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To improve the diagnosis capacity of rotor vibration fault in stochastic process, an e�ective fault diagnosis method (named Process
Power Spectrum Entropy (PPSE) and Support Vector Machine (SVM) (PPSE-SVM, for short) method) was proposed. �e fault
diagnosis model of PPSE-SVM was established by fusing PPSE method and SVM theory. Based on the simulation experiment
of rotor vibration fault, process data for four typical vibration faults (rotor imbalance, sha misalignment, rotor-stator rubbing,
and pedestal looseness) were collected under multipoint (multiple channels) and multispeed. By using PPSE method, the PPSE
values of these data were extracted as fault feature vectors to establish the SVMmodel of rotor vibration fault diagnosis. From rotor
vibration fault diagnosis, the results demonstrate that the proposed method possesses high precision, good learning ability, good
generalization ability, and strong fault-tolerant ability (robustness) in four aspects of distinguishing fault types, fault severity, fault
location, and noise immunity of rotor stochastic vibration. �is paper presents a novel method (PPSE-SVM) for rotor vibration
fault diagnosis and real-time vibration monitoring. �e presented e�ort is promising to improve the fault diagnosis precision of
rotating machinery like gas turbine.

1. Introduction

Vibration is a momentous fault source of rotating machinery
like an aeroengine and seriously impacts on the security
and reliability of machine system operation [1]. With the
development of the high performance and high reliability of
rotating machinery, vibration fault needs to be predicted and
inhibited early [1–3]. �erefore, how to predict and control
rotor vibration faults is one of hot issues in preventing the
failures of mechanical system, which leads to the advance of
feasible and e�ective fault diagnosismethods [3–8]. However,
most of present vibration analysis techniques need a mass
of vibration samples to establish a fault diagnosis model to
diagnose the vibration faults from a qualitative perspective.
In fact, these fault analysis methods possess some blind-
ness in fault diagnosis, which seriously in�uences diagnosis
accuracy, due to being short of describing diagnosis results
from a process and quantitative perspective. Meanwhile, it
is always di�cult to gain large number of vibration fault

data. In order to improve the validity of fault diagnosis,
the process and quantitative factors should be considered
to ascertain fault types, failure severity, fault location, and
even development tendency.�edevelopment of information
entropy theory is promising to quantitatively analyze rotor
vibration conditions and describe the uncertainty degree of
vibration signal [6, 9, 10]. Information entropy technique as
a process fault diagnosis method has been widely researched
and applied to machinery fault diagnosis [8, 10–12]. Specially,
for quantitative diagnosis of rotor vibration faults, process
information entropy method also called as Process Power
Spectrum Entropy (PPSE) method was proposed and proved
to be e�ective [11]. Although these techniques are feasible in
diagnosing some simple faults, due to the complexity of vibra-
tion signals for large rotating machinery, information fusion
technology is required to synthetically deal with multisensor
information in order to ameliorate fault analysis precision
[3, 4, 13, 14]. Support Vector Machine (SVM) is a new
intelligent pattern recognitionmethod, which uses structural
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risk minimization instead of empirical risk minimization to
solve small-sample, nonlinear, high-dimensional problems,
and so on. SVMhas been proved to embody various strengths
of complete theory, good adaptability, global optimization,
short training time, and good generalization ability in fault
diagnosis [3, 8, 14–18].

�e purpose of this present study attempts to propose
an e�ective approach which is Process Power Spectrum
Entropy-SVM (PPSE-SVM) method for rotor vibration fault
diagnosis based on PPSE method and SVM theory. �is
method is promising to resolve the randomization of vibra-
tion fault and the di�culty of extracting vibration fault
samples. Based on rotor vibration simulation workbench,
four typical faults are simulated and their vibration data
are gained. �e PPSE values (i.e., information features) of
these data are calculated based on PPSE method to construct
eigenvectors as fault diagnosis samples. SVM fault diagnosis
model was established based on the fault diagnosis samples.
�e feasibility and validity of PPSE-SVMmethod are veri�ed
by diagnosing rotor vibration fault types, failure severity, fault
point, and noise immunity.

2. Process Power Spectrum Entropy Method

Information entropy was �rst propounded by Shannon to
evaluate information capacity [3, 6–12]. Assuming thatM is a
Lebesgue space with an algebra � generated by a measurable
set � and a measure � (�(M) = 1) and the space M

may be decomposed as a limited partitioning A = (� �)
which is an incompatible set satisfying M = ⋃��=1 � � and� �⋂�� = 0, ∀	 ̸= �, based on information entropy theory, the
information entropy E(A) of A is denoted as [3]

� (A) = − �∑
�=1
� (� �) log� (� �) , (1)

where �(� �) is the measurement of sample � �, 	 = 1, 2, . . . , �.
As shown in (1), information entropy � shows actually

the chaotic degree of uncertain factors in a system. More
disorder and randomness of the system always lead to that the
corresponding information entropy values become greater,
and vice versa [7].

�e Power Spectrum Entropy (PSE) values of rotor vibra-
tion signal can be extracted from the features of vibration
signals in frequency domain from an energy perspective
when �(�) is the discrete Fourier transform of a single-
channel signal {��} as follows:

� (�) = 12��
�−1∑
�=1
���−���. (2)

�us, the power spectrum of�(�) is de�ned by

� (�) = 12��|� (�)|2 (3)

due to the energy conserve law in the signal transformation
process from the time domain to the frequency domain [11];
that is,

∑�2 (�) Δ� = ∑ |� (�)|2Δ�. (4)

Equation (4) reveals that the total energy of signal equals
the sum of the subenergy of each frequency component.
�erefore, the power entropy � = {�1, �2, . . . , ��} of every
natural frequency is regarded as one original signal partition;
the corresponding information entropy (also called as PPSE)
can be de�ned by

�� = − �∑
�=1
�� log ��, (5)

where the subscript � stands for the frequency domain; �� is
the ratio of the 	th power spectrum to the whole spectrum,
which is denoted by

�� = ��∑��=1 �� . (6)

Equation (5) is called the Power Spectrum Entropy (PSE) of
signal �. When PSE is applied to fault diagnosis, the method
is called PSE method. PSE explains the spectrum structure
of single-channel vibration signal. �e more uniformity the
vibration energy distributes in the whole frequency compo-
sition, the more complex the signal is and the greater the
uncertainty degree is. When the process of rotor speed-up
(or -down) is constituted from multiple rotation speeds, the
PSE values of di�erent rotation speeds describe the vibration
condition of whole speed-up (or -down) process. Hence, PSE
method is called also Process PSE (PPSE) method.

Due to the lack of quantitative indexes for informa-
tion entropy, information entropy values cannot be directly
applied to diagnose rotor fault. �e PPSE presenting the
conditions of rotor vibration is promising to be used to
distinguish rotor faults. However, the di�erent moments
and measuring points of vibration waveform always result
in that PPSE values have a certain distribution range for
each fault, and there is invariably some overlap among
the PPSE distribution ranges of di�erent faults [7–9]. For
example, the PPSE values of four typical faults from multiple
simulation experiments are listed and shown in Table 1.�eir
distribution ranges have large overlap regions. When the
PPSE value of an unknown fault is 5.0, it is di�cult to judge to
which class the unknown fault belongs. �erefore, a perfect
and e�ective identi�cation method needs to be proposed
to address this issue. SVM method is an intelligent patter
recognition method and is promising to address this overlap
problem of the PPSE values of di�erent fault modes.

3. SVM Method

3.1. Fundamental 
eory. Support Vector Machine (SVM)
[15–17] is a newmachine learningmethodwhich is promising
to address the realistic issues of small sample, nonlinear, and
high-dimensional pattern recognition in fault diagnosis and
has the advantages of complete theory, good adaptability,
global optimization, short training time, and good general-
ization ability. SVM adopts small support vectors in training
samples standing for the whole vector set to establish a SVM
classi�er for fault diagnosis. Assuming that the fault training
sample set is {(��, ��), 	 = 1, 2, . . . , �}, where � ∈  � and
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Table 1: �e PPSE distribution range of rotor vibration faults.

Fault type PSE distribution range

Rotor imbalance 3.659∼5.260
Sha misalignment 3.945∼5.488
Rotor rubbing 4.357∼5.618
Pedestal looseness 3.578∼5.526
� ∈ | − 1, +1|, and "(�) = (� ⋅ �) + $ is the general form
of linear discriminated function in an N-dimensional space,
the optimal hyper plane (� ⋅ �) + $ = 0 is able to correctly
classify the data in the sample set. �e distance between
support vector and hyperplane is 1/‖�‖; thus, the problem of
searching for hyper plane may be translated into the question
of solving quadratic programming by

min
12 (� ⋅ �) + &

�∑
�=1
'�

s.t. �� [(� ⋅ ��) + $] + '� ≥ 1,
(7)

where� and $ are undetermined coe�cients, '� is a relaxation
factor, and & is a penalty factor standing for the compromise
of the classi�cation interval and error rate.

According to the optimization theory, the objective func-
tion has a unique global optimal solution because objective
function and constraint conditions are convex functions. For
linear programming problem, with Lagrange algorithm and��[(4 ⋅ ��) + $] = 1, the decision function of optimal
hyperplane is

� (�) = sgn [� ⋅ � + $∗] = sgn(∑
�
6����� ⋅ � + $∗) . (8)

For nonlinear programming problem, a kernel function
needs to be introduced to determine the optimal hyperplane
of feature vectors. �e corresponding decision function is

� (�) = sgn(∑
�
6∗� ��8 (��, �) + $∗) . (9)

�e algorithm thought of optimal hyperplane in SVM is
that the input vector x is mapped into a high-dimensional
feature space Z by preselected nonlinear mapping to con-
struct optimal classi�cation hyperplane in high-dimensional
feature space Z. �e output results of SVM classi�cation
function are a linear combination of intermediate nodes, each
corresponding to one support vector, as shown in Figure 1.

In Figure 1, kernel functions are promising to avoid
complex calculation in high-dimensional feature space, gen-
erally including linear kernel function, polynomials kernel
function, RBF kernel function, and Sigmoid kernel function
[3, 16–19]. �is present study selects RBF kernel function
denoted by

8 (��, �) = exp[−::::� − ��::::2;2 ] , (10)

where ; is the kernel width.
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Figure 1: Support Vector Machine (SVM) schematic diagram.

3.2. SVM Multiclass Classi�cation Method. Rotor vibration
fault diagnosis is a multiclass signal process problem in
practice and requires establishing a multiclass SVM classi�er.
�e construction methods of multiclass classi�er contain
one-against-all (1-a-a) method, one-to-one (1-a-1) method,
Directed a-Cyclic Graph SVM (DAGSVM) method, global
optimization classi�cation method, and so forth [13, 14, 18].
In this paper, the 1-a-a method was used to design SVM
multiclassi�er. A set of training samples is assumed as

> = {(��, ��) , . . . , (�
, �
)} ∈ (� × A)
, (11)

where �� ∈ � ∈ R
� and �� ∈ A = (1, . . . ,B), 	 = 1, 2, . . . , C.

A discrimination function�(�) is searched inR� to make
each input value � have one corresponding output value �. In
fact, the essence of multiclass classi�cation is how to �nd out
one reasonable rule to divide all points inR� intoB portions.
�e SVM analytical procedure of multiclass classi�cation
problem based on the 1-a-1 method is drawn as follows.

(1) Take the �th class as the positive class and the restB− 1 classes as the negative class, according to SVM
theory; the decision functions of the �th class are
determined by

�� (�) = sgn ("� (�)) , (12)

where "�(�) = ∑
�=1 ��6��F(�, ��) + $�, � = 1, . . . ,B.

(2) Judge the input � belonging to the �th class, where �
is the maximum label in "1(�), . . . , "�(�).

In light of the above steps, a multiclass classi�er of
samples based on SVM can be built until the surplus training
samples are correctly classi�ed.

4. Rotor Simulation Experiment

4.1. Select Typical Faults. Rotor imbalance, sha misalign-
ment, rubbing, and pedestal looseness are four typical rotor
vibration faults. Rotor imbalance is oen induced by unrea-
sonable design, manufacturing and �xing error, attrition, and
so forth and involves rotormass imbalance, rotor initial bend,
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andunbalanced coupling primarily. Shamisalignment com-
prises the misalignment of coupling and the misalignment
of bearings. Contact rubbing constantly occurs due to the
reduction of dynamic-static gap, imbalance, misalignment,
and hot bend. Pedestal looseness is oen caused by bad �xing
and long-term vibration. In this paper, we select the four
typical faults to study the rotor vibration fault diagnosis based
on PPSE-SVMmethod.

4.2. Simulation Experiment

4.2.1. Test Rig. To obtain fault data, rotor test rig, as shown
in Figure 2, is used to simulate four typical faults. �e rotor
simulation system includes test bench and measurement
system. On the test bench, double rotor is opted and linked
by a �exible coupling. Each rotor has one disk with equally
distributed holes. Four acceleration sensors are installed on
the locations A, B, C, and D of pedestal as shown in Figure 2.
One speed sensor is applied to measure rotor speed. �e
double rotor is driven by a motor. On point D, there is
a bolt to simulate the rub-impact fault of rotor. �e mea-
surement system consists of signal acquisition instrument,
signal ampli�er, speed controller, velocity indicator, and
computer. Signal acquisition instrument is used to collect
the vibration signals of acceleration and speed sensors. In
addition, due to the poor quality of sensor and measuring
instrument as well as the in�uence of imbalance inher-
ently, resonance and other signals maybe existent in rotor
vibration signals hained from rotor experiment. However,
the condition hardly in�uence the analytical results in this
paper, because the propose method (PPSE-SVM method)
is to be more e�ective in pure fault diagnosis of rotor
vibration if the method holds acceptable diagnostic precision
in the coupling fault diagnosis of rotor vibration; meanwhile,
the case seems to more reasonably simulate the real rotor
system.

4.2.2. Experimental Process. To study the process charac-
teristics of rotor vibration, four kinds of typical faults
(rotor imbalance, shamisalignment, pedestal looseness, and
rubbing) are simulated from 0 rpm to 3000 rpm on rotor
vibration simulation test bench. Each fault is simulated by
multiple accelerated experiments and fault data is extracted
by the interval of 100 rpm sampling speed. In measurement
system, four sensors (four vibration signal channels) are �xed
on rotor test rig tomeasure four-point vibration accelerations
and these signals are gathered as original data of rotor
vibration fault diagnosis. In this process, mass block is added
in the holes of disk to simulate rotor imbalance fault; the sha
axes of two rotors (S1 and S2) are not located on the same
line to simulate the sha misalignment of rotor system. �e
looseness of one (B1) or two bolts (B1 and B2) on pedestal is
used to simulate the pedestal looseness fault of rotor system.
�e condition of bolt contacted rotor sha is regarded to
imitate rotor rubbing fault.

4.2.3. Original Data. By the simulation experiment, a mass
of original vibration signals for each typical fault is gathered

Figure 2: Rotor vibration simulation test bench and its measure-
ment system.

when rotor speed is from 0 to 3000 rpm with 100 rpm
sampling interval. One group of vibration signals has 30
groups of vibration waveform under one measuring point
and di�erent speeds. �erefore, in one process of speed-up
or speed-down experiment, 120 groups of vibration signal
waveforms for each failure modes may be collected, which
re�ect the process characteristics of rotor vibration faults. For
point B, three-dimensional (3-D) frequency spectrographs of
normal state and four faults are shown in Figures 3, 4, 5, 6,
and 7.

4.3. Data Analysis. From Figures 3∼7, the main feature of
rotor fault distributes in the rotate speed range (1000 rpm,
3000 rpm) with 100 rpm sampling interval. We select the
speed band to study the proposed method (PPSE-SVM
method). One group of vibration signals has 21 groups of
vibration waveform under one measuring point and di�erent
speeds. �erefore, in one process of speed-up or speed-
down experiment, 84 groups of vibration signal waveforms
for each failure modes may be collected, which re�ect the
process characteristics of rotor vibration faults. �e speed-
up (or -down) process of rotor is constituted of a number
of states. Vibration shapes are di�erent under disparate
rotational speeds. In fact, the vibration waveforms record
the full information of rotor vibration states under di�erent
speeds and time. �e vibration fault feature possesses some
dispersiveness and randomness at each point; however, the
vibration fault feature in rotor vibration process is regular.
Information entropy matrix integrates information entropy
values under multispeed and multichannel, which re�ects
the process regularity of vibration signals. �erefore, the
information entropy matrix may be employed to describe
the process regularity of rotor vibration signal. �e original
data which re�ects the process characteristics of each fault
can be gained on rotor vibration simulation experiment.
According to PPSE method, the PPSE values of vibration
waveform signals may be calculated. For one vibration fault,
PPSE values, which fully describe the process features of
this vibration fault under multichannel and multispeed, are
promising to be obtained for constructing one PPSE matrix
which is regarded as the fault diagnosis samples of SVM
model.



Shock and Vibration 5

100
50

0

1 2 3 4 5 6 7 8
Frequency multiplication

3000
2500

2000
1500

1000
500

0

Rot
at

e 
sp

ee
d (r

pm
)

A
m

p
li

tu
d

e
va

lu
e 

(�
m

)

Figure 3: 3D frequency spectrograph of rotor normal state.
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Figure 4: 3D frequency spectrograph of rotor imbalance.

5. Example Analysis

5.1. Establish PPSE-SVMModel. �ebasic idea of rotor vibra-
tion fault diagnosis based on PPSE-SVM method is drawn
as follows: (1) gather the rotor vibration data of four typical
faults based on rotor vibration fault simulation experiment;
(2) extract the vibration data characteristics (PPSE values) of
four faults based on PPSE method as the training and testing
samples of SVM fault diagnosis model; (3) establish SVM
fault diagnosismodel by the training samples and accomplish
the rotor vibration fault diagnosis by distinguishing fault cat-
egory, discriminating failure severity, judging fault location,
and validating the robustness of PPSE-SVM method. �e
above process is named fusion fault diagnosis based on PPSE-
SVM method. �e detailed analytical procedure is shown in
Figure 8.

5.2. PPSE Feature Extraction and Parameter Selection. �e
PPSE values of vibration fault, which re�ect the process of
speed-up or speed-down, are gained based on PPSE method
andMatlab simulation soware. From four measuring points
in the rotor simulation experiments, four groups of PPSEs
are integrated to present the variation of rotor vibration
condition in speed-up process. Each group of PPSE values of
each channel is made up of twenty-one information entropy
values which re�ect the process variation of vibration signal
at the corresponding measuring point during speed-up. All
PPSE values of each vibration fault may constitute one PPSE
matrix (or PSE matrix) which is indicated by using PPSE
values, rotate speed, and measuring point (channel). �e
PPSE matrixes of four vibration faults are shown in Figures
9, 10, 11, and 12.

Obviously the PPSE values of each measuring point
consist of sequential 21 entropy values. Hence, the 21 PPSE
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Figure 5: 3D frequency spectrograph of sha misalignment.
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Figure 6: 3D frequency spectrograph of pedestal looseness.

40
20
0

1 2 3 4 5 6 7 8
Frequency multiplication

3000
2500

2000
1500

1000
500

0 R
ot

at
e 

sp
ee

d 
(r

pm
)

A
m

p
li

tu
d

e
va

lu
e 

(�
m

)

Figure 7: 3D frequency spectrograph of rubbing.

values were lined up as a feature vector [�1, �2, . . . , �21],
which was regarded as the fault diagnosis sample of SVM
model. In light of this way, 40 fault vectors fully re�ecting
rotor vibration process features were taken as fault samples
for each fault mode. �e total number of samples of rotor
vibration fault diagnosis is 160.

SVM fault diagnosis model is structured by Matlab
and Lib-SVM toolbox. �e kernel function of SVM is
Radial Basis Function (RBF) kernel function (8(��, �) =
exp[−‖� − ��‖2/;2]). �e optimal values of ; and & are 0.07
and 136, respectively, based on random search approach [3].
Experiences show that the classi�cation e�ect of RBF is
superior to others.

5.3. Rotor Vibration Fault Category Diagnosis. �e 10 fault
samples of each vibration faultmodewere selected as training
samples to train SVM model and then obtain the optimal
classi�cations function and establish SVM diagnosis model.
Selected training samples of each fault type are shown in
Table 2.
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Figure 8: Fault diagnosis procedure for rotor vibration based on PPSE-SVMmethod.

Table 2: Partial PPSE vectors of each fault mode.

Fault types Sample number PPSE vector [�1, �2, . . . , �21] Category number

Rotor imbalance

1
4.315 4.373 4.466 4.991 4.864 4.443 5.258 5.244 5.131 5.101 4.576

1
4.513 4.313 4.939 4.375 4.919 4.772 4.429 4.870 4.982 5.158

2
4.398 4.730 4.472 4.621 4.713 3.957 5.035 5.078 4.997 4.438 4.533

1
3.731 4.770 4.539 3.988 4.802 4.325 4.553 5.260 4.080 3.659

Sha misalignment

1
5.042 4.966 4.890 4.553 5.140 5.145 5.107 5.031 5.401 5.431 5.484

2
5.020 5.126 5.028 5.191 4.949 4.817 4.749 4.503 4.586 3.981

2
4.790 4.843 4.750 4.120 5.327 5.081 5.288 5.093 5.338 5.401 4.944

2
5.305 5.488 5.174 5.245 4.980 4.939 4.631 4.398 3.945 5.217

Rotor rubbing

1
5.292 4.867 4.993 5.185 5.344 5.081 5.267 5.463 5.227 5.469 5.199

3
5.119 5.384 4.840 5.205 5.618 4.785 5.165 5.042 5.368 5.152

2
4.910 5.163 5.138 4.357 5.230 5.453 5.396 5.022 5.360 5.202 5.456

3
5.523 5.570 5.399 4.720 3.790 5.061 5.217 5.053 5.346 5.137

Pedestal looseness

1
3.578 5.260 4.777 4.871 4.786 5.275 5.071 5.272 5.414 5.142 4.903

4
5.315 5.363 5.311 5.189 5.019 5.415 4.358 5.295 4.175 5.142

2
4.505 4.908 5.169 5.366 5.029 5.361 5.107 5.286 5.567 5.038 5.015

4
5.316 5.233 5.339 5.337 5.502 5.332 5.290 5.121 5.529 5.270

To validate the learning ability and generalization ability
of SVM model, the training samples of four faults were
input into the SVM diagnosis model. �e result shows that
these training samples are able to be completely correctly
classi�ed and the testing precision is 100%. And then based
on the trained SVM model, the remnant 30 samples of each
vibration fault mode are classi�ed, and the results are shown
in Table 3.

From Table 3, the mean diagnostic precision of four
testing samples is 96.67%, which demonstrates that the
trained SVM model has good learning ability and good

generalization ability for rotor vibration fault classi�cation
diagnosis.

5.4. Fault Degree Diagnosis. In order to verify the validity of
PPSE-SVMmethod in diagnosing rotor vibration fault sever-
ity, rotor pedestal looseness was selected as study object. Two
failure statuses of rotor pedestal looseness (resp., one pedestal
looseness (i.e., B1 looseness) and two pedestal looseness (i.e.,
B1 and B2 looseness)) were simulated to get fault data based
on rotor test rig.�e PPSE values of these data were extracted
and 40 groups of data of each failure status are selected



Shock and Vibration 7

Table 3: Diagnosis result of rotor vibration fault categories.

Fault types Testing sample number Correct identi�cation number Precision Mean precision

Rotor imbalance 30 29 96.67%

96.67%
Sha misalignment 30 29 96.67%

Pedestal looseness 30 28 93.33%

Rotor rubbing 30 30 100%
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Figure 9: PPSE matrix of rotor imbalance fault.
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Figure 10: PPSE matrix of sha misalignment fault.

as fault samples, respectively. Similarly, 10 groups of fault
vectors are regarded as training samples and the surplus 30
groups are looked at as testing samples.�rough training and
testing SVM diagnosis model by using the training samples,
the results show that the testing accuracy is also 100%,
which demonstrates that the trained SVMmodel holds good
learning ability in rotor vibration fault severity diagnosis.
�e remaining 30 groups of testing samples of di�erent
fault degree are diagnosed by the trained SVM model. �e
diagnosis result of SVMmodel is shown in Table 4.�e result
illustrates that 3 samples are only mistakenly decided and the
diagnosis precision is 0.95. �erefore, PPSE-SVM method is
able to availably judge rotor vibration fault degree.

5.5. Fault Point Diagnosis. Due to di�erent measuring points
corresponding to di�erent locations on rotor vibration simu-
lation test bench, themeasuring points of sensors are selected
as study object. A, B, C, and D are assumed to represent four
measuring points, respectively, as shown in Figure 2.�e data
of measuring points are extracted as location fault data. In
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Figure 11: PPSE matrix of rotor rubbing fault.
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Figure 12: PPSE matrix of pedestal looseness fault.

a similar way, the PPSE values of these data were calculated
based on PPSE-SVM method and 40 groups of fault data of
each measuring point were taken as samples vectors, where
10 fault data were taken as training samples and the rest of 30
fault data were looked at as test samples for each measuring
point. �rough rotor vibration fault point diagnosis, the
results show that the testing accuracy is 100% and the average
diagnosis precision is 93.33%, which is shown in Table 5. It
is indicated that the PPSE-SVM diagnosis method is feasible
and e�ective in rotor vibration fault point diagnosis.

5.6. Robustness Veri�cation. To validate the robustness of
PPSE-SVMmethod in rotor vibration fault diagnoses, includ-
ing judgments of fault category, severity, and location, the
original signals of the aforementioned test samples of three
fault types were overlapped by Gaussian white noise with
mean value 0 and variance 5. And then the PPSE values
of these original signals of vibration fault were gained as
new test samples based on PPSE method. Ultimately these
new test samples of three fault types were inputted in
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Table 4: Diagnosis results of fault severity.

Fault degree Test sample number Correct identi�cation number Precision Mean precision

One pedestal looseness 30 29 96.67%
95%

Two pedestal looseness 30 28 93.33%

Table 5: Diagnosis results of rotor vibration fault locations.

Fault points Test sample number Correct identi�cation number Precision Mean precision

A 30 28 93.33%

93.33%
B 30 29 96.67%

C 30 28 93.33%

D 30 27 90%

Table 6: Veri�cation results of the robustness of PPSE-SVMmethod in rotor vibration fault category, severity, and locations.

Fault type Test sample number Correct number Precision Reduction precision Mean precision

Category 120 115 95.83% 0.83%

94.33%Severity 60 56 93.33% 1.67%

Location 120 112 93.33% 0

the corresponding SVM fault diagnosis models trained in
Sections 5.3∼5.5. �e analysis results are shown in Table 6.

As shown in Table 6, aer overlapping Gaussian noise
on the original vibration signals of test samples, the diag-
nosis precisions of three fault types (category, severity, and
location) are 0.9583, 0.9333, and 0.9333, respectively, and
only reduce by 0.0083, 0.0167, and 0 relative to those before
superposition severally, so that the mean precision of rotor
vibration fault diagnosis comes to 0.9433. �e results reveal
that the proposed PPSE-SVMmethod has good fault-tolerant
capability and strong robustness in antinoise interference.

6. Conclusion

�eobjective of these e�orts is attempted to advance a process
fault diagnosis method—Process Power Spectrum Entropy
and Support Vector Machine (PPSE-SVM) method—by fus-
ing the advantages of information entropy method and SVM
theory for rotor vibration fault diagnosis from a process
perspective based on information fusion technique.�rough
rotor vibration fault diagnosis based on PPSE-SVMmethod,
some conclusions are drawn as follows.

(1) �e Process Power Spectrum Entropy (PPSE) values
can e�ectively re�ect the process variation of rotor
vibration signals.

(2) PPSE-SVM model can be established by small sam-
ples, PPSE feature vectors extracted from the fault
vibration data of rotor fault vibration simulation
experiments.

(3) �e PPSE-SVM model trained by PPSE feature vec-
tors is demonstrated to be an e�cient fault diagnosis
model, which possesses strong learning ability, gen-
eralization ability, and fault tolerance ability because
of high testing precision (100%), high diagnosis pre-
cision (resp., 0.9667, 0.95, and 0.9333), and strong

antinoise interference ability (0.9433 in precision)
in the rotor vibration fault diagnosis and analysis
on fault category, failure severity, fault points, and
robustness from a process perspective.

(4) �e presented PPSE-SVM method is also proved to
be e�ective and reasonable, and this study provides
a promising diagnosis technology for rotor vibration
fault.

(5) Some idealized factors were considered for rotor
vibration fault diagnosis based on the PPSE-SVM
method on rotor vibration simulation test bench in
this paper. For complex machinery, like an aero-
engine, the validity of the presented PPSE-SVM
method needs to be further veri�ed in vibration fault
diagnosis.
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