(t) \quad \text { (r.h.s. independent of } N\right) \tag{*}
\end{equation*}
$$

- Problem: We find that $(*)$ does not hold.

Heuristically, $e^{-i \mathcal{H}_{N} t} W(\sqrt{N} \varphi) \Omega$ develops singular correlations, which are not captured by approximate evolution $W\left(\sqrt{N} \varphi_{t}\right) \Omega$.

Bogoliubov Transformation Approach

Solution: Implement correlations by a Bogoliubov transformation.
■ Let $f: \mathbb{R}^{3} \rightarrow \mathbb{C}$ solve the zero-energy two-particle scattering equ.

$$
\left(-\Delta+\frac{1}{2} V\right) f=0, \quad \text { where } \quad f(x) \rightarrow 1 \text { as }|x| \rightarrow \infty
$$

- Define a Bogoliubov transformation

$$
\begin{aligned}
& T\left(k_{t}\right)=\exp \left(\frac{1}{2} \int \mathrm{~d} x \mathrm{~d} y k_{t}(x ; y) a_{x}^{*} a_{y}^{*}-\text { h.c. }\right) \\
& k_{t}(x ; y)=N(f(N(x-y))-1) \varphi_{t}(x) \varphi_{t}(y)
\end{aligned}
$$

- Add short-scale correlations: New initial data

$$
\psi_{N, 0}=W(\sqrt{N} \varphi) T\left(k_{0}\right) \Omega
$$

Bogoliubov Transformation Approach

- By elementary calculation

$$
\left.\operatorname{tr}\left|\gamma_{\psi_{N, t}}-\right| \varphi_{t}\right\rangle\left\langle\varphi_{t}\right| \left\lvert\, \leq \frac{C}{N^{1 / 2}}\left\langle\Omega, \tilde{U}_{N}^{*}(t) \mathcal{N} \tilde{U}_{N}(t) \Omega\right\rangle\right.
$$

with the modified fluctuation dynamics

$$
\tilde{U}_{N}(t):=T^{*}\left(k_{t}\right) W^{*}\left(\sqrt{N} \varphi_{t}\right) e^{-i \mathcal{H}_{N} t} W(\sqrt{N} \varphi) T\left(k_{0}\right)
$$

- If we can show

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\left\langle\Omega, \tilde{U}_{N}^{*}(t) \mathcal{N} \tilde{U}_{N}(t) \Omega\right\rangle \leq C\left\langle\Omega, \tilde{U}_{N}^{*}(t) \mathcal{N} \tilde{U}_{N}(t) \Omega\right\rangle \tag{*}
\end{equation*}
$$

then by Gronwall's lemma

$$
\left\langle\Omega, \tilde{U}_{N}^{*}(t) \mathcal{N} \tilde{U}_{N}(t) \Omega\right\rangle \leq C e^{K t}
$$

- To prove (*) (or something similar) we calculate the time derivative and identify cancellations between Schrödinger evolution and Gross-Pitaevskii evolution.

Theorem (B-Oliveira-Schlein 2012, arXiv:1208.0373)
Let $\|\varphi\|_{L^{2}\left(\mathbb{R}^{3}\right)}=1$. Let $V \geq 0$, i. e. repulsive interaction.
Let $\gamma_{\psi_{N, t}}$ be the reduced density of $\psi_{N, t}=e^{-i \mathcal{H}_{N} t} W(\sqrt{N} \varphi) T\left(k_{0}\right) \Omega$.
Let φ_{t} solve the Gross-Pitaevskii equation

$$
i \partial_{t} \varphi_{t}=-\Delta \varphi_{t}+8 \pi a_{0}\left|\varphi_{t}\right|^{2} \varphi_{t}, \quad \text { with initial data } \varphi_{0}=\varphi
$$

Then

$$
\left.\operatorname{tr}\left|\gamma_{\psi_{N, t}}-\right| \varphi_{t}\right\rangle\left\langle\varphi_{t}\right| \left\lvert\, \leq \frac{\text { const. }}{\sqrt{N}} e^{c_{1} e^{c_{2}|t|}}\right.
$$

Theorem (B-Oliveira-Schlein 2012, arXiv:1208.0373)

Let $\|\varphi\|_{L^{2}\left(\mathbb{R}^{3}\right)}=1$. Let $V \geq 0$, i. e. repulsive interaction. Let $\gamma_{\psi_{N, t}}$ be the reduced density of $\psi_{N, t}=e^{-i \mathcal{H}_{N} t} W(\sqrt{N} \varphi) T\left(k_{0}\right) \Omega$.
Let φ_{t} solve the Gross-Pitaevskii equation

$$
i \partial_{t} \varphi_{t}=-\Delta \varphi_{t}+8 \pi a_{0}\left|\varphi_{t}\right|^{2} \varphi_{t}, \quad \text { with initial data } \varphi_{0}=\varphi .
$$

Then

$$
\left.\operatorname{tr}\left|\gamma_{\psi_{N, t}}-\right| \varphi_{t}\right\rangle\left\langle\varphi_{t}\right| \left\lvert\, \leq \frac{\text { const. }}{\sqrt{N}} e^{c_{1} c^{c_{2}|t|}} .\right.
$$

1 Instead of the vacuum Ω, we can use $\omega_{N} \in \mathcal{F}$ with $\left\langle\omega_{N},\left(\mathcal{N}+\frac{1}{N} \mathcal{N}^{2}+\mathcal{H}_{N}\right) \omega_{N}\right\rangle \leq C$ (where C is independent of N).
2 If $\left\|\varphi_{t}\right\|_{H^{4}} \leq C$, then $e^{c_{1}|t|}$ instead of $e^{c_{1} e^{c_{2}|t|}}$.
3 The initial data $W(\sqrt{N} \varphi) T\left(k_{0}\right) \omega$ has 'correct energy':

$$
\left\langle W(\sqrt{N} \varphi) T\left(k_{0}\right) \omega, \mathcal{H}_{N} W(\sqrt{N} \varphi) T\left(k_{0}\right) \omega\right\rangle=N \mathcal{E}_{\mathrm{GP}}(\varphi)+\mathcal{O}(\sqrt{N})
$$

4 We can project on some states with fixed number of particles. Work in progress: Does this cover e.g. the ground state in a trap?

$\frac{\mathrm{d}}{\mathrm{d} t}\left\langle\Omega, \tilde{U}_{N}^{*}(t) \mathcal{N} \tilde{U}_{N}(t) \Omega\right\rangle:$ Coherent Part Cancellation

The generator $\mathcal{L}_{N}(t) \tilde{U}_{N}(t)=i \partial_{t} \tilde{U}_{N}(t)$ is found to be

$$
\begin{aligned}
\mathcal{L}_{N}(t)= & i \frac{d T_{t}^{*}}{\mathrm{dt}} T_{t}+T_{t}^{*}\left[i \frac{\mathrm{~d} W_{t}^{*}}{\mathrm{~d} t} W_{t}+W_{t}^{*} \mathcal{H}_{N} W_{t}\right] T_{t} \\
\simeq & T_{t}^{*}\left[a^{\#}\left(\sqrt{N} i \dot{\varphi}_{t}\right)+\sqrt{N} a^{\#}+a^{\#} a^{\#}\right. \\
& \left.+\frac{1}{\sqrt{N}} a^{\#} a^{\#} a^{\#}+\frac{1}{N} a^{\#} a^{\#} a^{\#} a^{\#}\right] T_{t} .
\end{aligned}
$$

Then we obtain

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left\langle\tilde{U}_{N}(t) \Omega, \mathcal{N} \tilde{U}_{N}(t) \Omega\right\rangle=\left\langle\tilde{U}_{N}(t) \Omega,\left[i \mathcal{L}_{N}(t), \mathcal{N}\right] \tilde{U}_{N}(t) \Omega\right\rangle
$$

$\frac{\mathrm{d}}{\mathrm{d} t}\left\langle\Omega, \tilde{U}_{N}^{*}(t) \mathcal{N} \tilde{U}_{N}(t) \Omega\right\rangle:$ Coherent Part Cancellation

The generator $\mathcal{L}_{N}(t) \tilde{U}_{N}(t)=i \partial_{t} \tilde{U}_{N}(t)$ is found to be

$$
\begin{aligned}
\mathcal{L}_{N}(t)= & i \frac{d T_{t}^{*}}{d t} T_{t}+T_{t}^{*}\left[i \frac{\mathrm{~d} W_{t}^{*}}{\mathrm{~d} t} W_{t}+W_{t}^{*} \mathcal{H}_{N} W_{t}\right] T_{t} \\
\simeq & T_{t}^{*}\left[a^{\#}\left(\sqrt{N} i \dot{\varphi}_{t}\right)+\sqrt{N} a^{\#}+a^{\#} a^{\#}\right. \\
& \left.+\frac{1}{\sqrt{N}} a^{\#} a^{\#} a^{\#}+\frac{1}{N} a^{\#} a^{\#} a^{\#} a^{\#}\right] T_{t}
\end{aligned}
$$

Then we obtain

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left\langle\tilde{U}_{N}(t) \Omega, \mathcal{N} \tilde{U}_{N}(t) \Omega\right\rangle=\left\langle\tilde{U}_{N}(t) \Omega,\left[i \mathcal{L}_{N}(t), \mathcal{N}\right] \tilde{U}_{N}(t) \Omega\right\rangle .
$$

Use the approximate Gross-Pitaevskii equation

$$
i \partial_{t} \varphi_{t}=-\Delta \varphi_{t}+\left(N^{3} f(N .) V(N .) *\left|\varphi_{t}\right|^{2}\right) \varphi_{t}
$$

to get partial cancellation

$$
a^{\#}\left(\sqrt{N} i \dot{\varphi}_{t}\right)+\sqrt{N} a^{\#}=\sqrt{N} a^{\#}\left(N^{3}(1-f(N .)) V(N .) *\left|\varphi_{t}\right|^{2} \varphi_{t}\right)
$$

$\frac{\mathrm{d}}{\mathrm{d} t}\left\langle\Omega, \tilde{U}_{N}^{*}(t) \mathcal{N} \tilde{U}_{N}(t) \Omega\right\rangle$: Bogoliubov Part Cancellation

After the coherent part cancellation, we know have

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t}\left\langle\tilde{U}_{N}(t) \Omega, \mathcal{N} \tilde{U}_{N}(t) \Omega\right\rangle \simeq \\
& \langle\tilde{U}_{N}(t) \Omega, T_{t}^{*} \underbrace{\left[\sqrt{N} a^{\#}(. .)+a^{\#} a^{\#}+\frac{1}{\sqrt{N}} a^{\#} a^{\#} a^{\#}+\frac{1}{N} a^{\#} a^{\#} a^{\#} a^{\#}\right]}_{\text {normalordered }} T_{t} \tilde{U}_{N}(t) \Omega\rangle
\end{aligned}
$$

Bogoliubov transf. $T_{t}^{*} a_{x} T_{t} \simeq a_{x}+a^{*}\left(k_{t}(\cdot, x)\right)$ destroys normalorder. Normalordering of cubic terms creates linear terms. \sim Cancellations:

$$
\begin{aligned}
T_{T}^{*}\left(a^{\#}+a^{\#} a^{\#} a^{\#}\right) T_{t} & =\text { linear }+ \text { cubic, not normalordered } \\
& =\text { timear }=\text { linear }+ \text { cubic }, \text { normalordered } .
\end{aligned}
$$

$\frac{\mathrm{d}}{\mathrm{d} t}\left\langle\Omega, \tilde{U}_{N}^{*}(t) \mathcal{N} \tilde{U}_{N}(t) \Omega\right\rangle$: Bogoliubov Part Cancellation

After the coherent part cancellation, we know have

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t}\left\langle\tilde{U}_{N}(t) \Omega, \mathcal{N} \tilde{U}_{N}(t) \Omega\right\rangle \simeq \\
& \langle\tilde{U}_{N}(t) \Omega, T_{t}^{*} \underbrace{\left[\sqrt{N} a^{\#}(. .)+a^{\#} a^{\#}+\frac{1}{\sqrt{N}} a^{\#} a^{\#} a^{\#}+\frac{1}{N} a^{\#} a^{\#} a^{\#} a^{\#}\right]}_{\text {normalordered }} T_{t} \tilde{U}_{N}(t) \Omega\rangle
\end{aligned}
$$

Bogoliubov transf. $T_{t}^{*} a_{x} T_{t} \simeq a_{x}+a^{*}\left(k_{t}(\cdot, x)\right)$ destroys normalorder. Normalordering of cubic terms creates linear terms. \sim Cancellations:

$$
\begin{aligned}
T_{T}^{*}\left(a^{\#}+a^{\#} a^{\#} a^{\#}\right) T_{t} & =\text { linear }+ \text { cubic, not normalordered } \\
& =\text { timear }=\text { linear }+ \text { cubic }, \text { normalordered } .
\end{aligned}
$$

Normalordering of quartic terms produces quadratic terms. Scattering equation then implies cancellations among quadratics.

Summary

- In Bose-Einstein condensates, short-scale correlations are important.
- Correlations can be implemented on length scale $1 / N$ using a Bogoliubov transformation.

■ We obtain the Gross-Pitaevskii equation with an error of order $N^{-1 / 2}$.

