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The thermomechanical responses of polymers, which

provide limitations to their practical use, are favourably

altered by the addition of trace amounts of a nanofiller.

However, the resulting changes in polymer properties

are poorly understood, primarily due to the non-uniform

spatial distribution of nanoparticles. Here we show that the

thermomechanical properties of ‘polymer nanocomposites’

are quantitatively equivalent to the well-documented case

of planar polymer films. We quantify this equivalence

by drawing a direct analogy between film thickness and

an appropriate experimental interparticle spacing. We

show that the changes in glass-transition temperature

with decreasing interparticle spacing for two filler

surface treatments are quantitatively equivalent to the

corresponding thin-film data with a non-wetting and

a wetting polymer–particle interface, respectively. Our

results offer new insights into the role of confinement

on the glass transition, and we conclude that the mere

presence of regions of modified mobility in the vicinity of

the particle surfaces, that is, a simple two-layer model, is

insufficient to explain our results. Rather, we conjecture

that the glass-transition process requires that the

interphase regions surrounding different particles interact.
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C
omputer simulations1 on the thermomechanical behaviour 1

of polymers with regularly spaced nanoparticles suggest that 2

they should be akin to thin polymer films. This result is 3

found to hold regardless of whether the polymer wets the filler 4

or not. Although this theoretical prediction is apparently well 5

known, it has not been quantitatively verified because experiments 6

typically deal with nanoparticles or nanosilicates, which are non- 7

uniformly distributed in space2–12. We are motivated to quantify 8

experimentally this analogy as it could simplify our understanding 9

of both of these situations, especially polymer nanocomposites, 10

which are of significant practical interest. 11

Considerable effort has been focused on delineating the role of 12

confinement on the glass transition temperature, Tg, of thin planar 13

polymer films13–32(C. B. Roth and J. R. Dutcher, manuscript in 14

preparation). Two experimental observations are now recognized 15

as being universal: (i) Tg is a function of the film thickness, h; and 16

(ii) the magnitude and sign of the Tg shift depends upon polymer– 17

substrate interactions. Polymer films can either be free standing, 18

supported on a substrate or sandwiched between two hard walls. 19

The largest reductions are observed for free-standing films, with 20

the change being twice as large as that found for supported films 21

of the same h (ref. 20). A film properly sandwiched between two 22

impenetrable, wetting walls, on the other hand, shows essentially 23

no change in Tg for any h (ref. 33). These data support the notion 24

that a free surface, or a non-wetting interface between a hard surface 25

and a polymer, is necessary for reductions in Tg (refs 15,16,34). On 26

the basis of this conjecture, surface-layer models that postulate a 27

mobile ‘liquid-like’ layer have been developed and found to explain 28

the experimental observations of a reduction in Tg (ref. 20): 29

Tg(h) = T bulk
g +

2ξ(Tg(h))

h
(T surf

g −T bulk
g ) (1) 30

where T bulk
g is the bulk Tg and ξ(Tg(h)) is the thickness of the surface 31

region with a glass transition temperature of T surf
g . 32

Here, we focus on the changes in polymer Tg with increasing 33

filler content in a polymer nanocomposite. For untreated silica 34

surfaces, which are non-wetting to polystyrene (PS), we show 35

that the Tg changes with filler content closely track the 36

results obtained for planar free-standing films. In contrast, for 37

modified silica surfaces that provide intimate surface–polymer 38
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Figure 1 SEM images showing fracture surfaces. a, A 15 wt% untreated SiO2/PS

nanocomposite. Nanoparticles reside inside voids indicating dewetting of PS from

SiO2 surfaces. b, A 2 wt% SiO2-g-PS/PS nanocomposite (see the Methods section).

The contrast between the filler and matrix is low because the surface is covered by a

layer of polymer. Furthermore, in contrast to the untreated surface, the particle

surface of the SiO2-g-PS is well adhered to the PS. The surfaces were prepared by

breaking nanocomposite samples under liquid nitrogen.

contact, the changes in Tg with filler content quantitatively1

follow the trends for capped surfaces. We therefore argue for a2

quantitative equivalence of the Tg values of thin polymer films3

and nanocomposites, an analogy we assert will have powerful,4

potentially far-reaching consequences for our understanding of5

these closely related situations.6

We prepared silica/polystyrene nanocomposites over a broad7

range of silica loadings and characterized their Tg and viscoelastic8

behaviour (see the Methods section for specific details). Differential9

scanning calorimetry (DSC), in both heating and cooling modes,10

gave identical estimates of the Tg. We first focus on fillers with11

untreated surfaces. Planar PS thin films are known to dewet from12

flat SiOx substrates. Similarly, scanning electron microscope (SEM)13

images (Fig. 1a) of a fracture surface show cavities around silica14

nanoparticles that formed during brittle fracture, suggesting that15

there is imperfect wetting, and hence imperfect bonding, between16

the polymer and the untreated nanoparticles. Further credence for17

this assignment comes from X-ray photon correlation spectroscopy18
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Figure 2 The glass-transition behaviour of SiO2/PS nanocomposites.

a, Representative DSC traces of SiO2/PS nanocomposites showing only a single

endothermic transition (the Tg) and a distinct reduction in average Tg. b, Tg of

SiO2/PS nanocomposites as a function of filler loading. There is some scatter in the

data associated with different degrees of aggregation. Samples prepared from MEK

and THF show the same trend in depression of Tg but the quantitative difference can

be accounted for by variations in particle aggregation.

results, which assert that the particle mobility increases by an 19

order of magnitude at 160 ◦C when the concentration of filler 20

increases from 2 wt% to 15 wt% silica. On the basis of these 21

findings, we conjecture that there is no polymer inside particle 22

aggregates. (This last issue is further substantiated later.) Consistent 23

with these ideas, and with the literature findings on thin capped 24

films with imperfect polymer–surface bonding25, we find that the 25

nanocomposite Tg decreases with increasing filler content (Fig. 2). 26

Although the inherent errors in our measurements (typically ±1 K) 27

are relatively large, the overall change in Tg over the range of 28

silica compositions studied is much larger, ∼11 K. This gives us 29

confidence that our trends are robust and well outside experimental 30

error. Note that there is some scatter in the data. For example, 31

the 25 wt% SiO2 sample shows a higher Tg than the 15 wt% and 32

40 wt% samples. We shall discuss this aspect below and establish 33

that it is not a consequence of data scatter but rather due to 34
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Figure 3 Representative TEMmicrographs of SiO2/PS nanocomposites at various filler concentrations prepared using MEK. a, 2 wt%. b, 5 wt%. c, 15 wt%. d, An

example of measured ligaments for a 5 wt% SiO2/PS nanocomposite sample. e, Distribution of interparticle spacings measured for four representative concentrations. The

plot shows the distribution of 1/h. Note that these distributions are not monotonic with increasing silica content, which is consistent with the results shown in Fig. 1.

differences in the spatial distribution of particles. Qualitatively1

similar results are obtained regardless of the solvent used to2

prepare the nanocomposites, that is, methylethylketone (MEK)3

versus tetrahydrofuran (THF). Such decreases in Tg upon addition4

of nanofillers with a non-wetting interface have been reported5

previously3,9. However, the analogy between these results and those 6

for thin films have not been quantified so far. 7

To compare our findings with the literature values of Tg on thin 8

films, we characterized the distribution of interparticle spacings 9

(h) from transmission electron microscope (TEM) images for each 10
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sample (representative examples are shown in Fig. 3a–c). Note1

that the extent of particle agglomeration increases with increased2

silica loading. Microtomed samples establish that the particles are3

uniformly present across the film thickness and that there is no4

preferential surface segregation of the particles (see Supplementary5

Information). To quantify the distribution of interparticle spacings6

we drew lines between pairs of nearest-particle faces, so that7

each particle was at the centre of a minimally closed polygon8

(Fig. 3d). This construction, which is similar in spirit to the9

Voronoi tessalation of space, allows us to identify the maximal10

confinement experienced by each volume of polymer. We further11

need to account for the fact that the extent of confinement created12

by two particles changes as we traverse their curved contours. A13

convenient approximation, which avoids this somewhat ambitious14

exercise, is to use the minimal value of the face-to-face distance or15

interparticle spacing. We create a probability distribution for this16

quantity (Fig. 3e) and find that it does not change monotonically17

with filler content. Rather, the 25 wt% composite has a distribution18

that falls above the 15 wt% sample. This satisfactorily resolves the19

trend seen in Fig. 2 where the 25 wt% sample has a smaller Tg drop20

than the 15 wt% or the 40 wt% samples.21

The most obvious means to complete the analogy between22

nanocomposites and thin films is to obtain an arithmetic average23

of the distribution of interparticle spacings, that is, h∗ = 〈hi〉,24

where 〈..〉 denotes an ensemble average. An equivalent geometric25

definition is26

h∗∗ =
volume of PS (from TEM)

surface area of SiO2 (from TEM)
.27

We are motivated to study this second definition as it allows28

us to study critically the applicability of two-layer models. To29

elaborate on this point, we note that if each particle/aggregate has a30

layer of thickness ξ with modified Tg associated with it, then the net31

fraction of material that would be affected would be proportional to32

surface area of SiO2 (from TEM)

volume of PS (from TEM)
≡

1

h∗∗
.33

In the simple case where we consider two planar films with the34

same surface area but different thicknesses, it follows that h∗∗ = h∗.35

Thus, we expect that both h∗ and h∗∗ should provide equivalent36

descriptions of the nanocomposite data. Figure 4a, which compares37

thin-film data with the nanocomposite data when h∗ and h∗∗
38

are used to characterize the nanocomposites, indeed verifies this39

assertion, but demonstrates that quantitative agreement is not40

achieved between the thin films and the nanocomposites on this41

basis. Instead, when h∗ or h∗∗ are used, the nanocomposite data42

seem to fall at the right-hand extreme of the thin-film results.43

We are further persuaded that neither h∗ nor h∗∗ are accurate44

descriptors because they predict that the Tg of the nanocomposites45

do not reach the bulk values for h∗ (and hence h∗∗) that are as large46

as 200 nm; in contrast, the thin-film data become dependent on47

thickness only for films thinner than 100 nm.48

To make further progress, and as no general theory has been49

proposed for the depression of Tg in confined systems, we utilize50

the form of equation (1) to describe the h dependence of Tg.51

Thus, we assume that the Tg for each ligament (or the region52

between two particle aggregates), with thickness hi, is described53

by a thin film of the same thickness. Following equation (1), we54

therefore hypothesize that the local distribution of Tg values in the55

nanocomposites directly reflects the distribution of the function56

(1/h) (Fig. 3e). It then follows that the mean glass transition57

temperature of the nanocomposite, 〈Tg〉, should be quantitatively58

related to a mean spacing, h∗∗∗, which is a harmonic mean of59

the interparticle spacing: 1/h∗∗∗ = 〈1/hi〉. The Tg values for the60

nanocomposites prepared from the two solvents and two different61
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Figure 4 A comparison between the glass-transition responses of PS

nanocomposite and thin PS films. a, The change in Tg of SiO2/PS and

SiO2-g-PS/PS nanocomposites as a function of average ligament thickness. The x

error bar represents a 95% confidence level. Data from the literature on

free-standing20 and supported14,30 films are shown as open circles: following ref. 20

the thickness for supported films has been multiplied by two to account for the

relative surface area of the free surfaces in the two cases. Data are also shown for

sandwiched films as open triangles in the case where proper surface–polymer

bonding was obtained. The film thicknesses are not shifted in this case. b, The

change in Tg for SiO2/PS nanocomposites as a function of h
∗∗∗
z

and h∗
z
. c, The

corresponding comparison of the normalized width of the glass-transition process.

Please refer to Supplementary Information for DMA results of silica/PS

nanocomposites. Open circles represent dielectric data from a variety of frequencies

on supported films revealing that frequency had no bearing on the relative width of

the relaxation: note that the films had a drop similar to those of supported films21.

The thickness was therefore multiplied by two to account for the surface effects.
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Figure 5 The effect of solvent on the agglomeration of nanoparticles. a,b, TEM

images of 15 wt% SiO2/PS nanocomposites prepared by MEK (a) and THF (b).

Although the extents of agglomeration are quite different in the two cases, we note

that their Tg shifts can be rationalized by calculating the h
∗∗∗
z

values. These results

emphasize that particle size is a secondary concern in this context.

PS molecular weights are shown as a function of h∗∗∗ in Fig. 4a. In1

the legend, the number in parentheses is the molecular weight of the2

matrix. It is clear that the nanocomposite data as characterized by3

this h∗∗∗ value fall at the extreme left of the thin film, thus providing4

an incomplete analogy to the thin films.5

At this juncture it is important to realize that, even though we6

have treated the TEM pictures as being two-dimensional snapshots7

of the nanocomposite, in fact each TEM slice is a film of thickness8

∼50 nm. The h∗∗∗ values, and also the h∗ and h∗∗ values, must9

be modified to include this third dimension. We assume that10

the centres of the nanoparticles are uniformly distributed in the11

direction normal to the TEM surfaces, z. The h values that are12

derived from the TEM pictures must therefore be modified to13

account for the variation of this z component. For the correction of14

h∗ we reasonably assume that each h is represented by the average15

hz =
∫ √

h2 +z2dz
∫

dz
;16

the corresponding average h value we denote as h∗
z .17

Similarly, for the correction of h∗∗∗ we use 18

1

hz

=
∫

dz/
√

h2 +z2

dz
, 19

and the average denoted as h∗∗∗
z . We do not calculate an analogous 20

value of h∗∗
z , but conjecture that its behaviour tracks that of h∗

z . The 21

results of this calculation are shown in Fig. 4b. It is immediately 22

clear that this method of accounting for the thickness of the TEM 23

slices allows h∗∗∗
z to explain quantitatively the nanocomposite data 24

in the language of the thin films, although h∗
z shifts even further to 25

the right-hand extreme of the thin-film data. We therefore conclude 26

that the data from the thin films and the nanocomposites follow 27

the same quantitative trend within experimental uncertainties. 28

Furthermore, although the two solvents MEK and THF yield 29

different extents of aggregation of the nanoparticles and hence 30

different interparticle spacings (Fig. 5), they are found to follow the 31

same relationship, emphasizing its apparent generality. Figure 4c, 32

which compares the normalized width of the glass transition in the 33

two cases, makes this connection even stronger. 34

A particular concern, which has been addressed previously, is 35

the intercalation of PS into the aggregates. If PS has intercalated 36

into the aggregates, then the reduction of Tg for a composite with 37

higher aggregation should be more severe than for a composite with 38

lower aggregation. This is not the case for samples of 15 wt% silica 39

prepared from MEK and THF. The THF samples are much more 40

aggregated (Fig. 5), but show a much smaller Tg shift than the MEK 41

samples. More importantly, Fig. 4a shows that data from both the 42

solvents fall on the thin-film curve when the nanocomposite data 43

are quantified in terms of h∗∗∗
z . Similar findings are made when 44

the 15 wt% and 25 wt% silica samples (both cast from MEK) are 45

compared. Thus, we conclude that, even though different solvents 46

and molecular weights yield different extents of agglomeration of 47

nanoparticles in the polymer matrices, and hence different values of 48

the interparticle spacing, the size of the agglomerates does not affect 49

the results obtained. Rather, the dominant physics is embodied in 50

the appropriately averaged interparticle separation, h∗∗∗
z . 51

To provide further support for the analogy between 52

nanocomposites and thin films, we performed experiments with 53

SiO2 nanoparticles that had high-molecular-weight PS grafted from 54

them (called SiO2-g-PS; see the Methods section). These modified 55

particles provide a wetting interface between the particles and 56

a 250,000 g mol−1 molecular weight PS matrix. This assignment 57

is verified by scanning electron microscopy showing a wetting 58

interface (Fig. 1b) and X-ray photon correlation spectroscopy, 59

which suggests that particle mobility in these cases is unaffected 60

by an increase in particle concentration. Tg data from these 61

systems are plotted in Fig. 4a and compared with PS films 62

sandwiched between metal layers. Within experimental error, our 63

hypothesis is supported by the fact that no decrease in Tg is 64

observed for wetting interfaces. Note also that the width of the 65

glass-transition process is decreased when compared with the case 66

of the non-wetting films (Fig. 4c). 67

It is interesting that the nanocomposite results agree with the 68

thin-film data given the curvature of the particles and their inherent 69

surface topography. Although we expect topography to play a 70

minor role for the case of dewetting interfaces, the result for the 71

case of wetting interfaces is less clear. However, we note that Tg is a 72

local property driven by events on the 1–2 nm length scale. Because 73

the particle sizes are ∼15 nm and the smallest interparticle spacings 74

are ∼25 nm, curvature effects should not play a role here. However, 75

much smaller wetting particles might provide critical information 76

on the role of curvature effects. Similarly, we are not completely 77

surprised that surface roughness (or local curvature effects on the 78

nanometre length scale) plays no role as no such effects have been 79

observed for thin planar films. 80
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Our results provide important new insights into glass-1

transition behaviour in confined geometries. Our primary2

conclusion is that generic ‘two-layer’ models, which have been used3

to interpret equation (1) in the context of thin-film Tg data, do not4

embody the physics of these situations15. To explain this potentially5

far-reaching conclusion, we begin by accepting the conjecture that6

there is a local layer of altered polymer mobility surrounding each7

nanoparticle10,15,19. For the unfunctionalized silica particles this8

would correspond to a region of enhanced mobility. As discussed9

above, the volume fraction of polymer with altered mobility is10

proportional to 1/h∗. However, because neither h∗ nor h∗
z explain11

the nanocomposite data in Fig. 4, we conclude that the mere12

presence of regions of enhanced mobility, that is, a simple two-13

layer model, is insufficient to explain our results. As a consequence,14

we are forced to require that the ‘liquid-like’ regions surrounding15

different particles interact. We conjecture that such interactions16

could follow the ideas put forward in ref. 24, where it is suggested17

that the Tg process on heating occurs when mobile domains18

percolate across the specimen. In the nanocomposites, the smallest19

interparticle spacings, which would percolate first, would dominate20

behaviour. In the case of the functionalized particles, we argue21

that similar interaction effects could continue to apply, except that22

the region in close proximity to the particles has reduced mobility23

when compared with the bulk. We therefore propose that the glass-24

transition process in confined geometries requires the interaction25

of near-surface regions of altered mobility.26

METHODS27

PS samples of two difference average molecular weights, 282,000 g mol−1 (polydisperity, PDI = 1.04)28

and 92,000 g mol−1 (PDI = 1.10), were synthesized using anionic polymerization methods. The silica29

particles (Nissan Chemicals) with an average diameter of 14±4 nm as measured by TEM, and 20 nm30

as measured by light scattering, were obtained as 30 wt% suspensions in MEK. These were diluted with31

MEK, sonicated and mixed with a 10% PS solution in MEK. The resulting solution was further32

sonicated for 2 min, cast on petri dishes and dried at room temperature. To study the effect of surface33

modification, SiO2 nanoparticles were end grafted with PS (Mw = 160,000 g mol−1 , PDI = 1.11,34

grafting density σ ∼ 0.57 chains nm−2). Details of this preparation method can be found in ref. 35. The35

films were peeled from the petri dish and dried in a vacuum oven (<30 mm Hg) at 373 K for 24 h to36

remove the residual solvent. Subsequent thermal gravimetric analysis (TGA) showed no evidence of37

residual solvent. Finally, the dried films were compression moulded into 0.5-mm-thick samples at38

443 K. No changes in properties on subsequent annealing were observed, suggesting that these39

moulded samples are well equilibrated to the best of our abilities. It must be noted here that if the40

untreated SiO2-PS-MEK solution was allowed to equilibrate in a vial at room temperature, the41

nanoparticles phase segregated to the bottom. This means that the suspensions that are cast on petri42

dishes do not represent the equilibrium state and that the dispersion of SiO2 in PS will evolve over the43

course of evaporation. This balance will be different for different solvents used (that is, THF versus44

MEK). However, once the dried composite is formed, its state of dispersion does not change upon45

moulding or upon further annealing. The dispersions of the grafted particles, on the other hand, are46

stable for extended periods of time, indicating good compatibility of the grafted silica with PS.47

The molecular weight of PS was measured before and after sonication. Gel permeation48

chromatography showed that the Mw values shifted from 282,000 to 252,000 g mol−1 (named49

PS (250 K)) and 92,000 to 90,000 g mol−1 (named PS (90 K)) after sonication. However, the sample50

polydispersity was unchanged. Similar results were found for PS in the nanocomposites (after51

dissolution). We have used the sonicated polymer solutions to prepare both the control samples52

and the nanocomposites.53

DSC and dynamic mechanical analysis (DMA) were used to characterize the Tg . The Tg of the54

filled PS was characterized as the mid point of the change in specific heat from a DSC scan or the peak55

position of the loss modulus from DMA. Both these measures were in quantitative agreement (±1 K).56

For DSC experiments, the moulded samples were heated to 453 K and soaked for 2 min followed by57

cooling at 10 K min−1 . The reported Tg was from the second heating at a rate of 10 K min−1 . Both58

cooling and heating experiments yielded identical results. Experiments to determine the effect of59

heating rate are in progress. Furthermore, DSC on unmoulded nanocomposites run up to 453 K60

revealed only the glass transition endotherm and TGA revealed that the thermal degradation of the PS61

filled with SiO2 was identical to that of neat PS. We are therefore confident that no chemical reaction62

took place between SiO2 and PS.63

DMA (Rheometrics DMTA V) was performed in tensile mode (6 mm (L)×0.5 mm (T)×64

3 mm (W)) with a frequency of 1 Hz. Temperature was ramped from 300 to 453 K at 2 K min−1 . A65

dynamic strain of 0.03% was imposed to measure the dynamic modulus in the linear66

viscoelastic regime.67

TEM (JOEL 840) was used to quantify the average interparticle spacing between SiO2 particles in68

the nanocomposites. The moulded samples were cut to a thickness of ∼50 nm using an69

ultramicrotome system (MTXL, Boeckeler Instruments) and studied by TEM. Negatives were scanned70

at a resolution of 1,200 d.p.i. giving a pixel/nm ratio of ∼1:1 (at 22 K magnification). The edges of the71

nanoparticles were discernable to the naked eye and interparticle spacings were measured by an image72

analyser (Scion Image software) using at least 600 independent ligaments. We note that, in each73

nanocomposite, the sizes of the agglomerates were comparable and in most instances much larger than74

the film thickness. This rules out any artefacts in the measurement of interparticle spacings arising due75

to the three-dimensional nature of the SiO2 dispersion. Furthermore, atomic force microscopy images76

of samples sectioned through their thickness have revealed a uniform distribution of the nanoparticles77

in the entire thickness (see Supplementary Information, Fig. S1).78
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