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ABSTRACT
Motivation: Methylation of cytosines in DNA plays an import-
ant role in the regulation of gene expression, and the analysis
of methylation patterns is fundamental for the understanding
of cell differentiation, aging processes, diseases and cancer
development. Such analysis has been limited, because tech-
nologies for detailed and efficient high-throughput studies have
not been available. We have developed a novel quantitative
methylation analysis algorithm and workflow based on direct
DNA sequencing of PCR products from bisulfite-treated DNA
with high-throughput sequencing machines. This technology is
a prerequisite for success of the Human Epigenome Project,
the first large genome-wide sequencing study for DNA methyl-
ation in many different tissues. Methylation in tissue samples
which are compositions of different cells is a quantitative
information represented by cytosine/thymine proportions after
bisulfite conversion of unmethylated cytosines to uracil and
PCR. Calculation of quantitative methylation information from
base proportions represented by different dye signals in four-
dye sequencing trace files needs a specific algorithm handling
imbalanced and overscaled signals, incomplete conversion,
quality problems and basecaller artifacts.
Results: The algorithm we developed has several key prop-
erties: it analyzes trace files from PCR products of bisulfite-
treated DNA sequenced directly on ABI machines; it yields
quantitative methylation measurements for individual cytosine
positions after alignment with genomic reference sequences,
signal normalization and estimation of effectiveness of bisul-
fite treatment; it works in a fully automated pipeline including
data quality monitoring; it is efficient and avoids the usual cost
of multiple sequencing runs on subclones to estimate DNA
methylation. The power of our new algorithm is demonstrated
with data from two test systems based on mixtures with known
base compositions and defined methylation. In addition, the
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applicability is proven by identifying CpGs that are differentially
methylated in real tissue samples.
Contact: joern.lewin@epigenomics.com

INTRODUCTION
DNA methylation is a chemical modification of the base
cytosine to 5′-methyl cytosine. In DNA of vertebrates it occurs
in the context of cytosines followed by guanine, so-called
CpGs. CpG methylation in human DNA is a tissue specific
layer of information that is involved in the regulation of gene
expression, genomic imprinting (Reik et al., 2001) and cell
differentiation (Ehrlich, 2003). Methylation profiles undergo
changes in tumorgenesis (Jones, 2002) and allow differenti-
ation of DNA from healthy versus malignant tissue samples
(Adorjan et al., 2002). Differential methylation patterns are
likely to have a large relevance for understanding disease and
diagnostic applications.

The main goal of the Human Epigenome Project (Human
Epigenome Consortium et al., 2003, http://www.epigenome.
org/) is to characterize the methylation signatures of different
tissue types genome wide. This approach requires methods
that easily detect methylation patterns by automated high-
throughput technologies.

Different methods for methylation measurement are
described in Dahl and Guldberg (2003), Siegmund and Laird
(2002). One major group of technologies is based on methyl-
ation sensitive enzymatic restriction of the DNA. The other
group of technologies is based on bisulfite conversion of
unmethylated cytosines (Olek et al., 1996). The Bisulfite treat-
ment of DNA leads to a chemical conversion of unmethylated
cytosine to uracil. Methylation of cytosines blocks this reac-
tion. In most cases, the PCR is used to amplify regions of
interest within the bisulfite converted DNA template whereby
positions converted into uracil appear as thymine in the
product. Typically, a tissue sample contains a mixture of dif-
ferent cells; therefore, a proper description of methylation
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at a certain CpG requires quantification of the proportion of
the methylated templates at the investigated CpG. This pro-
portion is referred to as the methylation rate of the CpG.
After the bisulfite conversion and the PCR, the methylation
rate at a CpG can be determined by assessing the propor-
tion of remaining cytosine relative to the thymine. This can
be done, e.g. by hybridization to oligomer probes on DNA
chips (Adorjan et al., 2002) or by DNA sequencing (Frommer
et al., 1992). Commonly used sequencing methods include
the sequencing of a representative number of subclones of
the PCR product or direct PCR sequencing by running inde-
pendent sequencing reactions for cytosine and thymine using
the same dye in different lanes of a sequencing gel (Paul
and Clark, 1996). These sequencing methods are expensive
and labor intensive. In the Human Epigenome Project, direct
PCR sequencing on standard sequencing machines is used to
achieve the required throughput in a cost effective way. This
technology produces four-dye electropherogram data. The
possibility to use such data for quantitative analyses of base
compositions within pooled DNA was recently demonstrated
for one single nucleotide polymorphism (SNP) (Qiu et al.,
2003). The same principle is used here for the measurement
of methylation in bisulfite-treated DNA product.

Quantitative analysis by direct sequencing of the PCR
products from bisulfite-treated DNA implicates several novel
challenges: poor signal quality compared to genomic sequen-
cing, overscaled cytosine signals and basecaller artifacts. In
combination with the overscaled signals incomplete bisulfite
conversion, which is a general problem of all bisulfite-based
methylation detection methods, influences signal proportions
in the trace significantly. It was therefore necessary to develop
a specific algorithm that allows the use of four-dye sequencing
trace files to gain quantitative methylation information. This
newly developed data analysis method allows the use of estab-
lished high-throughput sequencing technology for methyl-
ation studies. In this paper, we first present the algorithms
used for methylation rate estimations based on trace file data
originating from direct sequencing of the PCR products from
bisulfite-treated DNA. We then assess the two main steps of
our algorithm with real data from two experiments and show
that they improve the accuracy of the methylation estima-
tion. Finally, we provide a single example based on data from
the Human Epigenome Project pilot study to demonstrate the
scientific use of the algorithms with real tissue samples.

ALGORITHM
The algorithm we present uses four-dye electropherogram
data preprocessed by the base caller of the sequencing
machine manufacturer, e.g. Applied Biosystems ‘.abi’ files
or the well-described ‘.scf’ files (Dear and Staden, 1992).
The data processing includes the following steps: (i) entropy-
based clipping, (ii) signal detection, (iii) alignment, (iv) trace
correction, (v) alignment-based clipping, (vi) signal normal-
ization, (vii) compensation of incomplete conversion and

Fig. 1. Flow chart of all data processing steps of the methylation
estimation algorithm. Detailed description of the single steps is given
in the text. Between all data processing steps quality control (QC)
is performed. The analysis of a single trace file is aborted if the file
itself is corrupted or if the genomic reference sequence is missing or
if the length of good quality sequence, as determined by the clipping
procedure, is below a certain threshold (default is 50 bases) or if the
bisulfite conversion rates are below a minimum threshold (default
is 65%).

(viii) methylation estimation (Fig. 1). A scheme of the data
and the influence of the algorithmic steps (ii), (iii), (iv) and
(vi) is given in Figure 2. Here, we present the algorithms for
forward sequencing that aims at the estimation of the propor-
tion of cytosine to thymine at the positions of interest. Traces
that originate from reverse sequencing and show guanine and
adenine signals at corresponding positions can be analyzed
by the same algorithm building the reverse complement of
the trace files.

(i) Entropy-based clipping: We observed that base callers
often generate reads that contain long stretches of called bases
with up-scaled background signals after the end of an amp-
lificate. These artifacts are detected by using the normalized
Shannon entropy

H = −
∑

b∈{A,C,G,T }

(
Sb∑

B∈{A,C,G,T } SB

log4
Sb∑

B∈{A,C,G,T } SB

)

(1)
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Fig. 2. Schematic representation of a trace file electropherogram
obtained by bisulfite PCR sequencing (a) before and (b) after sig-
nal normalization. The upper sequences below the trace curves in
(a) represent the sequence called by the standard basecaller and in
(b) the peak mixture represented using IUPAC code (Y denotes C

and/or T ). The sequences at the bottom show the aligned reference
sequence whereby t are genomic cytosine positions that are not in
CpG context, and expected to be unmethylated and therefore com-
pletely convertible. Trace curves are shown for all the four bases. For
every base position in the reference sequence four base intensities
B int; B ∈ {A, C, G, T } are calculated as the area under the trace curve
segment that belongs to the base position (only Cint and T int shown in
a)). Normalized base intensities for cytosine (Cnorm

b ; b ∈ {t , T , C})
and thymine (T norm

b ) seen in (b) are used to estimate the bisulfite
conversion rate (base intensities at t positions) and the methylation
rate at each CpG (base intensities at C positions).

0 ≤ H ≤ 1 of the four trace curves Sb, b ∈ {A, C, G, T }
in a sliding window of 200 data points. Flanking sequence
stretches with an entropy larger than 0.8 are removed.

(ii) Signal detection: For each base position in the
trace file, we compute corresponding intensities B int; B ∈
{A, C, G, T } that estimate the base proportions in the molecu-
lar mixture. As an appropriate measure we have chosen the
areas under the trace corresponding to the respective base for
each position in the sequence. By default, the trace segment
between neighboring local minima is used for the signal area
estimation. If no local minima are present, then the boundar-
ies of the trace segment are estimated as the midpoint between
two neighboring inflection points.

(iii) Alignment: The base intensities estimated in the
previous step are then mapped to an underlying refer-
ence sequence, available as genomic sequence from database
sources and bisulfite converted in silico. The a priori availab-
ility of the genomic sequence is a prerequisite for our applic-
ation. To describe an expected bisulfite converted reference
sequence, the commonly used genomic alphabet (A,C,G,T ) is
extended by one letter, the lower case t , to distinguish a thym-
ine derived from uracil by bisulfite conversion from a thymine
that was present already in the genomic sequence. Cytosines
in a CpG context in the reference sequence correspond to pos-
itions where we want to quantify unknown methylation, and
are therefore still denoted by C. For the sake of clarity in
the notation, these positions should be distinguishable from
t , where the sequenced DNA is never methylated and there-
fore, expected to have a complete conversion by the bisulfite
treatment. We use the Smith–Waterman algorithm (Smith and

Waterman, 1981; Barton, 1993) for optimal local alignments
allowing for gaps to align the called sequence of the trace file
with the a priori known reference sequence. Alignment of t

and C in the reference with C or T in the trace are treated as
matches.

The bisulfite-treated DNA contains long stretches of T sig-
nal. In some cases, this is misinterpreted by base callers by
inserting too many T s into the called sequence. Accounting
for this special situation, we have introduced an additional
type of gap cost to guarantee proper mapping of CpGs. Assign-
ing costs for gaps between C and G in the reference sequence
forces the alignment of CpGs as one functional block to avoid
their mismapping. An example of this is given below: general
costs for all gaps (g) are −19 and higher than costs for mis-
matches (−9) (Barton, 1993). For gaps inserted between C and
G in the reference sequence special additional gap costs(sg)
of −20 raise the total costs to −39, a punishment outnumbered
only by two gaps (−40) which in most cases leads to CpGs
treated as one unit that cannot be split, just misaligned.

trace ATTTTTTTGA ATTTTTTTGA
reference ATTTTTC-GA ATTTTT-CGA

cost(g+sg)=-39 cost(g)=-19

(iv) Trace correction: Standard base callers expect one
homogeneous DNA population to be sequenced, there-
fore some of them occasionally interpret mixed C and T
base intensities at a single position of the reference sequence
as two adjacent bases, mostly if there is a small offset of one or
two data points between C and T signals. In contrast to stand-
ard sequencing, in our experiments we expect signal mixtures
from different DNA populations. It follows that the separa-
tion of overlaying intensities belonging to one position into
two bases by the base caller has to be corrected. We identify
the separated base intensities by searching adjacent T and C
positions in the called sequence from which one is aligned
with t or C and the other is introducing a gap into the ref-
erence sequence. These base pairs in the called sequence are
then fused into a single base.

(v) Alignment-based clipping: The quality of trace files
from PCR product sequencing, especially of amplificates from
bisulfite-treated template containing different molecule pop-
ulations, is lower than sequences from a homogeneous clone
template. Alignment quality as a natural measure to assess
sequencing quality is used to identify areas of poor qual-
ity. Flanking regions of the sequence are clipped such that
the remaining inner part has <10% alignment error to the
reference sequence.

(vi) Signal normalization: We found that cytosine trace
curves often are overscaled in direct bisulfite sequencing
traces1. Base proportion calculation based on trace curves
with different baseline intensities would lead to misleading

1We speculate that this overscaling is a result of the standard basecaller
software compensating for the low frequency of C signals.
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results. Therefore, we normalize the trace curves prior to
calculating the proportions of base intensities to determine
bisulphite conversion and methylation rate. The normalized
base intensities are denoted by Bnorm

b ; B ∈ {A, C, G, T };
b ∈ {C, t , T } that fulfill constraints (2) and (3) based on
average base intensities.

T norm
T ≡ T norm

C + Cnorm
C . (2)

T norm
T ≡ T norm

t + Cnorm
t . (3)

Normalization of Cint is performed by multiplication of a
global factor FC .

Cnorm
b = FCCint

b , b ∈ {C, t , A, G, T } (4)

Based on the data we use different strategies for normalization.
If there are at least three C positions with Cint

C > T int
C normal-

ization is based on data from these positions [Equation (5)
following from Equation (2)]. Otherwise normalization is
based on all t positions [Equation (6) following from Equa-
tion (3)]. In rare cases when all cytosines were unmethylated
and converted completely (Cint

C = 0) normalization of the
cytosine trace curve is impossible and unnecessary.

FC = T int
T − T int

C

Cint
C

. (5)

FC = T int
T − T int

t

Cint
t

. (6)

(vii) Compensation of incomplete conversion.
(viii) Methylation estimation: Cytosine base intensity at

CpG positions can arise from two sources: from a popula-
tion of methylated cytosines in the sample DNA and from an
incomplete conversion reaction. It follows that the bisulfite
conversion rate has to be first estimated to obtain a correct
estimation of the methylation rate in the sample DNA. For an
individual t the conversion rate R is estimated by

R = T norm
t

T norm
t + Cnorm

t

. (7)

LocalRloc and global conversion ratesRglob can be determined
by averaging over R of individual bases within defined ranges.
Then the methylation rateM , 0 ≤ M ≤ 1, at a certain CpG can
be estimated by using the following simple linear relationship

T norm
C = Rglob(1 − M)(T norm

C + Cnorm
C ). (8)

The equation describes the fact that T base intensity at a C
position T norm

C is expected to arise from the unmethylated
portion of the sample DNA that is bisulfite converted by rate
R. Furthermore, the sum of the base intensities T norm

C +Cnorm
C

is assumed to be proportional to the total of cytosines in the

sample DNA. It follows that the methylation rate then can
be estimated by incorporating a correction for the incomplete
bisulfite conversion

M = 1 − T norm
C

(Cnorm
C + T norm

C )Rglob
. (9)

Signal variance, artifacts or errors in the normalization might
lead to negative methylation estimation which is set to 0.

EXPERIMENTAL SETUP
We performed three series of experiments to assess the ana-
lytical performance of our algorithm. We have investigated
(i) the estimation of cytosine/thymine signal proportions, (ii)
the estimation of methylation rates and (iii) the detection of
differential methylation using real tissue samples.

Test system with known cytosine/thymine
proportions
To test how accurate we can measure base proportions in four
dye trace data and if our normalization algorithm improves
measurements, we created an artificial test system with known
cytosine/thymine proportions. A 669 bp long fragment in the
promoter region of the gene G6e was amplified by the PCR
after bisulfite treatment of the template DNA. The bisulfite
reaction was setup such that the conversion of cytosines were
not perfect. The PCR product was subcloned into pCR2.1-
Topo vector (invitogen). The 96 clones were sequenced. Out
of the 96 clones, 3 showing differences at the most positions
of genomic cytosine were chosen. The plasmid concentra-
tions of the three stocks were adjusted to the same level. To
gain different cytosine/thymine base compositions volumes
were mixed in all six permutations of the proportions 1:2:4.
These mixtures contain molecules with cytosine and thym-
ine at the original genomic cytosine positions with expected
cytosine/(cytosine + thymine) ratios from 0 to 1 in 1/7 steps.
Sense strands of the clone mixtures were sequenced five times
using the kit 1.1 on the ABI PRISM 310 (Fig. 3a). Trace files
were analyzed by using the ABI basecaller software 310POP4.
Our algorithm was then used to estimate base compositions
at each original genomic cytosine position. Estimated values
were binned by their expected cytosine/(cytosine + thymine)
ratios to assess their distributions and the mean absolute errors.

Test system with known methylation rates
To test our algorithm on data from DNA with defined methyl-
ation status, unmethylated human genomic DNA (Molecular
Staging) was divided into two equal volumes. The DNA
in one of the volumes was enzymatically methylated with
methylase SssI (NEB) following the manufacturer’s protocol.
Volumes of methylated and unmethylated DNA were mixed
in 20% steps from 0 to 100%. The PCR for 60 amplific-
ates was performed on a Tetrat MJ-research PTC-225. For
cycle sequencing, the forward PCR primer was used with
ABI kit 1.1 and run on the ABI 3730 DNA analyzer (Fig 3b).
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Fig. 3. Experimental setup of (a) a test system with known
cytosine/thymine proportions (b) a test system with known methyl-
ation rates. Steps that are potential sources for variances or biases
in the test systems like mixing steps, incomplete enzymatic methyl-
ation, PCR bias and variance, incomplete bisulfite conversion and
variance in the sequencing procedure are typeset in italics.

Trace files were called with ABI’s basecaller 3730POP7. Our
algorithm was then used to estimate the methylation rates at
each CpG position. Methylation rates were binned together
by their expected methylation rates and variances and mean
absolute errors were assessed.

Methylation in tissue samples
Methylation was estimated using trace files from direct PCR
of bisulfite-treated DNA from healthy tissue samples. The data
are a subset of trace files from the Human Epigenome Project
pilot study by (Human Epigenome Consortium et al., 2003).

RESULTS AND DISCUSSION
Test system with known cytosine/thymine
proportions
To assess the effect of our signal normalization step, we
used our algorithms on data from the test system with known
cytosine/(cytosine + thymine) ratios. Figure 4a and b show the
distribution of the estimated ratios against the expected ratios
in the test system without and with normalization, respect-
ively. The results demonstrate that the normalization step
decreases the mean absolute error (represented by the dashed
line on the figures) approximately to the half. Sequencing sev-
eral subclones from a PCR product is an alternative method to
measure the cytosine:thymine ratios in bisulfite-treated DNA.
The measurement error of this method depends mainly on the
number of subclones that is sequenced. We benchmarked our

0/7 2/7 4/7 6/7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 

  
 

 

    

 

 

 
 
 

 
 

  
  

 
  
 

 

  

 

 

expected

es
tim

at
ed

   
 

 

 

 
 

expected

es
tim

at
ed

     
  
 

expected

es
tim

at
ed

 

 
 

expected

es
tim

at
ed

expected

es
tim

at
ed

expected

es
tim

at
ed

expected

es
tim

at
ed

  
   
 
   

expected

es
tim

at
ed

expected

es
tim

at
ed

a) DNA mixtures

0/7 2/7 4/7 6/7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 
   
  

 
 
   

 
  
  
     

 

 
  
  
   
     

 

expected

es
tim

at
ed

expected

es
tim

at
ed

   
 
  
 
 

  

 

expected

es
tim

at
ed

expected

es
tim

at
ed

 

 

 

   

expected

es
tim

at
ed

 

expected

es
tim

at
ed

 

expected

es
tim

at
ed

 
 
   
 

 
  

expected

es
tim

at
ed

expected

es
tim

at
ed

b) DNA mixtures normalized

0/7 2/7 4/7 6/7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

expected

es
tim

at
ed

  

 

           

 

    

 

 

 

 

 

           

 

  

 

                

 

  

 

        

  

      

 

  

 

 

 

   

  

  

 

  

 

 

   

            

 

     

 

     

 

  

 

 

 

   

 

  

 

           

 

 

  

 

  

  

     

 

  

expected

es
tim

at
ed

   

expected

es
tim

at
ed

           

expected

es
tim

at
ed

  

   

 

 

 

 

   

  

  

 

     

 

 

  

  

   

 

   

 

       

 

    

 

  

 

     

 

  

 

  

 

 

 

 

 

 

  

 

 

  

   

expected

es
tim

at
ed

  

expected

es
tim

at
ed   

 

                

 

          

 

           

  

  

 

 

 

       

 

 

          

 

                

 

    

 

      

 

   

 

 

  

  

 

   

 

 

  

 

 

 

 

 

     

 

 

 

  

 

    

 

            

 

    

expected

es
tim

at
ed

expected

es
tim

at
ed

expected

es
tim

at
ed

c) 10 subclones

0/7 2/7 4/7 6/7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

expected

es
tim

at
ed

   
 
  
  
 
  
  
 
   

expected

es
tim

at
ed      

 
  
 
  
 

expected

es
tim

at
ed

 

 

   
  
 

 

 

 

expected

es
tim

at
ed

 
 

  

       
 

 

 

  

 
 
 

expected

es
tim

at
ed

 
  
  

 
 
  

expected

es
tim

at
ed

 
  
    
 
     
 
 

 

    
  
    
 
 

  
 
  
 
  
 
        
 
        
  
  
 
 

 

expected

es
tim

at
ed

expected

es
tim

at
ed

expected

es
tim

at
ed

d) 20 subclones

Fig. 4. (a) and (b) Quantitative measurements of C signal propor-
tions in data from single sequencing runs of six clone mixtures with
expected C/(C+T) ratios from 0 to 1 in 1/7 steps. The boxplots show
the distribution of the estimated values obtained by our algorithm
without normalization and with normalization, respectively. The
estimates are plotted against the expected ratios (1039 data points
total which means a measurement success rate of 89% given 6 mix-
tures, 5 repetitions and 39 positions). Dashed graphs show the means
of absolute errors. (c), (d) Simulated data for representations of
mixed DNA in 0 to 1 in 1/7 steps by 10 and 20 subclones based
on a binomial distribution.

direct sequencing method with the subcloning method. We
calculated the smallest theoretical measurement error inher-
ent to the subcloning method by simulating the subsampling
of 10 and 20 subclones based on binomial distributions with
a certain C:T ratio. Figure 4c and d and Table 1 show that
errors in our estimates are comparable with those that could be
obtained by sequencing 20 subclones of a PCR product. From
this we can conclude that direct sequencing of the bisulfite-
treated DNA is a viable alternative to the subclone sequencing
if only the mixture rates are the subject of interest.

Test system with known methylation rates
Second, we have evaluated the performance of our algorithm
by using the test system with known methylation rates.
Figure 5d shows the distribution of the estimated methyl-
ation rates against the expected methylation rates in the test
system using the complete algorithm. For the estimation
of methylation rates, normalization and the correction for
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Table 1. Comparison of mean SD and absolute errors of C/(C+T) signal
proportions as estimated in our test system with known cytosine/thymine
proportions and simulated representation by subclones

Mean SD Mean absolute error

Signal proportions 0.110 0.130
Normalized signal proportions 0.077 0.055
10 subclones 0.100 0.083
20 subclones 0.072 0.058
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Fig. 5. Estimation of methylation in the test system with known
methylation rates. The boxplots show the distribution of the estimated
methylation rates as a function of the expected methylation and the
mean absolute error (dashed line). Each box includes data from CpGs
of all 60 amplificates measured at the expected methylation rate.

bisulfite conversion rate play an important role. This is demon-
strated on Figure 5a–c and Table 2. If any of these steps
is omitted from the data analysis, then the mean absolute
error (dashed line) increases significantly. The normaliza-
tion has a major impact mainly on low methylation rates,
where the absence of C signals leads to an overscaling of
the C trace.

The methylation rates estimated in this experiment do not
show as accurate correlation with the expected rates as was
obtained in the previous C:T proportion experiments, where
a mixture of subclones was used as a test system. One pos-
sible explanation for this is that the real methylation rate in
the mixtures of methylated and unmethylated DNA deviates

Table 2. Test system with known methylation rates: mean absolute errors
of methylation estimations in 60 amplificates with and without signal
normalization and conversion rate correction

Method Mean absolute error

Raw data 0.27
Normalized 0.17
Corrected 0.19
Normalized and corrected 0.14

Table 3. Test system with known methylation rates: accuracy of sorting
paired methylation estimates at identical CpGs in 60 amplificates after
normalization and conversion rate correction

Expected rate 0.2 0.4 0.6 0.8 1

0 91 98 97 99 99
0.2 90 98 99 99
0.4 96 97 98
0.6 79 88
0.8 89

from the expected methylation rate. Systematic biases in the
real values of all 60 covered regions can arise from incom-
plete enzymatic methylation of the DNA or from amplificate
specific biases in the PCR itself.

Systematic biases in the test system would lead to devi-
ations from expected values and to a higher variance in the
complete data but still allow to detect relative differences in
the methylation rates at individual CpG positions. To evaluate
the capability of our method to detect differential methyla-
tion, we paired data from templates with different methylation
values for each CpG. Table 3 lists the accuracy of classi-
fication of higher versus lower methylated CpGs in the test
system. The accuracies for detecting differential methylation
in neighboring methylation rates with 20% steps are com-
pared with those that were obtained without normalization
and correction for incomplete bisulfite conversion (Table 4).
The performance clearly improves by using the normalization
and the conversion rate correction steps.

Despite the overlap of the distributions of the estimated
methylation values (cf. Fig. 5d), we can conclude that the
detection of differential methylation is highly accurate. This
is in accordance with our hypothesis of having amplificate
specific systematic biases in our reference test system.

We have evaluated threshold parameters for quality con-
trol. More stringent parameters do not improve the results
significantly but lead to lower measurement success rates. For
example, raising the threshold for bisulfite conversion from
65 to 80% reduces the mean absolute error by 0.2% and raises
the accuracy by 1.3% but reduces the number of accessible
positions by 16%.
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Table 4. Test system with known methylation rates: accuracy of sorting
paired methylation estimates at identical CpGs in 60 amplificates with 20%
difference with and without using the normalization and correction for
incomplete bisulfite conversion

Correct sorting (%)
Comparison Raw Norm/corr.

0/0.2 84 91
0.2/0.4 71 90
0.4/0.6 86 96
0.6/0.8 77 79
0.8/1 89 89
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Fig. 6. (a) Methylation profiles of the intragenic region of gene
DAXX obtained from DNA samples extracted from brain, breast,
liver, lung and muscle tissue samples. The gray shading repres-
ents the different methylation rates as indicated on the scale bar.
Samples from different individuals are arranged in columns, while
each row represents one CpG within the amplificate. (b) Physical dis-
tances and average methylation of CpGs within the tissues. Blocks
of differentially co-methylated CpGs are highlighted.

Methylation in tissue samples
Trace files produced in the The Human Epigenome Project by
Human Epigenome Consortium et al. (2003) are processed
by the algorithm presented here. We present a dataset to
demonstrate the capability of our method to detect differential
methylation in real tissue samples. Figure 6 shows the methyl-
ation profiles obtained in brain, breast, liver, lung and muscle

samples by bisulfite sequencing the intragenic region of the
gene DAXX. The plot shows clear differential methylation in
blocks of co-methylated CpGs that distinguishes breast from
muscle and both from all other tissues.

CONCLUSION
We have presented an algorithm to estimate methylation from
trace files generated by direct PCR sequencing of bisulfite-
treated DNA. The Results obtained by reference test systems
show that direct PCR sequencing is a viable alternative to
estimating methylation rates by sequencing subclones from
the PCR product. Furthermore, we have demonstrated that
our method can detect differences in methylation rates of
20% highly accurately. Applying our algorithms to bisulfite
sequencing data of DNA obtained from healthy tissue samples
illustrated that by the aid of the method, CpGs with differen-
tial methylation rates between different tissue types can be
identified.

The algorithm allows to run big DNA methylation studies
like the Human Epigenome Project based on direct sequencing
in high-throughput facilities. It will help to gain informa-
tion about differential methylation in many tissue types and
increase our understanding of the epigenetic layer in the
complex system of gene expression, cell differentiation and
tumorgenesis.
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