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Quantitative Determination of the Nonlinear Pinning Potential for a Magnetic Domain Wall 
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G. Faini and L. Vila 
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Using microwave CUtTents, we excite resonances of geometrically confined pinned domain walls, 

detecting the resonance by the rectification of the microwave current. By applying magnetic fields, the 

resonance frequency of the domain wall oscillator can be tuned over a wide range. Increasing the power 

leads to a redshift due to the nonlinearity of the system. From this frequency shift, we directly deduce the 

quantitative shape of the potential, so that a complete characterization of the pinning potential is obtained. 

Laterally confined magnetic domain walls exhibit a 

range of novel physical effects and are also promising 

candidates for applications in memory devices [1] as well 

as in logic circuits [2]. 

To use domain walls in devices, the walls have to be 

pinned controllably at well-defined pinning positions. 

Examples of artificial pinning sites include notches [3-6] 

and protrusions [7], both creating attractive potentials for 

domain walls. Domain walls can be moved between differ­

ent pinning sites to implement, e.g., logic operations [2] or 

storage [1]. Another application was proposed by He and 

Zhang [8], who suggest to use a localized domain wall 
oscillator as a tunable microwave source. But so far it is 

unclear to what extent the frequency of such an oscillator 

can be tuned, which is one of the key requirements for 

applications. 

For reliable operation of devices based on domain wall 

motion or resonance, in addition to well-defined pinning 

potentials, also sufficiently low critical current densities 

and sufficiently fast switching are required. It was shown 

that resonant excitations [9] as well as resonant pulse trains 

[10] allow for a significantly lowered threshold current 

density. To further understand and control domain wall 

dynamics, the quantitative shape of the pinning potentials 

has to be determined. In addition to engineered pinning 

centers, pinning at defects intrinsic to the material or 

caused by the processing is one of the key problems and 

obstacles for device applications, and only quantitative 

information about the pinning potential will lead to a 

further understanding of the dynamics of such random 

pinning processes. So an in-depth understanding of the 

pinning potential landscape due to constrictions but, in 

particular, due to intrinsic defects is a key requisite to 
further development in the field of domain wall dynamics. 

Depending on the type of the domain wall, the dynamic 

behavior of pinned domain walls is determined by different 
contributions of the wall spin structure. While in the case 

of transverse walls the dynamic behavior is determined 

mainly by the motion of the entire wall, for vortex walls, 

the singularity in the center of a magnetic vortex, which 

points out of the plane and is one of the smallest confined 

magnetic structures present in domain walls, plays a key 

role. 

A force acting on such a vortex core will cause a move­

ment of the vortex core in the direction perpendicular to the 

force [I 1,12]. Therefore, if excited by a continuous ac field 

or current, the vortex core will carry out a gyro tropic mo­

tion around the potential minimum [13]. Depending on the 

regime, the vortex core will follow either a circular orbit 

[13] or a more complicated nonlinear orbit of higher order 

[14] with characteristic eigenfrequencies. In the case of a 

single pulse excitation, the vortex core will relax after­

wards into the potential minimum on a spiral trajectory. 

Such a behavior lends itself to a description of the vortex 

core as a quasiparticle, which oscillates in a potential 

defined by the geometry of the structure; i.e., the dynamic 

behavior of the vortex domain wall is described approxi­

mately by the motion of the vortex core. The masses of the 

domain wall quasi particles have been determined in 

Refs. [9, IS], and the trajectory of the quasiparticle can be 

described using Thiele's equation [16]. Thiele's equation 

treats the spin configuration as rigid, which is acceptable in 

many cases, as the equations are not very sensitive to small 

deviations of the spin distribution. In Fig. I(c), we present 

four simulated snapshots of the vortex core motion when a 

vortex core in a pinned vortex wall (by an artificial notch) 

is excited resonantly. It can be seen that the vortex core 

moves on an elliptical trajectory as predicted by the model 
[16]. 

Experimentally, both vortex and transverse walls have 

been observed in nanowires, and the domain wall types 

have been determined for different geometries [17]. For 

both domain wall types [3], the depth [4,5,7], the width [6], 

and the location [18] of the pinning potential have been 

previously determined. Using a resonant excitation of a 

vortex wall, the trajectory of the vortex core [9,19], as well 
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FIG. I (color online). (a) Scanning electron micrograph of the 

device with numbered contacts. Micromagnetic simulation of a 

vortex wall far from the constriction (b). The two stars indicate 

the topological edge defects, and the resonant mode corresponds 

to the vortex core moving on an elliptical trajectory along the 

line connecting the two stars. The color circle indicates the 

direction of the magnetization. (c) Four frames of a micro­

magnetic simulation of the vortex core trajectory. The arrows 

indicate the direction of the core motion. The duration of one full 

cycle is 2.5 ns. 

as the core polarity [19], has been determined, but so far 

the key information, namely, the quantitative determina­

tion of the shape of the pinning potential, has not been 

achieved. 

In this Letter, we investigate the potential landscape 

around a pinning site by analyzing current-induced domain 

wall excitations in the frequency range from 100 MHz up 

to 2 GHz. Using a homodyne detection scheme [9], we 

measure the resonance frequency of the domain walls, 

which corresponds to the potential well curvature. By 

applying external fi elds, we can tune the we ll curvature 

and thus the resonance frequency over a wide range from 

250 to 500 MHz. Tn additi on to using a fi eld, we find that 

we can also tune the resonance frequency by varying the 

power, which reveals the nonlinearity of the domain wall 

oscillator. Using a one-dimensional anharmonic oscillator 

model, the power dependence of the resonance frequency 

is explained, and from these data we are finally able to 

quantitatively determine the absolute shape of the potential 

well around a pinning site. 

For the experiments we use 25 nm thick and 200 nm 

wide Permalloy ring structures with 2 }1-m outer diameter 

and 10-30 nm wide constrictions [9]. On top of the ring 

structure, nonmagnetic Au contacts are patterned, and 

a scanning micrograph image of the device is shown in 

Fig. lea). 

Domain walls in such structures are head-to-head 180 0 

walls with a vortex or a transverse spin structure [17,20], 

and by app lying an in-plane magnetic fi eld they can easil y 

be generated and positioned at any desired position in the 

ring [6]. 

The domain wall is positioned along a direction of 80 0
, 

between contacts 2 and 3 in Fig. lea). From the geometry 

we expect a vortex wall [Fig. l(b)] [17], as has been 

confirmed by micromagneti c simulations with the 

OOMMF code [21 ] and the LLG micromagnetic simulator 

software [22] (parameters: K = 0, Ms = 800 X 103 Aim, 

A = 13 X 10- 12 Jim, 5 nm cell size) . The domain wall 

type has also been veri !led by magnetores islal1ce measure-

ments using a current of 5 }1-A injected between contacts 2 

and 3, as described in [3]. 

The resonance frequency is determined using the homo­

dyne detection scheme detailed in [9]: To measure the dc 

component generated by the rectifying action of the do­

main wall, we use a lock-in detection. The microwave 

generator is modulated with a 3 kHz square wave, to which 

the lock-in amplifi er is synchronized. The microwaves are 

injected into contact 2 of the sample using a bias tee. The 

dc voltage signal is measured between the dc port of the 

bias tee and contact 3. All measurements are carried out at 

4 K in a flow cryostat with high frequency contacts. 

Far from a notch , the finite propagation fi eld of th e 

domain wall is caused by an intrinsic pinning site, due to 

the edge roughness and other irregularities, such as grain 

boundaries. For an intrinsic pinning site, we can expect a 

symmetric potential, as shown in Fig. 2(a), with the poten­

tial eventually leveling off, far away from the pinning site. 

As discussed below, we are interested in such a symmetric 

pinning potential for a vortex wall, which would not be 

found in the case for the pinning at a notch which is 

intrinsically asymmetric for a vortex wall pinned on one 

side of the notch [3,9,18]. For this reason, we have chosen a 

strong intrinsic pinning site for our experiments, which 

provides the necessary symmetric pinning potential. 

The pinning potential is described by global parameters, 

such as its maximum depth as measured from the depin­

ni ng fi eld [4,5] and its absolute width as determined in 

Ref. [6]. To completely characterize the potential land­

scape, though, we need to determine the local structure 

of the potential. In particular, oscillation phenomena are a 

sensitive probe for this, since they depend on the local 

shape of the potential landscape, such as the curvature, 

which determines the resonance frequency. 

To experimentally ascertain the resonance frequency, 

the homodyne detection method presented in Ref. [9] is 

used and allows for probing domain wall resonances for 

variable extern al magneti c fi elds and microwave power 
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FIG. 2 (color online). (a) Schematic potential of a pinned 

domain wall (red solid line); 0 marks the center of the pinning 

potenti al. If an external magnelic field B is applied, the potential 

is distorted (dotted blue line) due to the Zeeman energy con­

tribution. This distortion could then be used to determine the 

undi storted potential (red solid line). (b) Measured resonance 

frequency of the vortex wall for differenl appli ed ex ternal lields. 

The curve exhibits a largely symmetric behavior, indicating a 

symmetri c potenti al. For large fields, Ihe resonance frequency 

decreases with increasing fi elds. 



levels. Furthermore, the homodyne detection scheme al­

lows for a very precise determination of the resonance 

frequency compared to the depinning field method, as 

~hown in Fig. 2(b) of Ref. [9]. 

By changing the injected microwave power level, we are 

able to change the driving force of the domain wall oscil­

lator and therefore the amplitude of the oscillation. If the 

potential was perfectly harmonic, we would expect the 

resonance frequency to be independent of the power level 

applied. Frequency variations therefore provide us with a 

very sensitive method to directly measure the shape and 

any anharmonic part of the potential. 

The curvature of the pinning potential can be controlled 

by an external magnetic field. Depending on the shape of 

the potential, the frequency shows a characteristic depen­

dence on the magnetic field. For the symmetric potential 

shown in Fig. 2(a), the more the field is increased, the 

shallower the potential becomes. As the residual depth 

reaches a few times kBT, we expect the domain wall to 

be thermally excited and to be pulled over the edge of the 

potential well, leading to a depinning. For a domain wall 

we would therefore expect the frequency to decrease for 

large fields, until the domain wall is depinned, at which 

point the dc signal disappears. The application of an ex­

ternal magnetic field also allows us to study the symmetry 

of the pinning potential, as for a symmetric potential the 

dependence on the field polarity will be symmetric as well. 

Figure 2(b) shows the peak frequency of the rectified 

signal as a function of the applied external field. As we 

would expect, the frequency decreases with increasing 

applied external field. For field amplitudes larger than 

about 8 mT, the domain wall is depinned and no dc signal 

is measured, indicating that the dc signal indeed stems 

from the rectifying action of the domain wall. We see 

that, by applying a field, the domain wall oscillator can 

be tuned over a wide range from 250 to 550 MHz, which 

bodes well for using domain walls as large-range tunable 

oscillators. 

Next we tum to the determination of the shape of the 

potential well, which can be determined quantitatively 

from the power dependence of the resonance frequency: 

For the potential shown as an example in Fig. 3(a), we 

obtain the period T of the oscillation, with U the potential, 

m the quasiparticle mass, and x the space coordinate, as a 

function of the energy E stored in the system, the deriva­

tion follows the well-known textbook [23] Sec. 12: 

T(E) = £m (E dX2 dU + £m (0 dx] dU . 

Jo dU .JE - U J E dU .JE - U 

(1) 

Integration over the energy E and rearranging the terms 

gives us the integral equation (2). We can now directly 

calculate the difference between two positions x].2 shown 

in Fig. 3(a) for any given potential by the integral given in 

Eq. (2): 
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FIG. 3 (color online). (a) Schematic view of a pinning poten­
tial. For any given potential the characteristic frequencies can be 
computed using Eq. (1). The converse is not true; for a given U, 

only xz(U) - Xl (U) can be obtained, which means that a sym­
metric potential is necessary to detennine the local potential 
curvature from the power dependence of the resonance fre­
quency. (b) Period of the domain wall oscillator for different 
energies. The large blue dots are the measured values (error bars 
smaller than the symbols) and the small blue dots the third-order 
interpolation used for the numerical integration. The inset shows 
the measured resonance frequencies (inverse of the period) as a 
function of the injected power level. 

I!cU T(E) 
X2(U) - Xl(U) = ~ dE J[!="E' 

1Tv2m 0 U - E 
(2) 

If we now assume a symmetric potential, the equation 

simplifies to Eq. (3): 

x(U) = 1 (U dE T(E) 
21TJ2iji Jo .JU - E' 

(3) 

From this equation we can directly determine the shape of 

any symmetric potential by numerical integration if the 

resonance frequency as a function of the energy is known. 

Figure 3(b) shows the oscillation period (1/ fresonance) as 
a function of the microwave power, i.e., the energy in the 

system. There is a clear dependence of the resonance 

frequency on the power, showing that the pinned domain 

wall exhibits a nonlinear behavior. We note that the quasi­

particle model that we use works for the excitation levels 

that we employ, but for very high excitations the distortions 

of the domain wall spin structure are expected to become 

so large that the simple description will not suffice 

anymore. 

Since the energy of an oscillator is proportional to the 

square of the driving force, the power yields the energy E 

in the system. The driving force is due to spin torque, 

which is proportional to the current; therefore, the energy 

is proportional to the applied power. The energy depen­

dence is shown in Fig. 3(b) (large blue disks). To determine 

x(U) through Eq. (3), a third-order polynomial interpola­

tion has been fitted to the data using the MATHEMATICA 

software packages (small blue dots). 

Integrating Eq. (3) over the interpolated data shown in 

Fig. 3(b), we obtain the shape of the potential of the 

domain wall oscillator as shown in Fig. 4. The blue dots 

are calculated from the measured oscillator periods, and 

the red line indicates the parabolic part of the potential 

well. From the sketch of the potential in Fig. 2(a), one 
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FIG. 4 (color online). Plot of the experimentally determined 
domain wall potentia!. The blue dots (error bars are smaller than 
the symbols) are calculated from the measured oscillation peri­

ods, and the solid red line indicates the harmonic (parabolic) part 
of the potential weI!. The inset shows the interpolated anhar­
monic part of the potential, which is the difference between the 
measured potential and the harmonic part. As expected, the 
domain wall potential flattens far away from the origin, indicat­

ing the anharmonic contribution to the potentia!. 

expects that the potential flattens off far away from the 

minimum at the origin. And as expected, we find experi­

mentally that the measured potential (blue dots) flattens far 

away from the origin, i.e., is lower than the harmonic po­

tential (red solid line). By fitting an equation of the form 

x2 + ax4 to the potential, we obtain a fourth-order correc­

tion of a = 8.6 X 10- 19
. This anharmonic contribution to 

the potential has been visualized in the inset of Fig. 4. 

To absolutely calibrate the potential shown in Fig. 4, we 

use the methods described in Refs. [5,6] to determine the 

absolute depth and width of the potential. The total depth is 

obtained from the depinning field, 8 mT for a vortex wall 

correspond to about O. 1 X 103 J / m3
. The total width of the 

potential well has been determined to be about 1400 nm 

according to the method explained in [6]. Using these 

values, the quantitative shape of the potential shown in 

Fig. 4 is ascertained, which is a complete characterization 

of the pinning potential. 

In conclusion, we have investigated the pinning poten­

tial of a vortex-type domain wall using a homodyne detec­

tion scheme. The resonance frequency of the pinned 

domain wall could be tuned over a wide range by applying 

an external magnetic field, and the symmetry of the fre­

quency shift with respect to the field shows that the poten­

tial is largely symmetric. 

The nonlinearity of the system is reflccted in the power 

dependence of the resonance frequency. Starting from 

several resonance spectra for different excitation ampli­

tudes, the potential could be determined directly from the 

power dependence of the resonance frequency. 

Applying an external magnetic field, the potential is 

modified by an additional Zeeman-like magneto static en­

ergy term. As the value of this Zeeman shift is known, we 

can completely characterize the undistorted potential for 

zero field from the power dependenee under an external 

field. So as a next step this method opens up a way to 

completely characterize even asymmetric potentials. Since 

a complete characterization of any potential well is thus 

possible, the information can be used to completely tailor 

pinning potentials to a desired shape. 
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