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Abstract

Background: Elementary mode analysis of metabolic pathways has proven to be a valuable tool
for assessing the properties and functions of biochemical systems. However, little comprehension
of how individual elementary modes are used in real cellular states has been achieved so far. A
quantitative measure of fluxes carried by individual elementary modes is of great help to identify
dominant metabolic processes, and to understand how these processes are redistributed in
biological cells in response to changes in environmental conditions, enzyme kinetics, or chemical
concentrations.

Results: Selecting a valid decomposition of a flux distribution onto a set of elementary modes is
not straightforward, since there is usually an infinite number of possible such decompositions. We
first show that two recently introduced decompositions are very closely related and assign the
same fluxes to reversible elementary modes. Then, we show how such decompositions can be used
in combination with kinetic modelling to assess the effects of changes in enzyme kinetics on the
usage of individual metabolic routes, and to analyse the range of attainable states in a metabolic
system. This approach is illustrated by the example of yeast glycolysis. Our results indicate that only
a small subset of the space of stoichiometrically feasible steady states is actually reached by the
glycolysis system, even when large variation intervals are allowed for all kinetic parameters of the
model. Among eight possible elementary modes, the standard glycolytic route remains dominant
in all cases, and only one other elementary mode is able to gain significant flux values in steady state.

Conclusion: These results indicate that a combination of structural and kinetic modelling
significantly constrains the range of possible behaviours of a metabolic system. All elementary
modes are not equal contributors to physiological cellular states, and this approach may open a
direction toward a broader identification of physiologically relevant elementary modes among the
very large number of stoichiometrically possible modes.

Background
Network-based pathway analysis

Biological research in the twentieth century has been
dominated by the reductionist approach, providing valu-
able information about the properties and functions of

individual cellular components. But the behaviour of
complex systems of interacting components cannot be
comprehended by the sole characterisation of their indi-
vidual components or pair-wise relations, because new
properties emerge from the interaction of large numbers
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of components. Technological developments now allow
to gain more and more knowledge about the various
interaction networks that govern cellular properties,
including protein-protein interactions, metabolic path-
ways, regulatory and signalling networks. Therefore sys-
tems-based approaches are now needed with the aim of
modelling and understanding the complex cellular proc-
esses producing biological functions, and in the long term
providing an integrated and predictive description of a
complete cell [1].

Metabolic pathways are an essential key to the systemic
behaviour of a biological cell. Two types of approaches are
generally possible for the study of cellular metabolism.
The first type involves detailed modelling of the dynami-
cal features of biochemical networks. Several tools have
been created for simulating metabolic and signalling net-
works in biological cells [2-5]. However the accurate
experimental determination of kinetic functions and
parameters is a difficult and time-consuming task, that
can only be thoroughly performed for small networks of
particular interest. In contrast, a second type of
approaches have been developed that use only the topo-
logical and stoichiometric properties of metabolic net-
works, which are usually well known. This information is
sufficient to determine a set of constraints limiting the
range of possible states of a metabolic system in steady-
state. With flux-balance analysis [6], an optimal solution
can then be found in the space of possible behaviours by
maximising a function of interest, for example growth
rate, using linear optimisation. These approaches have
become useful tools for analysing and assessing the capa-
bilities of metabolic networks [7,8].

In such network-based pathway analyses, metabolic net-
works are represented by stoichiometric matrices that
relate reactions and metabolites. These matrices are ana-
lysed by algorithms that compute particular sets of routes
satisfying specified conditions. Two very similar concepts
called elementary modes and extreme pathways have been
introduced in recent years [9-11]. An elementary mode is
a minimal set of reactions that can operate in steady state,
while the set of extreme pathways is the systemically inde-
pendent subset of the elementary modes. In a mathemat-
ical multidimensional representation where each axis
corresponds to a reaction flux, all possible steady-state
flux distributions lie within a multidimensional flux cone.
Extreme pathways form the edges of this cone, and the
additional elementary modes may lie on the surface or in
the interior of the cone.

Applications of network-based pathway analyses have
been presented for predicting functional properties of
metabolic networks, measuring different aspects of
robustness and flexibility, and even assessing gene regula-

tory features [12,13]. [14] showed that a combination of
metabolome and elementary mode analysis on a stoichi-
ometric model of Saccharomyces cerevisiae provided a
framework for the identification of functions of orphan
genes. [15] presented an extreme pathway analysis of
amino acid producing pathways in Haemophilus influen-
zae, showing the significance of this approach to under-
standing the functional properties of metabolic networks
at the genome scale. Elementary modes can provide a
measure of structural robustness of metabolic networks,
as has been shown by a comparative study of the central
metabolisms of Escherichia coli and human erythrocytes
[16]. Other examples of elementary mode or extreme
pathway based applications include the study of the
mechanisms of sucrose accumulation in sugar cane [17],
the physiological interpretation of red blood cell metabo-
lism [18], the investigation of photosynthate metabolism
in the chloroplast strauma [19], and the analysis of the
central carbon metabolism of Saccharomyces cerevisiae
[20].

The two concepts of elementary modes and extreme path-
ways are very similar but not identical, the crucial differ-
ence being that extreme pathways are defined as
systemically independent, which means that no extreme
pathway can be represented as a non-negative linear com-
bination of other extreme pathways. Comparisons
between both concepts and discussions about their
advantages and drawbacks have been published [21-23].
If only irreversible exchange reactions are present in a sys-
tem, the two sets are equivalent. Otherwise, extreme path-
ways are fewer in number, which can be of advantage for
the analysis of large systems. However, extreme pathways
may have to be added together to represent a particular
flux state that cancels out a reversible exchange flux, and
such occurrences complicate biological interpretation. For
this reason, we chose to base this work on elementary
modes, although a similar approach could be undertaken
on the basis of extreme pathways.

Decomposition of steady-state flux distributions

Although the space generated by elementary modes or
extreme pathways contains all possible steady-state flux
distributions, not necessarily all these states may actually
be reached by a real biological organism. Several
approaches have already been proposed in order to fur-
ther characterise the space of allowable states. Regulatory
constraints repressing gene expression have been mod-
elled, and it has been shown that they strongly reduce the
number of allowed extreme pathways in specific environ-
mental conditions [24]. Singular value decomposition of
stoichiometric matrices has lead to the identification of
dominant modes that correspond to relevant physiologi-
cal metabolic states [25].
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A first attempt to understand how physiological steady
states can be reconstructed from a network's extreme path-
ways lead to the concept of α-spectrum [26]. Any flux dis-
tribution in a metabolic network can be described as a
linear combination of elementary modes or extreme path-
ways, but this decomposition is generally not unique. The
α-spectrum describes the range of possible weightings a
particular mode can take in the decomposition. This range
is determined using linear optimisation to maximise and
minimise the weighting of a particular extreme pathway
in the reconstruction. A drawback of that description is
that the range of allowable weights for a given extreme
pathway is not necessarily independent of the weight
value taken by any other extreme pathway.

In a previous communication, we presented a different
decomposition approach that assigns each elementary
mode a unique weight [27,28]. Because the set of possible
decompositions is usually a continuous convex space of
non-zero dimension, an additional constraint had to be
introduced. We proposed to select the particular set that
minimises the length of the weight vector, because this
decomposition makes maximum use of the modes that
are closest to the actual state of the system and are there-
fore most relevant for biological interpretation. Starting
from a different approach, [29] introduced a flux decom-

position method that lead to very similar results. There-
fore, the objectives of this article are twofold: first, to
provide a detailed description of our algorithm allowing a
comparison of both approaches (see Methods section);
second, to show how such decompositions can be used in
combination with kinetic modelling to provide a frame-
work for the characterisation of elementary mode usage in
real metabolic systems, and for assessing the effects of
changes in enzyme kinetics on the distribution of meta-
bolic processes.

Results
Model

Our approach is illustrated using a model of yeast glycol-
ysis presented by [30]. This model is available from the
JWS online repository [31]. It was constructed after exper-
imental determination of all kinetic parameters, and can
therefore be assumed to represent physiologically accu-
rate metabolic states. In [30] an unbranched model was
first developed, but was unable to reach a steady state
when experimentally determined parameter values were
introduced. Therefore glycogen, trehalose, glycerol, and
succinate branches were added. No precise kinetic model-
ling was applied to the glycogen and trehalose branches,
but fluxes were simply assigned constant values corre-
sponding to experimental measurements. All flux values

Table 1: List of enzyme and compound abbreviations

Abbreviation Enzymes, compounds

GLK glucokinase
PGI phosphoglucoisomerase
PFK phosphofructokinase
ALD fructose-biphosphate aldolase
G3PDH glycerol-3-phosphate dehydrogenase
GAPDH glyceraldehyde-3-phosphate dehydrogenase
PGK 3-phosphoglycerate kinase
PGM phosphoglycerate mutase
ENO enolase
PYK pyruvate kinase
PDC pyruvate decarboxylase
ADH alcohol dehydrogenase

Glc glucose
G6P glucose 6-phosphate
F6P fructose 6-phosphate
F16P fructose 1, 6-biphosphate
DHAP glycerone phosphate
GAP glyceraldehyde 3-phosphate
BPG 1, 3-biphosphoglycerate
P3G 3-phosphoglycerate
P2G 2-phosphoglycerate
PEP phosphoenolpyruvate
Pyr pyruvate
Ace acetaldehyde
Et ethanol
Gly glycerol
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in the following sections (including elementary mode
fluxes) are expressed in mmol·min-1·l-1, and concentra-
tions are expressed in mmol·l-1. Abbreviations used for
enzyme and compound names are listed in Table 1.

The system and its eight elementary modes are shown in
Figure 1. For elementary modes to be calculated, external
metabolites representing the entry and exit points of a sys-
tem must be defined. In the present case their definition is
straightforward: glucose, glycogen, trehalose, glycerol,
succinate, and ethanol are considered to be external

Model of yeast glycolysisFigure 1
Model of yeast glycolysis. a. Model of yeast glycolysis introduced by [30]. Names in italic are enzymes whose kinetic prop-
erties were included in this analysis. Numbers indicate stoichiometries of reactions when different from one. b. The eight ele-
mentary modes of the yeast glycolysis system. All elementary modes are irreversible. External metabolites are: glucose, 
glycogen, trehalose, glycerol, succinate, and ethanol.
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Table 2: Ranges of allowed variations of kinetic parameters

Enzyme Parameter Reference value Minimum Maximum

GLK Vmax 226.452 150 100000
Keq 3800 1 100000
Km·Glc 0.08 0.005 1
Km·G6P 20 0.02 1000
Km·ATP 0.15 0.0001 0.3
Km·ADP 0.23 0.1 1000

PGI Vmax 339.677 30 100000
Keq 0.314 0.002 1000
Km·G6P 1.4 0.001 100
Km·F6P 0.3 0.001 1000

PFK Vmax 182.903 50 100000
gR 5.12 0.5 1000
L0 0.66 0.1 50000
Km·ATP 0.71 0.001 10
Km·F6P 0.1 0.001 10
KAMP 0.0995 0.0001 10000
KATP 0.65 0.0001 10000
KF26bP 0.000682 0.0001 10000
KF16bP 0.111 0.0001 10000

ALD Vmax 322.258 100 100000
Keq 0.069 0.0005 10
Km·F16P 0.3 0.001 50
Km·GAP 2 0.0001 10
Km·DHAP 2.4 0.001 100
Km·GAPi 10 0.02 1000

G3PDH Vmax 70.15 2 300
Keq 4300 0.01 100000
Km·DHAP 0.4 0.001 500
Km·NADH 0.023 0.001 50
Km·NAD 0.93 0.001 1000
Km·Gly 1 0.0001 1000

GAPDH Vmax 1184.52 200 100000
Keq 0.045 0.005 10
Km·GAP 0.21 0.001 2
Km·BPG 0.0098 0.0005 1000
Km·NAD 0.09 0.0001 5
Km·NADH 0.06 0.0005 8

PGK Vmax 1306.45 30 100000
Keq 3200 100 100000
Km·BPG 0.003 0.0001 10
Km·P3G 0.53 0.001 30
Km·ADP 0.2 0.002 1000
Km·ATP 0.3 0.001 30

PGM Vmax 2525.81 50 100000
Keq 0.19 0.001 100
Km·P3G 1.2 0.001 300
Km·P2G 0.08 0.00002 100

ENO Vmax 365.806 200 100000
Keq 6.7 0.01 1000
Km·P2G 0.04 0.0001 10
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metabolites. All elementary modes of this system are irre-
versible, since they all contain at least one irreversible
reaction. Therefore no negative elementary mode flux is
allowed for any of them.

As shown earlier [28], decomposition of the experimental
steady state assigned the highest flux to EM8 (elementary
mode flux value of 55.5), which is the standard glycolytic
path leading to the production of ethanol from glucose.
The second highest flux (18.2) was assigned to EM7,
which combines the production of ethanol with the
derived production of glycerol from DHAP. All other
modes were assigned low or zero fluxes.

It should be noted that the cases of EM1 and EM2 are par-
ticular. These elementary modes depend entirely on the
trehalose and glycogen branches respectively. These two
branches retain constant fluxes in the model, therefore the
fluxes carried by EM1 and EM2 always remain constant as
well. As a result, these modes cannot be further analysed
and will not be further discussed. Nevertheless, we chose
to keep them in our analysis to maintain consistency with
the model from [30], and because the glycogen and treha-
lose branches have been mentioned to help the system in
reaching a steady state.

Influence of individual kinetic parameters

In this section, we studied variations in elementary mode
fluxes induced by variations of individual kinetic parame-
ters, all other parameters of the model being kept at their
reference values. This case may apply to the situation
where a given parameter has not been experimentally
measured or a large uncertainty exists for its value. For
example, very different values of the L0 parameter in the
PFK kinetic relation can be found in the literature: a value
of 3342 was used in [32], while 0.66 was used in [30].

The Gepasi software [33] was used to compute steady
states for a range of values of each parameter, and all
steady-state flux distributions were decomposed onto ele-
mentary modes using our algorithm. The bounds of inter-
vals of parameter values were chosen as the approximate
extreme values for which the Gepasi software was able to
compute a steady-state flux distribution. Those bounds
are listed in Table 2 for all parameters, together with their
reference values given in [30].

The obtained standard deviations of the distributions of
elementary mode fluxes are given in Table 3. EM1 and
EM2 show no variation for the reason mentioned earlier.
EM6 shows no variation either, although flux in the succi-
nate branch is not constant; the two other modes contrib-
uting to that flux (EM4 and EM5) indeed do show
variations.

In most cases, the effect of variation of a single kinetic
parameter on the distribution of elementary mode fluxes
is weak. Several parameters have almost no effect: the
most striking examples are the parameters of ALD (Figure
2) and PDC. Most parameters of PFK have limited influ-
ence too, although important efforts have been invested
into modelling the kinetics of this enzyme.

Effects of some parameters are characterised by a large
range of stability, where parameter variations have very
little effect on elementary mode fluxes, followed or pre-
ceded by a decrease of most fluxes when approaching the
limits of the steady-state domain. This type of behaviour
is produced for example by Km·Ace and Km·Et of ADH,
Km·G6P and Km·Glc of GLK (Figure 2). It can be noted that
a decrease in the dominant elementary modes EM8 and
EM7 is sometimes accompanied by an increase in EM3
and EM4, indicating that the system tends to shift toward

Km·PEP 0.5 0.00003 100

PYK Vmax 1088.71 300 100000
Keq 6500 0.1 9000
Km·PEP 0.14 0.01 9
Km·Pyr 21 0.1 1000
Km·ADP 0.53 0.01 4
Km·ATP 1.5 0.3 100

PDC Vmax 174.194 100 100000
Km·Pyr 4.33 0.001 50

ADH Vmax 810 200 100000
Keq 6.9·10-5 10-8 0.0005
Km·Ace 1.11 0.01 1000
Km·Et 17 0.001 1000
Km·NADH 0.11 0.001 5
Km·NADP 0.17 0.001 30

Table 2: Ranges of allowed variations of kinetic parameters (Continued)
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Table 3: Standard deviations of elementary mode fluxes under variation of single kinetic parameters, and elasticity coefficients of 

parameters at the experimental steady state

Enzyme Parameter EM1 EM2 EM3 EM4 EM5 EM6 EM7 EM8 Elasticity

GLK Vmax 0 0 0 0 0.12 0 0.58 4.01 1.0
Keq 0 0 0 0.21 0.48 0 1.85 8.94 0.0014
Km·Glc 0 0 0 0.23 0.58 0 2.30 12.02 -0.456
Km·G6P 0 0 0 0.21 0.52 0 1.99 9.80 0.015
Km·ATP 0 0 0 0 0.05 0 0.27 1.91 -0.283
Km·ADP 0 0 0 0 0.06 0 0.31 2.15 0.241

PGI Vmax 0 0 0 0.27 0.62 0 2.30 10.12 1.0
Keq 0 0 0 0 0.05 0 0.27 1.90 0.533
Km·G6P 0 0 0 0 0.04 0 0.21 1.48 -0.651
Km·F6P 0 0 0 0 0.04 0 0.01 0.02 0.178

PFK Vmax 0 0 0 0.09 0.29 0 1.17 6.27 1.0
gR 0 0 0 0 0.01 0 0.05 0.32 0.937
L0 0 0 0 0 0.10 0 0.50 3.53 -0.460
Km·ATP 0 0 0 0 0 0 0.01 0.06 -0.086
Km·F6P 0 0 0 0 0.05 0 0.26 1.80 -0.934
KAMP 0 0 0 0 0 0 0.02 0.15 -0.504
KATP 0 0 0 0 0 0 0.01 0.06 0.187
KF2bP 0 0 0 0 0.01 0 0.03 0.18 -0.626
KF16bP 0 0 0 0 0 0 0.02 0.16 0.401

ALD Vmax 0 0 0 0 0 0 0 0.03 1.0
Keq 0 0 0 0 0 0 0.02 0.13 1.499
Km·F16P 0 0 0 0 0 0 0.01 0.09 -0.398
Km·GAP 0 0 0 0 0 0 0.01 0.10 0.0067
Km·DHAP 0 0 0 0 0 0 0.02 0.11 0.094
Km·GAPi 0 0 0 0 0 0 0 0.01 0.0020

G3PDH Vmax 0 0 0.87 1.96 1.24 0 7.65 13.74 1.0
Keq 0 0 0 0 1.40 0 6.98 8.90 0.0016
Km·DHAP 0 0 0 0.38 1.60 0 8.77 11.88 -0.382
Km·NADH 0 0 0 1.87 1.28 0 8.50 13.81 -0.579
Km·NAD 0 0 0 0.39 1.57 0 8.65 11.80 0.362
Km·Gly 0 0 0 0 1.39 0 6.94 8.88 0.050

GAPDH Vmax 0 0 0 0.17 1.35 0 6.98 9.49 1.0
Keq 0 0 0 0.10 1.25 0 6.37 8.66 0.880
Km·GAP 0 0 0 0.12 1.48 0 7.58 10.23 -0.919
Km·BPG 0 0 0 0 0.17 0 0.83 1.16 0.082
Km·NAD 0 0 0 0.17 0.31 0 1.81 2.79 -0.145
Km·NADH 0 0 0 0.15 0.30 0 1.67 2.53 0.092

PGK Vmax 0 0 0 0.02 0.23 0 1.17 1.70 1.0
Keq 0 0 0 0.02 0.28 0 1.44 2.06 2.909
Km·BPG 0 0 0 0 0.02 0 0.11 0.16 0.062
Km·P3G 0 0 0 0.17 0.16 0 1.13 1.87 -0.623
Km·ADP 0 0 0 0.06 0.18 0 1.07 1.63 0.408
Km·ATP 0 0 0 0.15 0.18 0 1.17 1.90 -0.471

PGM Vmax 0 0 0.56 0.77 0.70 0 2.35 9.51 1.0
Keq 0 0 0 0.06 0.29 0 1.56 2.28 1.959
Km·P3G 0 0 0 0 0.25 0 1.27 1.81 -0.840
Km·P2G 0 0 0 0.18 0.27 0 1.63 2.57 0.302

ENO Vmax 0 0 0 0 0.03 0 0.14 0.19 1.0
Keq 0 0 0 0.10 0.27 0 1.48 2.22 0.325
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higher glycerol and succinate producing states in those
areas. However these modes are never able to gain high
values, as the system soon leaves the steady-state domain.

For a third type of parameters, a range of stability followed
or preceded by variations can be observed as well, but here
the variation of EM8 is accompanied by the opposite var-
iation of EM7 and, to a smaller extend, of EM5 and EM4.
In the case of Km·DHAP and Km·Gly of G3PDH (Figure 2), a
second stable area seems to be reached, characterised by a
very low flux for EM7 and the almost exclusive use of
EM8. In the case of Km·ADP and Km·ATP of PGK on the
opposite, EM7 seems to tend toward higher values, but
the limits of the steady-state domain are rapidly reached.

Influence of individual enzymes

In this section, all the parameters of a given enzyme
kinetic relation were allowed to vary independently from
each other. For each enzyme, 400 sets of parameter values
were chosen randomly in the ranges listed in Table 2.
Table 4 shows the standard deviations of the distributions
of elementary mode fluxes obtained for every enzyme.
The trends observed in Table 2 are mostly confirmed. The
enzymes whose kinetics have the largest influence on the
system are G3PDH, GAPDH and ADH, while ALD on the
opposite has almost no effect.

The correlation coefficients between pairs of elementary
mode fluxes are shown in Figure 3. According to these
maps, the effects of enzymes in the glycolytic system can
be grouped into several categories:

Km·P2G 0 0 0 0.06 0.28 0 1.50 2.19 -0.506
Km·PEP 0 0 0 0.25 0.27 0 1.75 2.87 0.065

PYK Vmax 0 0 0 0 0.08 0 0.40 0.56 1.0
Keq 0 0 0 0.23 0.28 0 1.76 2.85 0.036
Km·PEP 0 0 0 0 0.16 0 0.82 1.15 -0.728
Km·Pyr 0 0 0 0 0.15 0 0.73 1.02 0.210
Km·ADP 0 0 0 0 0.17 0 0.84 1.19 -0.523
Km·ATP 0 0 0 0 0.02 0 0.08 0.13 0.327

PDC Vmax 0 0 0 0 0 0 0.02 0.02 1.0
Km·Pyr 0 0 0 0 0.02 0 0.09 0.13 -0.411

ADH Vmax 0 0 0 0.05 0.37 0 1.94 2.70 1.0
Keq 0 0 0 1.26 1.33 0 7.80 11.76 -3.393
Km·Ace 0 0 0.76 1.53 0.61 0 1.61 5.80 0.139
Km·Et 0 0 1.00 1.77 0.79 0 1.72 7.84 -0.457
Km·NADH 0 0 0 0.37 0.23 0 1.54 2.62 -0.113
Km·NADP 0 0 0.97 1.84 0.83 0 1.74 7.24 -0.102

Table 3: Standard deviations of elementary mode fluxes under variation of single kinetic parameters, and elasticity coefficients of 

parameters at the experimental steady state (Continued)

Table 4: Standard deviations of elementary mode fluxes under variation of all kinetic parameters of each enzyme

Enzymes EM1 EM2 EM3 EM4 EM5 EM6 EM7 EM8

GLK 0 0 0 0.04 0.22 0 1.02 6.60
PGI 0 0 0 0.16 0.38 0 1.46 6.99
PFK 0 0 0 0.01 0.12 0 0.61 4.09
ALD 0 0 0 0 0 0 0.02 0.13
G3PDH 0 0 0.27 0.49 0.83 0 4.45 23.07
GAPDH 0 0 0 0.06 1.40 0 7.06 9.35
PGK 0 0 0.18 0.27 0.34 0 1.59 3.61
PGM 0 0 0.26 0.38 0.44 0 2.05 4.55
ENO 0 0 0 0.13 0.31 0 1.66 2.48
PYK 0 0 0 0.23 0.27 0 1.69 2.73
PDC 0 0 0 0.05 0.06 0 0.40 0.66
ADH 0 0 0.70 1.30 1.34 0 7.78 13.81

All enzymes 0 0 0.47 0.64 0.61 0 3.41 20.58
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Effects of kinetic parameters on elementary mode fluxesFigure 2
Effects of kinetic parameters on elementary mode fluxes. Effects of single kinetic parameters on elementary mode 
fluxes. In each example, the variable parameter is indicated at the top of the graph, and all other parameters were kept at their 
reference values given in Table 2. Horizontal axes use logarithmic scales.
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Correlations between elementary mode fluxes induced by individual enzymesFigure 3
Correlations between elementary mode fluxes induced by individual enzymes. Correlations between variations of 
pairs of elementary mode fluxes under random variations of all kinetic parameters of each enzyme. Values are colour-coded 
according to the bar at the bottom of the figure. White squares indicate that no correlation coefficient could be calculated, i.e. 
that one of the two elementary modes retained a constant flux value.
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- ALD kinetics has little effect on the system. The only
observed variations are for EM7 and EM8, and they are
strongly correlated. This indicates that ALD may only
influence the system globally, but not the balance of its
different branches.

- GLK, PGI and PFK produce similar effects. The responses
of EM5, EM7 and EM8 are strongly correlated for these
enzymes. This may be explained by the fact that these
enzymes are located in the top branch of the system, and
are thus unable to affect the balance of branches located
further down. However the response of EM4 is not corre-
lated to the three other modes. EM4 actually involves two
divergences from the dominant mode EM8, whereas EM7
and EM5 involve only one. Therefore several independent
processes may lead to an activation of EM4, explaining its
decorrelation from EM8.

- G3PDH produces strong correlations between EM5 and
EM7, and between EM3 and EM4, but these groups are
only weakly correlated with each other, and not at all with

EM8. G3PDH controls the glycerol branch, and it looks as
if flux changes in the glycerol branch are compensated by
changes in other side branches independently of the dom-
inant regime EM8.

- GAPDH, PGK, PGM, ENO, and PYK exhibit related
effects as well, whose most striking characteristics are an
anti-correlation of EM8 with EM5 and EM7. When kinetic
changes in these enzymes result in an alteration of the
production of ethanol, they are compensated by the pro-
duction of glycerol and succinate. EM4 is also correlated
with EM5 and EM7, but EM3, when effects can be noticed,
is not. Correlations are not as clear for PDC, although this
enzyme would be expected to produce similar effects
because of its localisation in the same branch as that
group of enzymes. PDC kinetics is actually modelled by a
simple two-compound Michaelis-Menten relation, and a
more advanced model may be required.

- ADH exhibits similar correlations as the previous group.
The most notable effects of ADH kinetics would have

Effects of external concentrations on elementary mode fluxesFigure 4
Effects of external concentrations on elementary mode fluxes. Effects of external concentrations of glucose (left) and 
ethanol (right) on elementary mode fluxes. In both cases, the non-variable concentration was 50, and all kinetic parameters 
were kept at their reference values given in Table 2. Horizontal axes use logarithmic scales.
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been expected on EM6, but because this mode was not
activated in any calculated steady state, no such effects
could be observed.

Influence of external concentrations

We additionally looked at the effects of variations in con-
centrations of external compounds on elementary mode
fluxes. Only two external concentrations are defined in
the glycolysis model: glucose and ethanol. The effect of a
variation of glucose concentration is not very different
from what was observed for some kinetic parameters,

such as Km·G6P of GLK (Table 5 and Figure 4). For low glu-
cose concentrations, all fluxes tend to decrease but the
balance of the different modes is not significantly affected.
Changes in ethanol concentration produce more complex
effects. For very high concentrations of external ethanol,
the production of ethanol from acetaldehyde is slowed
down and the system shifts toward glycerol and succinate
production. But even under these conditions, no contri-
bution could be found for EM6, as the system never
reached a state where the ADH reaction would work in the

Table 5: Standard deviations of elementary mode fluxes under variation of concentrations of external compounds

Concentratio
ns

EM1 EM2 EM3 EM4 EM5 EM6 EM7 EM8

Glucose 0 0 0 0.05 0.17 0 0.77 4.66
Ethanol 0 0 0 1.82 0.99 0 5.72 10.30

All 
concentration
s

0 0 0.40 2.22 1.23 0 2.35 6.90

Elementary mode fluxes spanned by external concentrationsFigure 5
Elementary mode fluxes spanned by external concentrations. Distributions of elementary mode fluxes obtained for 
400 random sets of glucose and ethanol concentration values. Glucose concentration was allowed to vary between 2 and 100, 
ethanol concentration between 1 and 600. Vertical axes have been cut at 0.4 but the height of peaks for constant modes 
extends till 1.
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reverse direction (i.e. production of acetaldehyde from
ethanol).

The distributions of elementary mode fluxes obtained for
400 random glucose and ethanol concentration values are
shown in Figure 5, and confirm the trends revealed by Fig-
ure 4. Most elementary modes have a very narrow distri-
bution around their reference value, while only EM8 has
a broader distribution ranging from approximately 30 to
70.

Exploring the space of attainable steady states

We subsequently attempted to span the entire space of
kinetically attainable steady states by allowing all kinetic
parameters of all enzymes to vary simultaneously in the
ranges defined in Table 2. Because the dimension of the
parameter space is too large for it to be scanned is a sys-
tematic way, parameter values were selected randomly in
their allowed intervals. 400 random sets of parameters
were selected, and for each of them the steady-state flux
distribution was computed using the Gepasi software and
decomposed onto elementary modes using our algo-
rithm.

Figure 6 shows the histograms of the distributions
obtained for the eight elementary mode fluxes. The fluxes
of EM1 and EM2 always remained constant for the reason
stated earlier. The flux of EM6 always remained at zero,
although this condition is not dictated by the kinetics of
the succinate and ADH reactions. The only possibility for
EM6 to achieve a non-zero flux would be for the ADH
reaction to consume ethanol and produce acetaldehyde,
and such a state was never reached by this model. A
change in the kinetic representation of this system may
therefore be required if it is to model the shift from glyco-
lysis to respiration. The fact that EM3 remained little used
indicates that the triose-phosphate isomerase reaction is
driven in most cases to the direction of GAP.

The distributions of EM3, EM4, EM5 and EM7 all show
very little variation and are concentrated at low values.
Only EM8 shows a broader distribution spanning most of
the possible flux values, with an important peak around
80. A majority of steady states thus represent distributions
where most of the flux in the system is consumed by EM8,
with very little use of the other elementary modes. Inter-
estingly, this dominant state is not identical to the experi-

Elementary mode fluxes spanned by kinetic parametersFigure 6
Elementary mode fluxes spanned by kinetic parameters. Distributions of elementary mode fluxes obtained for 400 
random sets of values of all kinetic parameters in the system. Vertical axes have been cut at 0.4 but the height of peaks for con-
stant modes extends till 1.
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mental steady state, where EM8 is still the most important
mode but EM7 consumes a non-negligible proportion of
flux.

Correlations between the different elementary mode
fluxes were computed as in the previous section (Figure
7). EM5 and EM7, respectively EM3 and EM4, show
strong positive correlations. This observation is consistent
with the results obtained for individual enzymes, as the
correlations between those pairs were positive in most
cases (Figure 3). The remaining pairs of elementary modes
are not correlated, which is also consistent with the previ-
ous observations. In the relation between EM7 and EM8
for example, GLK, PGI, and PFK created a positive correla-
tion, while GAPDH, PGK, PGM, ENO, PYK, PDC, and
ADH created a negative correlation.

Relations to metabolic control analysis

The approach followed in the previous sections presents
resemblances to methods developed in the framework of
Metabolic Control Analysis (MCA) [34]. The major differ-
ence between both approaches is that MCA is based on
the analysis of small parameter variations around a given
state, while our approach on the contrary was aimed at
spanning an as large as possible range of possible states.
Unless MCA were repeated for a large number of different
states (which would be prohibitive given the large
number of parameters), it does not allow a description of
the distributions and correlations between elementary
mode fluxes in large intervals.

In order to clarify the relations between both approaches,
we nevertheless applied MCA to the most significant state
for this system: the experimental steady state determined
by [30]. Two types of coefficients have been defined in
MCA. First, elasticity coefficients describe the effects of
individual parameters on the rate of the given reaction
considered to be isolated:

where p is the perturbation parameter and v the rate for
the isolated enzyme. Second, control coefficients describe
the effects of a given enzyme on system fluxes, by compar-
ing a rate variation induced by a perturbation for the iso-
lated enzyme to the variation of system flux induced by
the same perturbation. Control coefficients can be defined
in a similar way for elementary mode fluxes:

where v is the rate of the isolated enzyme and w is an ele-
mentary mode flux in the system. It should be noted that
control coefficients of a given reaction are independent on
the choice of the perturbation parameter, therefore only
one control coefficient exists characterising the effect of a
given enzyme onto a given systemic flux [35]. Elasticity
coefficients on the contrary are local properties that are
not linked to a particular system.

Elasticity coefficients of parameters of the glycolysis
model are shown in the last column of Table 3, and con-
trol coefficients are shown in Table 6. No relation can be
observed between standard deviations of elementary
mode fluxes over large intervals and elasticity coefficients.
For example Vmax and Keq of G3PDH have very different
elasticities, while their effects on elementary mode fluxes
are in the same range. As was shown in Figure 2, some
parameters have very different effects in different areas,

εp
v v

p

p

v
= ∂

∂
( )1
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General correlations between elementary mode fluxesFigure 7
General correlations between elementary mode 
fluxes. Correlations between variations of pairs of elemen-
tary mode fluxes under random variation of all kinetic param-
eters of all enzymes. Values are colour-coded according to 
the bar at the bottom of the figure. White squares indicate 
that no correlation coefficient could be calculated, i.e. that 
one of the two elementary modes retained a constant flux 
value.
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and local parameters are not sufficient for characterising
effects over wide intervals.

Control coefficients cannot be calculated at the experi-
mental steady state for EM3, EM4, and EM6, because both
δw and w are equal to zero for these modes. For the
remaining elementary modes, standard deviations over
large intervals cannot be inferred from local control coef-
ficients in general. For example, GLK and PGI produce
similar large-range effects but have very different local
control coefficients on EM8. On the opposite, G3PDH
and GAPDH have both strong large-range effects and high
local control coefficients on several modes. The overall
correlation between EM5 and EM7 can be observed
locally, as values of all control coefficients are very similar
for these two modes. In order to check that the summa-
tion relationship of flux control coefficients also applies
to elementary mode fluxes, we added to Table 6 the proc-
esses corresponding to glucose transport, conservation of
adenine nucleotides, and branches with approximate
modelling in [30]. The sums of control coefficients of ele-
mentary mode fluxes are indeed close to unity, apart from
computational approximations.

Discussion
The motivation for providing a decomposition of flux dis-
tributions onto elementary modes was to provide a quan-
titative measure of the utilisation of each elementary
mode in a metabolic system under given conditions. Each

elementary mode represents a particular route of transfor-
mation of some substrates into some products, and can
therefore be viewed as an elementary possible biological
function of a metabolic pathway. Having a measure of ele-
mentary mode utilisation is important for two reasons.
First, it makes it possible to observe which elementary
modes are significantly active in a biological system and
which ones are not. This capability greatly enhances the
biological interpretability of elementary mode based
pathway analyses, and allows to concentrate further inves-
tigations on the physiologically active processes among
the usually very large number of stoichiometrically possi-
ble processes. Second, a quantitative measure makes it
possible to quantify the effects of changes in a system (e.g.
in the concentration of some metabolite, in the kinetics of
some reaction, or in genetic expression leading to the
induction or repression of some reaction) on the redistri-
bution of metabolic processes in that system. Such analy-
ses may in turn be used in a biotechnology perspective for
identifying components which have the strongest effect
on some desirable physiological process. In our example,
several kinetic parameters were shown to have very little
effect on the steady state of the glycolytic system, while a
smaller set of parameters can account for significant vari-
ations. The same approach may be relevant when attempt-
ing to model particular biochemical reactions based on
experimental measurement of kinetic parameters, as the
most important parameters could be identified in order to
concentrate experimental efforts on them.

Table 6: Control coefficients of elementary mode fluxes by individual steps at the experimental steady state. The bottom part of the 

table refers to the following processes: GLT, transport of glucose across the cell membrane; Glyco, glycogen branch; Treha, trehalose 

branch; Succ, succinate branch; AK, equilibrium constraint on adenylate kinase due to the conservation of adenine nucleotides.

Enzymes, 
processes

EM1 EM2 EM3 EM4 EM5 EM6 EM7 EM8

GLK 0 0 N/A N/A 0.090 N/A 0.090 0.208
PGI 0 0 N/A N/A 0.0013 N/A 0.0010 0.0030
PFK 0 0 N/A N/A 0.0010 N/A 0.0009 0.0023
ALD 0 0 N/A N/A 0.0002 N/A 0.0005 0.0004
G3PDH 0 0 N/A N/A 0.563 N/A 0.562 -0.249
GAPDH 0 0 N/A N/A -0.246 N/A -0.246 0.111
PGK 0 0 N/A N/A -0.0068 N/A -0.0057 0.0026
PGM 0 0 N/A N/A -0.0056 N/A -0.0049 0.0023
ENO 0 0 N/A N/A -0.015 N/A -0.015 0.0067
PYK 0 0 N/A N/A -0.0076 N/A -0.0072 0.0033
PDC 0 0 N/A N/A -0.0045 N/A -0.0042 0.0019
ADH 0 0 N/A N/A -0.108 N/A -0.109 0.049

GLT 0 0 N/A N/A 0.573 N/A 0.574 1.316
Glyco 0 1 N/A N/A -0.056 N/A -0.056 -0.115
Treha 1 0 N/A N/A -0.043 N/A -0.043 -0.090
Succ 0 0 N/A N/A 0.346 N/A 0.346 -0.153
AK 0 0 N/A N/A -0.093 N/A -0.093 -0.095

Summation 1 1 N/A N/A 0.989 N/A 0.990 1.004

A Self-archived copy inKyoto University Research Information Repositoryhttps://repository.kulib.kyoto-u.ac.jp



BMC Bioinformatics 2006, 7:186 http://www.biomedcentral.com/1471-2105/7/186

Page 16 of 20

(page number not for citation purposes)

It is particularly interesting that the same choice for a rel-
evant decomposition, i.e. minimising the norm of the ele-
mentary mode flux vector, was introduced independently
by two different teams based on two different approaches.
We previously justified this choice from a geometrical and
biological point of view [27,28]. Our approach was based
on the idea that the best decomposition should assign
maximum weights to the modes that are closest to the
actual state of the system, i.e. the modes that best describe
it biologically. The authors of [29] in turn showed that the
same choice results from using the Moore-Penrose gener-
alised inverse for inverting the matrix of elementary
modes. They furthermore showed that this decomposi-
tion possesses desirable mathematical properties such as
accuracy, nullity, computability, and continuity in the
case where all reactions are reversible. Continuity cannot
be guaranteed yet when irreversible reactions are present,
although no single occurrence of discontinuity was
observed in all our computations.

In the glycolytic system, our analysis found the space of
kinetically feasible steady states to be significantly smaller
than the space of stoichiometrically feasible steady states.
When only stoichiometry is taken into account, all linear
combinations of reversible elementary modes and non-
negative linear combinations of irreversible elementary
modes are valid steady states. But when a kinetic model is
applied, it appears that a significantly smaller part of the
steady state space is actually attainable, even when large
ranges of values are allowed for all kinetic parameters.
Most elementary mode fluxes in the glycolytic system
were constrained to narrow intervals, and only two ele-
mentary mode fluxes could span large intervals of values.
These results are consistent with other findings on cellular
metabolism. A system-wide analysis of metabolic fluxes in
Escherichia coli based on linear programming revealed that
the overall activity of metabolism is dominated by a high-
flux backbone, while most other reactions have low fluxes
[36]. This reaction core appeared to be robust to environ-
mental perturbations and evolutionary conserved [37]. A
number of experimental analyses also revealed that most
flux control coefficients of metabolic pathways are small
[38], indicating that perturbations in most enzymes have
little effect on metabolic fluxes. This robustness may be a
inherent property of enzyme systems, since the opposite
would have deleterious effects on cell metabolism. It
therefore appears reasonable to expect the same proper-
ties for elementary mode fluxes. We would hypothesize
that only a small number of elementary modes have sig-
nificant activity in large systems as well, and that most ele-
mentary mode fluxes should be little affected by changes
in enzyme kinetics. The approach presented here may
open a direction toward identifying, among the large
number of stoichiometrically possible elementary modes,

a smaller set of physiologically significant elementary
modes that are suitable to biological interpretation.

A genome-wide identification of such modes by the
approach presented here remains a long process though,
and further efforts should be directed toward developing
automatic procedures combining such kinetic and ele-
mentary mode analyses. The decomposition algorithm
itself is fast and converges in a fraction of a second for the
glycolysis example. Quadratic programming problems
defined by positive-definite Hessian matrices (as is the
case here) can be solved in polynomial time [39], but per-
formance will significantly decrease in large systems.
However, possibilities exist for reducing the dimensions
of systems to be decomposed. Enzymes that operate
together in fixed flux proportions in all steady states can
be grouped and reduced to a single reaction, as was pre-
sented by [40]. In addition, procedures have been pre-
sented for decomposing large metabolic networks into
subnetworks, and it was shown that the computation of
elementary modes itself is more efficient when applied to
several small systems than one large system [41]. The
same procedures can be followed to obtain systems that
will be sufficiently small for flux decompositions to be
performed efficiently.

Conclusion
We showed how a combination of kinetic modelling and
elementary mode based flux decompositions makes it
possible to analyse the distribution of metabolic processes
in physiological cellular states, and to assess the effects of
kinetic changes onto the balance of utilisation of different
elementary modes. Similar approaches as the one pre-
sented here could be applied to understand the metabolic
response to external perturbations or genetic changes, to
identify possible genetic alterations for the optimisation
of metabolic processes of particular interest, or to quanti-
tatively measure and compare the effect of different drugs
on cellular functions. Elementary modes indeed represent
elementary possible metabolic functions, and the set of
elementary modes provides a basis for the functional
interpretation of biochemical systems. We believe that
further efforts should be directed toward fully exploiting
this potential, including the systematic computation and
functional annotation of elementary modes in complete
metabolic systems.

Methods
Decomposition of flux distributions

We consider a metabolic network with m elementary
modes and n reactions. The elementary modes are repre-
sented by vectors E1, E2...Em, each of them being of length
n. A flux distribution in this system is represented by a vec-
tor v of length n. A decomposition of this flux distribution
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onto the set of elementary modes is defined by a vector w
of length m such that:

Given that the elements of Ej are dimensionless, those of
w are expressed in units of flux. We previously used to
refer to wj values as elementary mode weightings [28], but in
order to highlight the fact that they indeed represent
fluxes carried by individual elementary modes and to
establish consistency with [29], we refer to them from
now as elementary mode fluxes. This terminology further-
more highlights the difference between wj values and α-
weightings as introduced by [26]. α-weightings are normal-
ised to unity by dividing fluxes through the limiting Vmax

of each extreme pathway, and are therefore dimensionless
values representing the fractional usage of each extreme
pathway compared to its maximum capacity.

The sign requirement for an element wj of w depends on
the nature of elementary mode Ej. If all reactions compos-
ing Ej are reversible, then elementary mode Ej is reversible
as well and its flux wj may be positive or negative. On the
opposite, if Ej contains at least one irreversible reaction,
then Ej is an irreversible elementary mode and wj can only
be positive:

wj ≥ 0 if Ej is irreversible  (4)

It should be noted that condition (4) holds for all j if
extreme pathways are used instead of elementary modes.
Extreme pathways as defined by [10] are always irreversi-
ble, since reversible reactions are decomposed into pairs
of irreversible reactions.

In general, there are more elementary modes than reac-
tions in a system, and conditions (3) and (4) do not
define a unique solution but a continuous convex space of
possible solutions. We thus introduced a third condition
constraining the system to a unique solution:

 is minimum  (5)

Relations (3), (4) and (5) together define a non-linear
optimisation problem, also known as quadratic program-
ming problem.

Elementary modes are only unique up to a scaling factor,
and the non-linearity of equation (5) makes the solution
dependent on the rule decided for scaling elementary
modes. It is therefore important to note that numerical
values of elementary mode fluxes depend on the scaling

strategy. No general rule for scaling elementary modes
could be derived from the literature, as this point becomes
crucial only with quantitative analysis. Nevertheless, most
authors implicitly scale elementary modes to the smallest
possible scale allowing all the stoichiometric coefficients
they contain to remain integers, and the same rule was
therefore applied here.

Implementation

Our implementation for solving the quadratic program-
ming problem is based on the classical active set algo-
rithm, which uses an iterative process. In each iteration,
some inequality constraints are set to equality while the
remaining constraints are temporarily disregarded, until
the correct set of active constraints is found. The main steps
of our algorithm are described below, while a detailed
mathematical demonstration of the active set algorithm
can be found in [39].

1a. The algorithm is initialised with a feasible solution, that
is a vector w(0) which fulfils conditions (3) and (4) but is
not in general the optimal solution. This step is equivalent
to a linear programming problem on its own, and is
solved by the simplex method. The obtained solution w(0)

is used as the first feasible point in step 2, together with an
empty active set.

1b. Difficulties in finding a feasible solution may appear
if the values of v do not strictly verify flux conservation.
This may happen because of rounding approximations in
numerical computations of flux values, and turned out to
occur frequently when steady-state flux distributions were
computed by the Gepasi software [33]. Different methods
have been developed for balancing inconsistent flux dis-
tributions [42]. In our implementation, balancing is
achieved through the following steps:

- the null space of the system is computed by a diagonali-
sation of the matrix of elementary modes,

- the null space is multiplied through the flux vector to
verify flux conservation,

- if fluxes are not strictly conserved, a subset of systemi-
cally independent fluxes is selected and the remaining
fluxes are adjusted to re-establish exact flux conservation.

The previous operations furthermore enable us to reduce
the dimension of the quadratic programming problem. In
the following steps, only the last subset of systemically
independent constraints is kept. This process first guaran-
tees that no degeneracy exists in the constraint set, and
second leads to a reduction in computation time that can
be worthy for large systems.

v E= ( )
=
∑w j j
j
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2. An equality constraint problem is solved using a feasi-
ble point w(k) and a set of active constraints A. This is

Theoretical exampleFigure 8
Theoretical example. a. Theoretical model presented by [29]. All reactions were modelled as having reversible mass-action 
kinetics with rate constants equal to one. b. The seven elementary modes of the system, taking X0, X1 and X2 as external 
metabolites. Since all reactions in the system are reversible, all elementary modes are reversible as well. The direction of blue 
arrows therefore only refers to a conventional positive direction for elementary mode fluxes; a negative elementary mode flux 
means that the mode is running in the opposite direction. c. Variations of elementary mode fluxes for concentrations of X0 
ranging from 0 to 5, while X1 and X2 have constant concentrations of 4 and 3 respectively.
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achieved by shifting the origin to w(k) and applying the
method of Lagrange multipliers. A correction δ(k) is
obtained as a result.

3. If δ(k) = 0, Lagrange multipliers are computed for the
active constraints. If all of them are positive, then w(k) is
the final solution and the algorithm ends. If not, then the
constraint corresponding to the lowest Lagrange multi-
plier is removed from the active set, and the algorithm is
repeated from step 2.

4. If δ(k) is feasible with regard to the constraints not in A,
then the next iterate is taken as w(k+1) = w(k) + δ(k) and the
algorithm is repeated from step 2. If not, then a line search
is made in the direction of δ(k) until the first inactive con-
straint becomes active. This constraint is added to the
active set A, and the algorithm is repeated from step 2.

When the Hessian matrix representing the quadratic opti-
misation function is positive-definite, as is the case for the
function defined by condition (5), then the quadratic
problem has a unique global solution. Therefore any solu-
tion found in step 3 is the unique global minimum. Suc-
cessful termination of the active set algorithm has been
proved in general [39], excluding the case where degener-
acy is present in the constraint set. In this case, the algo-
rithm might cycle by returning to a previously used active
set. As the possibility of degeneracy was eliminated in step
1b, that situation should not occur in our implementa-
tion, and our algorithm indeed always terminated suc-
cessfully in our applications.

Comparison

The approach followed by Poolman et al. in [29] for con-
straining the flux system consisted in inverting the matrix
of elementary modes using the Moose-Penrose general-
ised inverse (as this matrix is generally non-invertible in
the classical sense). They showed that this choice eventu-
ally leads to the same property as defined by (5), implying
that both algorithms should lead to identical results in
most cases. For verification we applied our algorithm to
the theoretical system presented in [29] and we indeed
obtained identical results (Figure 8).

However, the system shown in the previous example con-
tains only reversible fluxes, and thus includes no sign
requirement as defined by (4). As a matter of fact, the spe-
cificity of the active set algorithm precisely lays in its rig-
orous treatment of inequality constraints. We therefore
cannot exclude that differences between both algorithms
would arise when irreversible reactions are present. In that
case, when the optimal solution found by Moose-Penrose
inversion assigns negative fluxes to some irreversible ele-
mentary modes, these modes are assigned zero fluxes in
[29], and the inversion is repeated until all assignments to

irreversible fluxes are found positive. While this approach
may be sufficient to provide the optimal solution in many
cases, there is no guarantee that it does so systematically,
and one cannot exclude that it might fail in finding a solu-
tion if the system enters a loop leading to alternating neg-
ative values. More detailed comparisons between both
algorithms would need to be conducted using systems
containing irreversible fluxes to clarify that point.
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