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The so called Dried Droplet Calibration Approach (DDCA) was applied for the first time 

to the determination of elemental concentration in polyethylene and polypropylene 

samples by means of inductively coupled plasma optical emission spectrometry (ICP-

OES) and mass spectrometry (ICP-MS). Based on this novel calibration strategy, small 

volumes (c.a., 1 �L) of a series of multielemental aqueous standard solutions were 

deposited on the sample solid surface. Afterwards, the droplets were dried and a 

significant fraction of the remaining solid residues (i.e., 80% of their surface area) was 

ablated. The integrated signals were plotted against the mass of added analyte ablated 

per laser shot. The analyte concentration in the sample was obtained by extrapolation 

of the obtained calibration lines. A study demonstrating the existence of matrix effects 

was carried out and it was noticed that carbon was not an appropriate internal 

standard because it did not compensate for changes in the absolute amount of ablated 

material as a function of the sample matrix. In contrast, elements such as Sc and Y 

mitigated this effect. External calibration using a polymeric support also proved to be 

inefficient from the point of view of accuracy. In contrast, the DDCA presented as an 

outstanding feature the compensation for matrix effects, because with this method 

both sample and added standard were simultaneously ablated and the generated 

aerosols reached the plasma together. The accuracy of the DDCA was demonstrated by 

means of the analysis of three polymer certified reference materials. It was verified 

that, in general terms, there were not significant differences between the elemental 

certified concentrations and those obtained by applying the DDCA. Furthermore, three 

polyethylene and three polypropylene samples were analyzed following both the 

DDCA and a reference method based on their acid digestion and further ICP analysis. 

Both methodologies provided similar results for Al, Ti, Si, Cr, Ca, Zn and Mg. For 
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elements either potentially volatile or present at low concentrations, such as As, Hg 

and Ti in some polymers, there were significant discrepancies between certified and 

measured values. 

 

1. Introduction  

 

Additives are usually incorporated to polymers in order to modify specific material 

properties such as flame and UV resistance, color or elasticity. Among these additives, 

metals and metalloids play a very important role and their content and distribution 

may influence the polymers behavior.1,2,3,4,5, 6 

Nevertheless, an important number of regulations must be complied because 

some elements can be harmful to consumers and/or the environment. Therefore, 

there is a growing interest in developing analytical methods to carry out elemental 

analysis of polymers. Secondary ion mass spectrometry (SIMS), auger electron 

spectroscopy (AES) and micro X-ray fluorescence spectroscopy (μ-XRF)7 are suitable 

techniques to analyze solid surfaces. However, SIMS and AES suffer from strong matrix 

effects and need ultrahigh vacuum conditions. Besides, these techniques have 

limitations in terms of attainable depth (<5 µm). Meanwhile, limits of detection 

achieved by μ-XRF are usually high.8 Glow discharge optical emission or mass 

spectrometry (GD-OES/MS) offer high depth resolution (10 nm). Besides, the 

atomization and ionization processes are separated in space and time thus giving rise 

to a mitigation of matrix effects and, hence, quantification without the absolute need 

for matrix-matched calibration standards is possible. However, this technique shows 
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restricted lateral resolution (on the order of mm) and requires certain conditions 

related with the vacuum level, the sample shape and its dimensions.9 

Nowadays, elemental analysis of polymers can be carried out using 

spectroscopic techniques such as inductively coupled plasma optical emission 

spectroscopy (ICP-OES) or mass spectrometry (ICP-MS). Unfortunately, in most of the 

cases lengthy dissolution protocols must be applied, that may cause sample 

contamination and losses of volatile components.10,11 

Laser ablation (LA) coupled to ICP-OES or ICP-MS allows the direct 

determination of additives in polymers with minimal or no sample preparation.1,2,10,12  

However, severe matrix and fractionation effects may be observed when working with 

nanosecond pulsed lasers. 1,13  Although femtosecond lasers are promising devices,14 

several methods have been proposed to mitigate these phenomena as, for instance, an 

external calibration using solid certified reference materials as standards.11,15,16,17 

Unfortunately, the sample ablation yield depends strongly on the type of polymer and, 

hence,  it is still difficult to find suitable solid standards.10,18,19 

 In order to compensate for changes in the sample ablated mass as a function 

of the matrix, 20 an element acting as internal standard (IS) can be selected.20,21[ 

Carbon has been suggested as a good candidate because of its known concentration in 

polymers and its uniform distribution within the samples. 4,10,22 Furthermore, it has 

been observed that there is a virtually linear correlation between the carbon ablated 

mass and the ICP signal whose slope is independent of the polymer type 4. However, 

the applicability of C as internal standard has been in dispute over the years because 

the laser beam causes polymer pyrolysis. Therefore, unlike the analytes, carbon is 
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transported to the plasma in both gaseous and particulate phases thus giving rise to a 

differentiated signal behaviour.11,22,23   

Kumtabtim et al.,24 applied external calibration for urine analysis. Sample 

droplets were deposited on solid substrates such as paper, glass slide and Teflon sheet. 

An infrared lamp was used to eliminate the solvent and the residue left was analyzed 

through LA-ICP-MS. Matrix matched synthetic standards enriched with the analytes of 

interest were prepared and also deposited on the supports. Later, Resano et al.
25,26 

performed the analysis of liquid biological samples according to the so called dried 

matrix spots (DMS).27 Samples such as blood (DBS, dried blood spots)28 or urine (DUS, 

dried urine spots) as well as standards were separately deposited on a filter paper, 

dried and subsequently analyzed through LA-ICP-MS. A similar calibration method was 

proposed for the analysis of  biological solid samples by LA-ICP-MS.29,30 Voss et al.
6 

applied a strategy based on the deposition of standards on porous nylon disks to the 

analysis of polymers. However, the discrepancies observed between measured and 

expected concentrations could be attributed to differences between the interaction of 

the laser beam with nylon and the polymer samples. 

A novel calibration method termed dried droplet calibration approach (DDCA) 

was suggested for the analysis of solid samples through LA-ICP-MS.31  Small volumes of 

aqueous standards were deposited at different locations on the sample surface. The 

dry solid residues obtained after droplet evaporation were ablated together with the 

solid sample. Therefore, the analyte contained in both the solid deposit and the 

sample contributed to the ICP signal finally obtained. The feasibility of this method for 

quantitative LA-ICP-MS analysis was demonstrated by analyzing a glass certified 

reference material and fused beads containing a fraction of refining catalysts .  
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The aim of the present work was thus to apply the new calibration method, for 

the first time, to the analysis of polymers by means of LA-ICP-OES and LA-ICP-MS. 

Besides, the DDCA was combined with internal standardization using C, Sc and Y as 

reference elements. The reliability of the method was verified in two different ways: (i) 

analyzing three polyethylene reference materials; and, (ii) comparing the results 

obtained using the DDCA against those provided by a classical method based on 

sample acid dissolution and further ICP analysis of the digests. Another goal of the 

present work was to demonstrate the capability of the DDCA as a straightforward 

method allowing the analysis of polymers having different composition and structure 

such as polyethylene and polypropylene. 

 

2. Experimental 

 

2.1. Chemicals and samples 

 

Standards were prepared from an ICP 1,000 mg L-1 multielemental (Merck IV, 

Merck KGaA, Darmstadt, Germany) and Ti, Si, Br, Sb and Hg 1,000 mg L-1 single 

element stock solutions (Merck). The corresponding solutions were prepared in 

ultrapure water (R < 18.2 MΩ cm) obtained from a Mili-Q system (El Paso, TX, USA). In 

order to visualize the solid deposits on the sample surface, 100 mg L-1 of methylene 

blue were added to the standards. The results suggested that the presence of this 

coloring agent did not have any influence on the ICP signal.  

An automatic pipette (Eppendorf, Hamburg, Germany) was used to deposit 

1.000 ± 0.025 µL of the standards on the polymer surface. The droplets were 
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subsequently evaporated until dryness by inserting the samples in an oven at 40 ⁰C for 

45 minutes. 

Three polyethylene certified reference materials (BCR 681, BCR 680K and BCR 

680) were analyzed to evaluate the precision and accuracy of the DDCA. Table 1 

summarizes the certified elemental concentrations. Besides, three polypropylene (#1, 

#2 and #3) and three polyethylene (#4, #5 and #6) samples were analyzed by applying 

the DDCA. A conventional acid digestion method was taken as reference. The sample 

treatment was carried out in a microwave oven (Start D, Milestone, Soriole, Italy). The 

samples were cut and ground and 0.25 g ±0.1 mg were inserted into a Teflon vessel 

containing 10 mL of nitric acid. The reactors were sealed and introduced into the oven 

at 200 ⁰C for 15 min. Afterward, a 30 min cooling step was applied. The volume of the 

obtained solutions was made up to 25 mL with ultrapure water in graduated flasks. 

After each sample digestion, the reactors were cleaned by applying 30 min microwave 

cycles with nitric acid. Finally, elemental concentration was determined through ICP-

OES using standards with nitric acid matched concentration.��

 

2.2. Instrumentation 

 

A Nd:YAG solid state laser ablation system LSX-213 G2+ (CETAC, Omaha, USA) 

operated at 213 nm under Q-switched mode was used throughout.  The LA chamber 

was equipped with an ablation cup to remove quickly the aerosol from the sample 

surface. Three gas streams were used; helium 1 carried the aerosol out of the ablation 

chamber whereas helium 2, together with an argon stream, delivered the particles 

leaving the ablation cell to the plasma through a 40 cm length transfer tube. 
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 The laser ablation system was coupled to either a 7700X Agilent ICP-MS 

spectrometer (Agilent, Santa Clara, USA), to determine trace elements, or a Perkin 

Elmer 4300DV system ICP-OES (Uberlingen, Germany) when polymers contained 

elements at high enough concentrations. Table 2 summarizes the operating conditions. 

The ICP-MS spectrometer was used in the collision cell mode with helium.  

A Hitachi S-3000N Scanning Electron Microscope (SEM) was used to 

characterize the shape and dimensions of the line scans and craters obtained on the 

different tested samples. 

 

3. Results and discussion 

 

3.1. Development of the proposed calibration methodology 

 

The DDCA involved the determination of the sample ablated mass per pulse. 

The polymer surface was first cleaned32 and 20 mm diameter, 2 mm thickness sample 

disks were weighed with a closed Mettler Toledo micro-balance (precision of ± 1 µg). 

After ablation with a known number of laser shots the sample disks were weighed 

again in order to determine the mass of sample ablated (MS) as the  difference 

between the initial and the final weight. The number of pulses required to achieve a 

measurable weight difference with a good precision depended on the sample 

analyzed. For example, in the case of polyethylene, 120,000 laser shots were required 

to ablate 3 mg of sample. This procedure provided RSDs values (n=5) lower than 5%.  

Besides, the total number of pulses, Np, was calculated according to: 
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equation: 
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Note that the sample could be weighed before and after the analysis to 

measure Ms. A series of droplets corresponding to aqueous multielemental standards 

were deposited on the sample surface and subsequently dried giving rise to round-

shaped residues with diameters close to 2 mm. The mass of analyte ablated from each 

solid residue, mA, was calculated by applying: 
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droplet deposited on the solid sample (i.e., 1 µL) and SA the percentage the solid 

residue surface area that was actually ablated. It was experimentally verified that from 
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The width of the line scan, measured by SEM was in good agreement with the 

laser beam diameter chosen, i.e., 150 µm for polyethylene samples. In contrast, in the 

case of polypropylene, the experimentally determined diameter of the line scan was 

higher (170 µm) than the nominal one. A possible explanation was based on the 

shielding effect caused by the confined plasma.2221 This phenomenon was promoted 

by the high number of pulses on a given sample area, i.e., 120 pulses. Besides, it is 

generally accepted that samples with weak UV absorption, as for example 

polypropylene, show higher penetration depths, resulting in bigger ablation craters.10 

Once mA was calculated, it was divided by Np thus giving rise to the independent 

variable in the calibration lines. 

  In the DDCA method both, the standard and the sample, were continuously 

and simultaneously ablated and the generated aerosols were mixed in the ablation cell 

and transfer tube. The calibration line was obtained by plotting the sum of intensities 

obtained for each solid residue (n=3) versus mA/Np (i.e., the mass of added analyte that 

was actually ablated from each solid residue per laser pulse). The analyte mass 

originally contained in the sample ablated per pulse (ms) was determined by 

extrapolation of the calibration line (Figure 1.a). An increase in the mA/Np value 

induced a grow in the integrated signal that could be adjusted to a linear model. The 

plot of the residuals revealed that they were distributed between positive and 

negative values (Figure 1.b) giving support to the selected model. Regarding the 

correlation coefficient, R2 was comprised between 0.9917 and 0.9999 depending on 

the analyte and the sample. The errors of the slope (sb) and the intercept (sa) for the 

example considered in Figure 1 were 1.5 x 109 and 1.6 x 106, respectively. These values 

represented a 5.0 and 16 % of the respective slope and intercept values. Finally, the 
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covariance, Sxy, was estimated and it was verified that positive values of this 

magnitude were always obtained. For instance, for Figure 1, Sxy took a value close to 

1.3 x 104, thus revealing a good positive correlation between the integrated intensity 

and the analyte ablated mass per laser pulse.33 

Once the mass of analyte and sample ablated per pulse were known, it was 

possible to determine the analyte concentration in the polymer (CA
S): 


	
� =

��

��
   (5)  

 It is worth mentioning that the analyte spatial distribution within the solid 

residues was not homogeneous. Figure 2.a plots the two dimensional distribution of 

the aluminum emission intensity for a solid residue deposited on a polyethylene. It was 

noticed that this analyte was preferentially located in the outermost area of the solid 

residue. A completely different elemental distribution was observed when the droplet 

was deposited on a different polyethylene (Figure 2.b). In the case of a polypropylene 

sample (Figure 2.c), aluminum was more homogeneously distributed. Therefore, the 

spatial distribution of the analytes in the solid residues depended on the particular 

substrate. Consequently, a significant surface (75-85%) of the solid residues had to be 

ablated. Note that, the elemental spatial distribution on a given deposit, was the same 

regardless of the analyte considered.  

 The use of ethanol as a solvent was also evaluated. Ethanol has a lower surface 

tension and viscosity than water and, hence, the droplet was more spread on the 

polymer surface. It was experimentally observed that, provided that the analytes were 

distributed in a large sample surface area, there was a higher number of signal spikes 

within the solid residues than when using water as solvent. Besides, the large residue 
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area increased the time required to fully ablate it. As a result, water was used as the 

solvent throughout the present study.  

 

 

 

3.2. Optimization of the laser operating conditions 

 

The optimization of the laser operating conditions was carried out in terms of 

ICP-OES sensitivity for two different polymers: polyethylene and polypropylene. As it 

has been discussed in previous studies,34 the laser energy influenced the sample 

ablated mass. It was confirmed that the sensitivity grew with the laser energy until this 

parameter reached a value of 2.25 mJ. Taking into account the laser beam diameter 

(200 μm), this corresponded to a fluence of 7.15 J cm-2. Above this level, the variations 

in signal were virtually negligible35 likely because the ablation products absorbed or 

scattered a fraction of the laser beam energy.36 Besides, the plasma shielding 

produced on the sample surface was also intensified.40 An additional explanation was 

based on changes in the ablation mechanism, i.e., from non-thermal to thermal, when 

the fluency reached high values.37 It is worth mentioning that, at fluencies much higher 

than the ablation threshold, re-deposition of large debris around the crater could lead 

to fractionation effects.38,39,47 The laser fluence was finally kept at 7.94 J cm-2  because 

this value was above the ablation threshold for both polyethylene and polypropylene 

while minimized thermal effects.  

The laser beam diameter, in turn, was kept at its maximum value, i.e., 200 µm, 

in order to shorten the analysis time and to compensate for eventual sample 
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heterogeneities. As regards the shot frequency, it was found that the higher the laser 

repetition rate the higher the sensitivity regardless of the matrix considered. 

Therefore, this variable was kept at 20 Hz.  The laser scan rate, also affecting the 

analysis time and the sample ablation efficiency, was set at 25 µm s-1 because it was 

verified that, under these conditions, a single scan line was sufficient to completely 

ablate the totality of the residue. Regarding the He and Ar flow rates, the best results 

in terms of ICP-OES signal corresponded to 0.3, 0.1 and 0.1 L min-1 for helium 1, helium 

2 and argon streams, respectively. Meanwhile, for ICP-MS the respective flow rates 

providing maximum sensitivities were: 0.5, 0.3 and 0.3 L min-1.  

 

3.3. Effect of the solid residue on the sample ablation yield 

 

Two droplets with 0 and 50 mg L-1 analyte concentrations were deposited on 

several polymers and the carbon emission signals were measured in presence and in 

absence of solid residue. For some samples, both sets of signals were not significantly 

different regardless the added analyte concentrations. Thus, for instance, in the case 

of polyethylene #6, the carbon signal when ablating the deposit generated from a 0 mg 

L-1 droplet was similar to that for the clean polymer. For Polypropylene #2, carbon 

signal was not affected by the presence of the residue resulting from a 50 mg L-1 

multielemental standard. Finally, the carbon signals found when ablating the residues 

on polyethylene #5 were independent of the analyte mass deposited. Other polymers 

(i.e., polyethylene #4) afforded signals with significant non-systematic variations as a 

function of the analyte concentration in the deposited standards. 
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 Therefore, it was concluded that the variations observed in C signals, were due 

neither to the presence of solid residues nor to the deposited analyte mass.  

Similar trends were found for analytes.  For instance, for an element present in 

the polymer (e.g., Si) it was concluded that there were no differences between signals 

corresponding to the clean polymers and those originating from a 50 mg L-1 solid 

residue that did not contain Si. A possible explanation could be based on the number 

of pulses received by a given sample location (c.a., 160 pulses for 200 �m laser 

diameter, 25 �m s-1 sample displacement speed and 20 Hz laser shot frequency). Note 

that the sample was continuously in movement and, hence, a portion of fresh residue 

was simultaneously ablated together with the polymer beneath. Furthermore, taking 

into account the detection conditions of the spectrometers (see Table 2), it was 

estimated that every signal point was the result of 20 and 50 laser pulses in ICP-OES 

and ICP-MS, respectively.  

In order to illustrate the mixing efficiency between the standard and the 

sample in the ablation cell and/or transport line, the signals for Si (i.e., present in the 

sample but not included in the multielemental standard) were compared against those 

for Ti (i.e., only present in the standard). It was experimentally verified that both, the 

intensity and the signal stability, remained unaltered when the laser switched from the 

clean polymer to the polymer spiked with the solid deposit (Figure 3). Therefore, it was 

concluded that the aerosols generated from the sample and standard arrived 

simultaneously to the plasma.  

 

3.4. Repeatability 
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With regard to the repeatability of the DDCA methodology, seven droplets of a 

20 mg L-1 multielemental standard solution were deposited at different locations on 

polypropylene #3. Table 3 summarizes the RSD values corresponding to the mean 

integrated intensities of the seven solid residues. It was clearly observed that, in order 

to achieve good precisions (RSD < 10%), the residues should be completely ablated.  

 

3.5. Influence of the matrix composition 

 

Before applying the new DDCA, the sample ablated mass per pulse, Mp, was 

determined for all the polymers studied. Five replicates were done with RSD values 

lower than 5%. The influence of the matrix composition on the ablation yield was 

clearly evidenced. It is interesting to note that Mp was virtually the same for all the 

polypropylene samples (from 31 to 35 ng pulse-1). However, in the case of 

polyethylene, Mp significantly differed from low density (22 ng pulse-1) to  reference 

(29 ng pulse-1 ) samples. Both the CRM 680 and CRM 681 were high density 

polyethylene (HDPE) samples while the CRM 680 K was a low density one.  Therefore, 

the discrepancies in terms of Mp were likely due to changes in the efficiency of light 

absorption by the different polymers at the laser wavelength. In fact, the certified 

reference polymers were green whereas the rest of polyethylene samples were white. 

These results anticipated a dependence of the signal on the polymer nature.  

The influence of the sample matrix on the ablation process was further studied 

by examining the craters generated by SEM. Figure 4 shows two representative 

examples obtained on a high density polyethylene (#8) and a polypropylene (#3). 

Several observations suggested the polymer melting induced by the laser: (i) in the 
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case of polyethylene (Figure 3.a) filaments appeared around the crater; (ii)  in marked 

contrast, a significant amount of spherical particles were deposited at the crater 

sourroundings when the polypropylene sample was under study (Figure 3.b); and, (iii)  

for polyethylene, the microcavities initially generated on the crater walls  disappeared 

as increasing the number of pulses.40 Expectedly, the characteristics of the craters 

depended on the polymer (Figure 4). Finally, the aerosol characterization, supported 

the conclusion that, besides fusion,  polymers undergone thermal degradation, thus 

giving rise to gaseous carbon containing compounds.41,42  

An additional study was carried out to verify the existence of matrix effects.  

Droplets of a given aqueous standard (20 µg mL-1) were deposited on six different 

polymers. Figure 5 reveals that the integrated intensities for polypropylene #1 and #3 

were higher than those obtained for polyethylene samples (#4 and #5). This result was 

in full agreement with Mp. Co and Mn were not present in the polymers studied and, 

thus, their signals originated exclusively from the residue. In order to try to explain the 

observed trend, the ICP-OES argon signal was monitored and it was verified that the 

polymer nature did not modify it significantly. Therefore, it appeared that a high 

polymer ablation yield favored the transport of the analyte contained in the deposits.  

However, although the three polypropylene samples provided the same 

ablation mass per laser shot, the integrated intensity in case of polypropylene #2 was 

lower than those obtained for the rest of polypropylene samples. In fact, it was similar 

to that observed for the polyethylene #5. As a conclusion, the type of polymer affected 

severely the ablation process. A method such as the DDCA, could compensate for all 

these effects, because a calibration line was generated from every particular sample.  
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3.6 Internal standard  

 

The use of IS is relatively common both in ICP-OES and ICP-MS.43,44,45,46 

Therefore, an additional investigation using C as internal standard was carried out. 

Besides, 20 �g mL-1 yttrium and scandium were added to all the standard solutions to 

correct for volume variations of the deposited droplets.  

After normalization of the Co and Mn intensities to the carbon ones (Figure 6), 

it was clearly noticed that both ratios varied as a function of the polymer tested. This 

suggested that the selection of carbon as internal standard was not appropriate to 

correct for matrix effects in polymers. It should be considered that, unlike Co or Mn, 

carbon was partially delivered to the plasma in vapor phase. 22  Furthermore, carbon 

has a high first ionization potential (11.3 eV) and, hence, its intensity may be affected 

by slight changes in plasma thermal conditions that do not necessarily affect in the 

same extent the analytical signals.11 In previous reports it has been claimed that there 

is a linear relationship between carbon ablated mass and signal regardless the polymer 

structure.4 This trend was also observed in the present work. Nonetheless, this fact did 

not imply that carbon was a good internal standard, because, as mentioned before 

(Figure 5), for a given analyte concentration, the signal depended strongly on the 

polymer structure. Furthermore, a plotting of carbon signal versus time gave rise to a 

signal recording with lower fluctuations (RSD = 1.5%, n =30) than the situation found 

for the analytes (RSD = 9.1, n=30).  

A condition that must be fulfilled by an element in order to be considered as an 

efficient IS is that its behavior all along the system should be the same as that for the 

analyte. Therefore, the effect of a given matrix on the ablation yield, analyte transport 
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efficiency and plasma processes must be similar for both the analyte and the IS. 

15,22,23,47,48,49 During the ablation event, carbon is partially transformed into vapour 

whereas the analytes are not. Therefore,  the transport efficiency is expected to be 

much higher for the former element. Finally, the performance of carbon in the plasma 

is completely different as compared to an analyte arriving in solid phase. 22,23,42,50 Thus, 

processes such as the analyte vaporization and atomization could cause a delay in the 

analyte excitation and/or ionization. All these comments could explain why carbon did 

not compensate for eventual changes in analytical signal induced by the matrix nature 

(Figure 6).  

The presence of carbon in the plasma has proven to cause ICP-MS space charge 

effects and charge transfer reactions. 51,52 However, it should be stated that, according 

to the DDCA procedure, the amount of carbon introduced into the plasma was virtually 

identical for samples and standards.  

When the Mn and Co signals were normalized to the scandium and yttrium 

signal intensities (Figure 7), the corresponding ratios were less dependent on the 

matrix, although for the high-density polyethylene #6 the ratio was significantly lower 

than for the remaining samples.  

 

3.7. External calibration 

  

External calibration based on the deposition of reference solutions on a porous 

nylon disk has been recently proposed for reliable polymers analysis. 6 In this work, 

droplets from aqueous standard solutions containing increasing elemental 

concentrations were deposited on a polystyrene support. It is important to consider 
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that the mass of polystyrene ablated (12 ng pulse-1) was much lower than those for 

both polypropylene and polyethylene (35 and 20 ng pulse-1, respectively). Therefore, a 

correction factor was used to compensate for these differences.  

 Interestingly, in the case of polyethylene, the analyte concentrations obtained 

for magnesium, titanium, and zinc i.e., 1285±189, 1.8±1.0, 59±11 mg Kg-1, respectively, 

were in good agreement with those obtained by microwave acid digestion i.e., 

1005±98, 1.9±0.3, 53±2 mg Kg-1, respectively. However, the results for aluminum and 

calcium depended on the method assayed. For the polypropylene sample, magnesium, 

calcium, aluminum and titanium, provided discrepancies between methods.  

Therefore, it was concluded that the external calibration strategy using a polystyrene 

support did not provide good results.  

 An additional investigation was performed using similar polymers. Thus, the 

support chosen for the dried droplets reference solutions had the same matrix as the 

sample. Polyethylene #6 was used as a support to analyze polyethylene #4. The 

analytical concentrations obtained were different from those expected. This was in 

agreement with the results previously reported, as the discrepancies observed among 

polyethylene samples (Figure 5) were not removed even with the use of internal 

standards. 

 

3.8. Accuracy of the calibration methodology 

  

Once it was demonstrated that the polymer matrix had a significant effect on 

the ablation efficiency and that this phenomenon could not be alleviated by means of 

external calibration or IS, the new calibration methodology was applied to the analysis 
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of three certified reference materials (BCR 681, BCR 680 K and BCR 680). Table 4 

compares the elemental concentrations obtained using the DDCA with the certified 

values.  

In order to compare the results provided by the DDCA with the certified ones, 

statistical tests were carried out considering the values of the concentrations and their 

uncertainties. 53  

��
� ���� ����� +=⇒= 			        (6) 

where um is the uncertainty of the measurement result, uCRM the uncertainty of the 

certified value and uΔ the combined uncertainty of the result experimentally obtained 

and certified value.  UΔ  was compared with the absolute difference between the 

measured and certified concentration (�m). 

 In the case of the BCR 681, only for As and Hg the measured concentrations 

were higher than the certified values, although for As the difference between the 

measured and certified concentration was rather low (Table 4).  The concentrations of 

the rest of elements were not different from the certified ones according to the UΔ and 

�m values. When considering the BCR 680K CRM, the measured mean values were not 

significantly different from the certified ones (UΔ ≥ �m). Only slight discrepancies 

between the measured concentrations and the certified ones were observed for As, 

and Br.  The deviations observed for As and Hg in both BCR 680K and BCR 681 could be 

assigned to the low concentration of these elements in the certified reference 

materials. Besides, the high volatility of species containing these elements could 

explain why experimentally obtained Hg and As concentrations were higher than the 
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certified ones. Further investigations would be required to discern the chemical form 

of these elements in polymer CRMs.  

When analyzing the BCR 680, the measured concentrations for all the elements 

were not significantly different from the certified values (UΔ > �m). Br was not 

determined in this sample because of its extremely high content. 
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3.9. Analysis of polymer samples 

 

The dried droplet calibration approach was also applied, for the first time, to 

the analysis of six polymers. Tables 5 and 6 summarize the concentrations obtained 

using this new calibration strategy together with those provided by the polymer acid 

digestion procedure.  

According to F and t tests, there were not statistically significant differences 

between the concentrations afforded by both methods with a probability of 95% 

(α=0.05) (t calculated for the different elements= 0-2.3, t tabulated= 2.776). Only for 

titanium contained in both polypropylene #1 and polyethylene #4 and chromium 

found in polyethylene #4, the obtained concentrations by the new DDCA were differed 

from those given by the microwave digestion method. These discrepancies could be 

assigned to the low concentration of these elements in the polymers. Besides, the 

concentration for Zn in polyethylene #4 was higher than the expected one.  

 

Conclusions 

 

Changes in the polymer structure, causing differences in absorption of UV light 

and thermal properties as glass transition temperature or melting temperature, cause 

matrix effects when carrying out elemental analysis by means of laser ablation – ICP-

OES and ICP-MS. These phenomena are difficultly eliminated by using external 

calibration or internal standardization. Regarding the latter method, carbon cannot be 

efficiently used as IS although additional elements such as Sc or Y could mitigate these 

matrix effects. 
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A straightforward calibration method such as that described in the present 

work is a useful strategy to compensate for matrix effects. With the dried droplet 

calibration approach, DDCA, a calibration line is obtained for every particular sample. 

Therefore, the proposed method avoids complex schemes such as matrix matching or 

selection of an appropriate CRM for each polymer.  

Taking into account conventional digestion methods, the DDCA avoids the 

problems related with contamination and increases the sample throughput. Thus, a 

complete analysis of ten samples took about 3 and 5 h for the DDCA and the 

microwave digestion, respectively. Furthermore, unlike the latter method, the former 

one, did not require from sample dilution what led to a sensitivity high enough to 

perform elemental analysis of polymer samples. 

The DDCA shows good precision and accuracy and has been successfully 

applied, for the first time, to the analysis of nine different polymer samples. Additional 

studies are required to apply such as method to the localized polymer samples. These 

experiments are currently being developed in our laboratories and will be the subject 

of future reports.  
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Table 1. Certified reference materials and elemental concentrations. 

 

Element 

Concentration (mg Kg-1) 

BCR 681  

(High density 

polyethylene

) 

BCR 680K (Low 

density 

polyethylene

) 

BCR 680 

(High density 

polyethyle

ne) 

As 3.93 ± 0.15 4.1 ± 0.5 30.9 ± 0.7 

Br 98 ± 5 96 ± 4 808 ± 19 

Cd 21.7 ± 0.7 19.6 ± 1.4 141 ± 2 

Hg 4.50 ± 0.15 4.64 ± 0.2 25 ± 1 

Pb 13.8 ± 0.7 13.6 ± 0.5 108 ± 3 

Sb - 10.1 ± 1.6 - 
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Table 2. Optimized operating conditions  

Ablation system 

Ablation frequency/ Hz 20 

Spot size/ µm 200 

Scan rate/ µm s-1 25 

Pulse energy  2.7 mJ pulse-1 

Gas flow rates He / L min-1  0.5 and 0.3 (ICP-MS) 

0.3 and 0.1 (ICP-OES) 

ICP-MS system 

RF power/ KW 1.55 

Carrier gas/ L min-1 (Ar added to the 

aerosol leaving the ablation cell) 

0.3 

Cell Collision (He)/ mL min-1 3.0 
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Isotopes measured   52Cr, 75As, 81Br, 111Cd, 121Sb, 202Hg, 

208Pb 

Plasma gas flow rate/ L min-1 15.0 

Auxiliar gas flow rate/ L min-1 0.9 

Integration time/mass s-1 0.1 

Sampling depth/ mm 5 

 

 

 

ICP-OES system 

RF power/ KW 1.35 

Carrier gas/ L min-1 0.1 

View Distance/ mm  

Plasma viewing mode 

15 

Axial 
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Elements, wavelength/ nm   Al 396.152, C 193.090,  

Ca 317.933, Ca 315.887,  

Cd 214.438, Co 238.346,  

Cr 267.716, Li 670.784,  

Mg 280.270, Mn 257.610,  

Pb 220.353, Sc 357.635,  

Si 212.412, Sr 407.771,  

Ti 334.904, Ti 336.121,  

Y 371.030, Zn 213.856  

Plasma gas flow rate/ L min-1 15.0 

Auxiliary gas flow rate/ L min-1 0.2 

Integration time/ ms 100 

Read time/ s 1 

 

 

 

 

 

 

 

Table 3. Relative standard deviations (RSDs) of the ICP-OES integrated signals obtained 

for different residues ablated areas. 
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Element % Ablated residue surface area 

 100 60-70 20-30 

Mg 2.9 7.2 13.8 

Zn 6.9 10.3 15.5 

Mn 7.3 12.6 16.1 

Pb 9.2 13.4 20.7 

Cd 10.4 11.9 16.0 

Co 7.8 12.4 15.2 

Sr 10.1 10.9 23.2 

Li 6.3 8.4 12.5 

Ca 7.9 8.3 10.6 

Al 4.88 10.78 7.99 
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Table 4. Comparison of the certified concentrations with those obtained in ICP-MS by 

the new dried droplet calibration approach for three CRMs. 

 

Element 

BCR 681 

(mg Kg
-1

) 

BCR 680 K 

 (mg Kg
-1

) 

BCR 680 

 (mg Kg
-1

) 

 DCCA Certified DCCA Certified  DCCA   Certified 

As  6.2 ± 0.5 3.93 ± 0.15 7.0 ± 1.3 4.1 ± 0.5  30 ± 7 30.9 ± 0.7 

Br 94 ± 12 98 ± 5 113 ± 7 96 ± 4  - 808 ± 19 

Cd 21 ± 8 21.7 ± 0.7 16 ± 5 19.6 ± 1.4 137 ± 45 140.8 ± 2.5 

Cr 21 ± 3 17.1 ± 0.6 21 ± 3 20.2 ± 1.1 117 ± 12 114.6 ± 2.6 

Hg 22 ± 11 4.50 ± 0.15   25 ± 12 25.3 ± 1.0 

Pb 14 ± 3 13.8 ± 0.7 15 ± 2 13.6 ± 0.5  106 ± 3 107.6 ± 2.8 

Sb   11.5 ± 1.4  10.1 ± 1.6   
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Table 5. Comparison of the concentrations (mg Kg-1) obtained by the new dried droplet 

calibration in ICP-OES method and those calculated after microwave digestion of 

the three polypropylene samples. 

Element PP1 PP2 PP3 

 DCCA Digestion DCCA Digestion DCCA RRT 

Al 30 ± 3 29 ± 2 42 ± 4 40 ± 2 61 ± 6 50 ± 6 

Ca 28 ± 3 28 ± 3* 50 ± 5 49 ± 5* 40 ± 4 34 ± 2 

Mg 7 ± 2 6.4 ± 0.3   59 ± 19 58 ± 7 

Ti 1.40 ±0.17 0.39 ± 0.08   - 1.1 ± 0.3 

Zn - -   6.3� ± 0.5 4 ± 2 

*The RSD associated to these values was 10%. 
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Table 6. Comparison of the concentrations (mg Kg-1) obtained by the new dried droplet 

calibration in ICP-OES method and those calculated after microwave digestion of 

the three polyethylene samples. 

 

Element

PE4 PE5 PE6 

 DCCA Digestion DCCA Digestion DCCA Digestion 

Al 37 ± 10 47 ± 8   346 ± 101 334 ± 60 

Ti 0.33 ± 0.06 1.9 ± 0.3 6.1 ± 1.1 6.0 ± 0.2   

Si - - - 117 ±6   

Cr - - 1.92 ±0.17 2.39 ±0.04 -  

Ca 6 ± 3 3 ± 2     

Zn 126 ± 7 53 ± 2     

Mg 1166 ± 296 1005 ± 98     
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(a) 

  

(b) 

Figure 1. Calibration line (a) and residuals plotting (b) obtained for polyethylene # 8 in 

ICP-MS. Element: Pb. 
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(a) 

 

 

Page 37 of 45 Journal of Analytical Atomic Spectrometry

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

Jo
ur
na
lo
fA
na
ly
tic
al
A
to
m
ic
Sp
ec
tr
om
et
ry
A
cc
ep
te
d
M
an
us
cr
ip
t

P
u
b
li

sh
ed

 o
n
 2

6
 A

p
ri

l 
2
0
1
8
. 
D

o
w

n
lo

ad
ed

 b
y
 U

n
iv

er
si

d
ad

 d
e 

A
li

ca
n
te

 o
n
 3

0
/0

4
/2

0
1
8
 1

1
:5

0
:0

0
. 

View Article Online

DOI: 10.1039/C8JA00055G

http://dx.doi.org/10.1039/c8ja00055g


 

38 
 

                                                                                                                                                                                   

(b) 

 

(c) 

Figure 2. Spatial distribution of ICP-OES aluminum emission intensity corresponding to 

the solid residue deposited on three polymers. (a) polyethylene #5; (b) 

polyethylene #7; (c) polypropylene #1. Aluminum concentration in the aqueous 

standard: 20 �g mL-1. 
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Figure 3. ICP-OES emission signal versus lateral position for polypropylene #2. Red line: 

Ti (element only present in the added standard, 20 �g mL-1); blue line: Si (element 

only present in the sample). Note that each point was the result of 20 laser shots. 
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Figure 4. SEM images corresponding to the craters generated on the surface of (a) 

polyethylene #4 and (b) polypropylene #1. Laser beam diameter: 20 �m; pulse 

frequency: 20 Hz; laser shots: 20; pulse energy: 2.7 mJ.  
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Figure 5. ICP-OES integrated emission intensity for the residues on six different 

polymers. (a) Manganese; (b) cobalt. Analytes concentration: 20 �g mL-1. 
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(a) 

 

(b) 

Figure 6. ICP-OES integrated emission intensity normalized to that obtained for carbon 

for the residues on six different polymers. (a) Manganese; (b) cobalt. Analytes 

concentration: 20 �g mL-1. 

 

Page 42 of 45Journal of Analytical Atomic Spectrometry

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

Jo
ur
na
lo
fA
na
ly
tic
al
A
to
m
ic
Sp
ec
tr
om
et
ry
A
cc
ep
te
d
M
an
us
cr
ip
t

P
u
b
li

sh
ed

 o
n
 2

6
 A

p
ri

l 
2
0
1
8
. 
D

o
w

n
lo

ad
ed

 b
y
 U

n
iv

er
si

d
ad

 d
e 

A
li

ca
n
te

 o
n
 3

0
/0

4
/2

0
1
8
 1

1
:5

0
:0

0
. 

View Article Online

DOI: 10.1039/C8JA00055G

http://dx.doi.org/10.1039/c8ja00055g


 

43 
 

                                                                                                                                                                                   

 

 

(a) 

 

(b) 

 

Page 43 of 45 Journal of Analytical Atomic Spectrometry

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

Jo
ur
na
lo
fA
na
ly
tic
al
A
to
m
ic
Sp
ec
tr
om
et
ry
A
cc
ep
te
d
M
an
us
cr
ip
t

P
u
b
li

sh
ed

 o
n
 2

6
 A

p
ri

l 
2
0
1
8
. 
D

o
w

n
lo

ad
ed

 b
y
 U

n
iv

er
si

d
ad

 d
e 

A
li

ca
n
te

 o
n
 3

0
/0

4
/2

0
1
8
 1

1
:5

0
:0

0
. 

View Article Online

DOI: 10.1039/C8JA00055G

http://dx.doi.org/10.1039/c8ja00055g


 

44 
 

                                                                                                                                                                                   

 

(c) 

 

(d) 

Figure 7. ICP-OES integrated emission intensity normalized to that obtained for 

scandium and yttrium as internal standards for the residues on six different 

polymers. (a) Manganese using scandium as IS; (b) cobalt using scandium as IS; (c) 
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manganese using yttrium as IS; (d) cobalt using yttrium as IS. Analytes 

concentration: 20 �g mL-1. 
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