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problem, this paper presents a model to estimate the number
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QUANTITATIVE ESTIMATES OF DEBUGGING REQUIREMENTS

INTRODUCTION

The management of large-scale software system development

is a significant problem. The problem is not with the type

of management organization. but with scheduling and

planning: determining how long a project is going to take

and determining when the project is done. Upper management.

in general. is accustomed to dealing with test~d models and

concrete numbers when planning and reporting on progress.

Software people. on the other hand. have tended to rely on

ad hoc methods. For instance. timing estimates may be made

by comparing the assumed difficulty of the current project

with the difficulty of an earlier project. Frequently,

however, many factors have changed and cannot be accounted

for. These might include new personnel, a different

programming language, or a change in programming techniques.

The reputation of these methods is not good. As

Zelkowitz summarizes in a recent Computing Surveys,

"Software is often delivered late. It is frequently

unreliable and usually expensive to maintain" [Zel 78].

Despite the inadequacy of the ad hoc methods, there have

been no generally accepted alternatives, and until recently,

the idea of being able to solve this problem was considered

preposterous.
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The importance or the scheduling and planning problem

becomes clearer when one considers the ever-increasing role

software plays in everyday living. Medical equipment,

defense systems, air traffic control. bank accounts and an

ever increasing number of other vital functions in our lives

are controlled by computers. Thus it is vitally important

for the software to be available as promised.

A significant aid in solving a portion of these problems

would be an accurate estimate of the number of bugs in the

software at the beginning of the validation phase. This

could then be used to predict the amount of personnel and

computer time needed for the validation of the project, as

well as assess the product~s reliability. Finding a model

to provide this estimate was the purpose of this research.

BACKGROUND

In the early days of computing, managers obtained rough

estimates for the number of bugs in a module by assuming

there was one bug in every 60 lines of code or perhaps in

every 100 lines or code depending on their optimism and

e~perience. As Shooman and BolskyJ s [ShB 75] data indicates

this may have actually been reasonably accurate for some

languages and projects. In this decade. however, a more

thorough understanding of what is actually happening and a

more reliable estimate for the number of bugs e~pected in a



program is needed.
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Work related to this problem has been

approached from two main directions.

Some research has been aimed at establishing complexityl

measures of software. One test of a good measure is its

indication of the error-proneness of the software. Most of

the comple-xity measures suggested so far have been based on

the control-flow graph of the program [BeS 74, MeC 76, Mye

77. ScH 77a, ScH 77b, SuI 73]. These complexity measures

have been shown to be indicative of characteristics such as

the number of errors in a program. Thus they can be used to

determine which of several programs probably has more

errors. There does not. however. appear to be a way of

extending them to be predictive, that is to be able to use

them to say how long a particular program should take to

understand or how many bugs should be found in a particular

module.

In contrast other research is based on a phenomenological

approach to the study of programming [Aki 71, LiT 77, MoB

77. Tha 75. Tha 76]. In these works it is hypothesized that

there exist measurable phenomena which are correlated with

characteristics of the software. Given metrics to measure

lIn this thesis when we use the term complexity, we are
not referring to the technical meaning of programming
complexity which measures time and space of executing
programs. Instead. we are using the term in the more
general English usage to denote the amount of human effort
required to understand the program text. Thus in a sense
what we mean is the static complexity of the program.
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the appropriate attributes of the software, statistical

analysis can be performed to find the relationships between

the attributes of the software and the desired

characteristics. It might be possible for the results of

this type of study to be used in a predictive sense for

similar projects in the same language. although this is not

yet clear. It does not appear feasible. however, to be able

to generalize the results obtained from this type of study.

To be able to make predictions. a general theory based on

a complexity measure which is more encompassing and

discriminating than the control-flow measures is needed.

The complexity measure, E. as derived in software science

has been found to predict well the time to implement and to

understand programs which were wricten in several languages

[GoH 75. Hal 75]. A modification to this complexity has

also been used to calculate error rates for estimating

delivery dates [Klo 77]. Several reports have also

presented data that show a high correlation between E and

the number of bugs found in the measured module- [FuH 76, LoB

76, Fit 78].

These studies indicate that software science could

provide a basis for more reliably estimating parameters of

the software development including the expected number of

bugs. In the next section, we will pursue this idea. A

model which predicts the number of bugs to be found during

integration and testing will be presented.
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DEVELOPMENT OF HVPOTHESIS

Before beginning it is necessary to emphasize what is

meant by the term validation bug. These are the bugs that

remain after the initial module tests and are delivered with

the module to the testing team for system integration. Thus

they are the bugs found during the phase of system

development commonly called either validation or test and

integration. These are frequently characterized by being

those bugs for which software problem reports are generated.

Estimating E from Akiyama~s data, Funami and Halstead

found a .98 correlation between E and the total number of

bugs reported [FuH 76].

correlation to always be this

One would not expect this

high. Many other factors,

such as programmer experience. method of programming, and

amount of availab.le machine time, must also have an effect

on the number of bugs. It appears, however, that many of

the complicating factors were relatively constant in

Akiyama's experiment. The data, therefore, should be useful

in discovering basic relationships.

After a cursory inspection of Akiyama's data, it was

determined that the modules in his sample had undergone

varying amounts of initial testing. The percentage of the

total errors found during the integration ranged from 9.6%

to 44% and the correlation between number of steps and these

validation bugs was .61.
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It is important for anyone attempting to estimate the

number of bugs to be found during validation to be aware of

this source of variation. If controls are not instituted to

insure a uniform level of initial testing, this factor alone

could cause a tremendous amount of variation between the

actual number of bugs to be found and the predicted number:

In Akiyama's data, for example, the mean of the percentage.

of total errors found during validation is 29.2% with a

standard deviation of 14.9%. This gives a coefficient of

variation of 50.7%. Thus predictions could easily be off by

as much as 50% due just to this factor.

In order to eliminate the effects of this nonuniform

initial testing, a decision was made to look at an adjusted

number of delivered bugs. An adjustment factor was obtained

by taking the ratio of the total validation bugs to the

total number of bugs. This factor multiplied by the

original total number of bugs for each module then gives an

adjusted number of validation bugs which should be a better

data set with which to obtain a general approximation. For

Akiyama's date. the ratio was .2425. A summary of Akiyama~s

data including the adjusted number of validation bugs is

presented in Table 1.

Because of the apparently close relationship between E

and the number of bugs. it was hypothesized that an

approximation to the expected number of validation bugs

could be obtained from E and some constant. Eo. This



Table 1: Akiyama's data along with predictions ror the delivered number of bugs.

Number No. Mental Total Number Del ivered Adjusted Predicted
Module Statements Discriminations Bugs Found Bugs Del ivered· De livered

(in millions) Bugs Bugs

S E Bv Bv

MA 4032 170.3 102 40 25 26

MB 1329 15.3 16 8 4 8

Me 5453 322.8 146 1 14 35 37

MD 1674 28.2 26 5 6 10

ME 2051 100.2 71 14 .17 12

MF 1513 65.5 37 16 9 15

Totals 17052 702.1 400 97 96 108

lThe
included

53 bugs
here.

reported in the text by Akiyama, but not included in his tables. are



constant represents average number of

8

mental

discriminations per validation bug.

could be stated as 2

This approximation

Working with this equation. however, did not lead to

satisfactory results. On closer examination of the data, it

was observed that the error rate varied depending on the

size of the module. That is, the larger modules requiring

more mental discriminations to complete had a lower rate of

errors per discrimination, and modules requiring fewer

discriminations had a higher rate of errors per

discrimination. Similar results were reported in the study

by Motley and Brooks [MoB 77]. They found a negative

correlation between the number of statements in a module and

the error rate where error rate was defined as the number of

errors per 100 lines of code. This indicates that as the

size of the module increased the errors found per 100 lines

of code decreased. Motley and Brooks felt this might have

indicated that the larger modules were not as fully debugged

as the smaller modules. This does not seem to be a

warranted conclusion in the case of Akiyama1s data, however.

Table 2 shows that the error rate is generally increasing

for the more traditional comple~ity measures, Akiyama's

2Since bugs occur in discrete units, what we
is § = round(E/E o). For simplicity, the round
and does not appear in any of the equations.

really mean
is assumed
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measure, C (the sum of decision symbols and subroutine

ca:lls), and the number of statements. S. as would be

expected. A different conclusion. therefore. is drawn.

It is hypothesized that this decreasing error rate is the

result of learning. The larger a program is the more likely

there is to be duplication in the code and the more familiar

the programmer will become with the operators and operands

with which he is working. An approximation to the amount of

redundancy should allow us to account for this I,earning

phenomenon. To a great extent, the level of the language

dictates the required repetition in the code. The level of

a program, L, is inversely related to the amount of

repetition.

would have no

approximation

That is. a program of the highest level, 1,

repetition. Using L then to obtain an

to the portion of nonrepetitive mental

discriminations. an estimate for the number of bugs might be

Elv ~ LE/Eo . (la)

Since L is described in [Hal 77] as being inversely

related to the difficulty of the program, it appears that

what we are saying here is that as the difficulty decreases.

the expected number of bugs increases. It is necessary to

realize, however. that as L changes, E is not independent

and therefore E also changes. To see the actual effect of a

change in L, we can modify (ia) using (A.4) and (A.7) which

gives



Table 2: Error rates for Akiyama~s data.

Module No. Mental Number Decisions bugs bugs bugs
Discriminations Statements and Calls E S -C-
(in millions)

E S C

MB 15.3 1329 259 1. 18 .0136 .069

MD 28.2 1674 241 .922 .0156 .108

MF 65.5 2513 403 .565 .0147 .092

ME 100.2 2051 512 .709 .0346 .139

MA 170.3 4032 655 .599 .0253 .156

MC 322.6 5453 914 .453 .0268 .160

--------
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It is now clear that our intuition has not misled us. As

the level is increased for a given V* (and therefore the

difficulty is decreased). the estimate for §v decreases. as

expected.

Using (A.7), (la) becomes

(lb)

An estimate for Eo is now needed. One possibility is based

on a psychological theory. Approximately 20 years ago,

Miller conceptualized the idea or a basic unit of

information that the short term memory of the human brain

could hold for immediate recall [Mil 56]. He called these

basic units 'chunks' and concluded that the human short term

memory can hold approximately seven of them. More recently,

however, Simon has shown the short term memory chunk

capacity to be closer to five [Sim 74].

One can deduce that if a person holds 5 chunks of

information in his short term memory for immediate recal.l.

he can also operate on these same five chunks of information

at anyone time. Each time an operation is performed on the

available information in the short term memory a result is

obtained. Thus the number of input and output operands, or

~2*' for each of these operations should be 6. From this

and the basic equations. the volume of information processed
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and the required e~rort ror each of these operations can be

determined.

Solving (A.4) ror V and substituting into (A.7):

Solving (A.6) for L and substituting:

E ~ (V*)'/~2.

Knowing ~2*' we can determine V* using (A.3).

v* = (2+ij2*)log2(2+Q2*)

= 8 log2(8)

~ 24.

That is

(2)

Given the value of A. one can determine the number of

elementary mental discriminations in each operation from

(2). It is assumed that the level of the language used in

thought processes is approximately the same as the level

used in communication. The value of A for English has been

found to be approximately 2.16 [Hal 77]. Now substituting

into (2), one gets

If the assumptions are correct. this implies that after

every 3000 mental discriminations a decision has been

completed. The result of this decision, whether correct or

incorrect, is almost certainly either used as an input for
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the next operation or as an output to the environment. If

incorrect the error should become apparent. Thus, an

opportunity for error occurs every 3000 mental

discriminations.

Using Eo = 3000, (lb) becomes

Bv ~ V!3000. (3)

Predictions for the number of bugs found from (3) using

Funami and Halstead's estimates for the software science

parameters are presented in Table 1 and also in Figure 1.

The correlation between the predictions and the actual data

is .95 which is significant at the .005 level.

VALIDATION

Bell and Sullivan's data.--A technical report by Bell and

Sullivan concerning comple~ity measures of programs provides

the needed data to try the model in a slightly different

situation [BeS 74]. Durin~ a study of complexity measures,

they round that all the correct algorithms sampled from CACM

had a length as defined in software science of less than 237

and all the incorrect algorithms. with one exception, had a

length greater than 284.

had undergone individual module

but had not been integrated and

system, the above hypothesis

programsSince these

testing by the authors,

tested as part of a larger,
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might explain this phenomenon. Because equation (3)

requires rounding. by setting the right hand side of it

equal to 1/2, the largest number which ~ould round to zero,

an estimate of V for the largest program which can be

written with no expected delivered errors is obtained.

SUbstituting into (3). we get

1/2 ~ V/3000

V = 3000 * 1/2

V ~ 1500

Using (A.i1). (A.2), and V=1500, an estimate for ~ can be

obtained. namely,

~ = 260

which is between 237 and 284.

Shooman and Bolsky~~ data.--Relevant data is also found in a

study done by Shooman and Bolsky [ShB 76]. The information

presented by them was gathered from the test and integration

phase of a moderate sized control-type program designed to

interphase with many other programs in a large system. It

was written in a special-purpose language which was

described as essentially an assembly language with powerful

macro features added.

Although the· number of operators and operands are not

given. one can estimate N from the program length. P using

(A.9). The substitution of P = 4000 given by Shooman and
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Bolsky into (A.9) results in

N ~ 10700.

Using (A.i1), one obtains

~ ~ 1160.

Substituting into (A.2).

v ~ 109000.

Finally

Bv ~ V!3000 ~ 36.

This estimate of the number of bugs found is within 20%

of the published value of 45. The language used in the

study is not truly an assembly language. therefore one can

not expect to make a better prediction using approximations

based on assembly languages.

Lipow and Thayer'~ data.--The most extensive data set

available was that published by Lipow and Thayer [Tha 76,

LiT 77]. Their data was gathered during the validation

phase of a 115,000 statement command and control program

written in Jovial. Again the software science parameters

were not measured. but can be estimated from the number of

executable statemen\::.s and (A.l0) and (A.1.1).

Using these approximations, the hypo\::.hesis was applied to

Lipow and Thayer's data as presented in [LiT 77]. The
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relevant subset of their data along with the estimated. Bv~S

are presented in Table 3. The correlation beetween the

reported number of problems and §v is .962 which is

significant at the .001 level and the slope of the linear

regression line forced through the origin is .994. Thus.

not only is there a high degree of association between the

predictions and the actual number of problems, but also the

best fit coefficient differs from the actual one in the

model by less than 1%.

From Figure 2. it can be seen that the majority of the

predictions are within 50% of the actual values. Recalling

that in the analysis of Akiyama's data. up to 50% of the

variation in the reported number of validation bugs could be

attributed to the lack of uniform initial testing, these

results are significant.

LEARNING AND THE GROUPING OF MODULES

Although the model fits Lipow and Thayer's data as shown

above, it was not immediately obvious that this was the

appropriate grouping of the data to apply the model to. In

[Tha 76] the data was presented both in terms of the

approximately 250 individual procedures and in terms of the

25 mutually exclusive groups of procedures. Each group

corresponded to a function of the system. In the previous

section. we applied the model to the functions. In [Tha 76]
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Table 3:'Lipow and Thayer~s data along with predictions -for
the delivered number of bugs.

Total Del ivered Predicted
Routine Executable Bugs Delivered

Statements Bugs

EX Bv Bv

Al 1711 26 45
A2 2327 67 63
A3 2312 54 62
A4 1789 41 47
A5 4185 79 121
Bl 2438 105 66
B2 2839 95 78
Cl 7227 239 221
C2 3704 69 105
C3 1324 65 33
C4 848 27 20
C5 2578 50 70
C6 1973 48 52
Dl 6002 87 180
D2 842 13 20
E1. 4646 144 136
Fl 440 4 10
F2 1002 8 24
F3 1132 8 26
F4 1267 30 32
F5 2151 30 58
Gl 7801 238 241
G2 1169 22 29
Hl 340 1 7
H2 12541 466 406
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it was reported that procedures in the same function tended

to have the same manpower, implementation. and schedule

problems. Thus. they hypothesized it was not surprising

that correlations improve when the unit used for each data

point is the function. We would like to propose that this

occurs for a different reason.

Since the model presented is not linear. s it is important

to determine to what grouping of the procedures to apply the

model. Since the data from [Tha 76] is the only available

data presented both in terms of individual procedures and

the functional grouping, an experiment was performed on it.

As reported earlier. the correlation between the predicted

number of bugs and the actual number of problems was .962.

When the model is applied to the individual procedures, the

correlation is .757. Thus only 67% of the variation is

accounted for in this case as opposed to 93% in the former

one. It appears that a major factor is accounted for in the

first case but is unaccounted for when dealing with the

individual procedures. Groups of procedures that were

subject to the same manpower and schedule requirements would

have the variance due to these factors compounded.

Therefore. that must not be the answer.

SThis can be seen more clearly by
and (A.6), one gets V = V*2/A
V*2/(3000*A).

noting that using
and therefore.

(A.4)
Bv =
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Another possiblity is that the decrease in variance is

explained simply because many sources of variation are

averaged out by any grouping of the procedures. That is,

when looking at individual procedures. one would expect to

find much variation due to the individual programmer~s

skill. to the tightness of the schedule on which it was

completed, and other factors too numerous to mention. By

combining these procedures into larger groupings. these

factors might average out, however. and have a lesser effect

on the variation. This, then. might explain the increased

correlations when dealing with the functional groupings.

Another explanation is also possible. In the development

of the model to predict bugs. there was some evidence that

programmers learn and improve as they work on a particular

project. This was based on the finding that the more effort

programs require. the lower the error rate. It is logical

to assume that if learning occurs while working on

individual procedures. programmers would also learn and

improve their performance while working on a number of

procedures that are part of the same function. As a

programming team works on the second. third. or even later

procedures of a function. they should be more familiar with

the concepts involved. the operators and operands being used

and overall how the elements are fitting together. By

grouping the procedures into the functional units. the

variance due to this form of learning would be decreased.
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If this form of learning did not occur and the increase

in variance when dealing with the individual procedures was

due only to factors such as differences in individual

programmer s skills, any random grouping of the procedures

would have a similar decrease in the unexplained variance.

To test this. an e~periment was performed.

The procedures were grouped into 25 random groupings to

correspond in number to the 25 functional groupings. The

average correlation between the predicted number of bugs and

the actual number of bugs for 10 such random groupings was

.876 with a high and l.owof .950 and .788. respectively.

Since the square of the correlation, r. is the amount of the

variation that is explained. by looking at (1-r 2 ) we see

that on the average 23% of the variation was unexplained for

the random groupings compared to 7% for the runctional

groupings. These results are summarized in Table 4. This

indicates that there was some factor which was controlled in

the functional grouping, but which was unaccounted for in

the random groupings. A very likely candidate for this

fa'ctor is the learning which it was hypothesized above would

have an effect on our calculations.



Table 4: Correlations
using Lipow and Thayer's

or several
data.

possible groupings
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Grouping r l-r 2

Individua-l procedures .757 43%

Average of 10 random groupings .876 23%

Functional grouping .962 7%

OTHER MODELS CONSIDERED

Although the model presented in the previous sections

fits the data quite satisfactorily, several other models

based on software science parameters were investigated

briefly. The high correlations found when relating the

predictions from the first model to the actual number of

bugs indicated that most likely the right Metrics were being

used. It is possible, however. to combine these

measurements in many different ways, and so a few others

were considered to see if an improved model could be found.

For more details concerning the development of these models

see [Ott 78].

Since all the model parameters are based on the same

basic metrics (software science parameters), the correlation

of the predictions from any model with the actual number of

bugs ror any of the data sets is quite high. Because of
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this. a criterion other than a high correlation is needed to

determine if a model is usable. Each of the models requires

the use of a constant to represent the error rate. For a

model to be applicable to any data set, a single error rate

must be found that can be used universally. Thus a test of

the usefulness of a model can be obtained by applying it to

several data sets, obtaining the regression coefficient from

the linear best-fit equation. and determining if the

coefficients are approximately equal.

In the work reported here. the form used for the best-fit

equation was a linear regression equation with the

regression line forced through the origin. The alternate

models were applied to the four data sets used to validate

the original model. To determine the closeness of the

coefficients obtained from these four data sets, the mean,

x, standard deviation, s, and coefficient of variation. CV,

of the coefficients were calculated. The coefficient of

variation which is the standard deviation as a percentage of

the mean is a relative measure of variation. Therefore. the

lower the coefficient of variation is, the better the fit

that can be expected when using the mean error rate on the

individual data sets.

The regression coefficient for each of the four data sets

used in the preceding sections was calculated for each of

the alternate models. The results are presented in Table 5.

Similar calculations were also done for our original
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hypothesis.

BV ~ Vic

and are included Cor comparison. The correlations of the

predictions from each of the alternate models with the

actual number of bugs found for Akiyama's data and the data

of Lipow and Thayer are presented in Table 6.

As can be seen from Tables 5 and 6. a high correlation

between predictions and actual bugs found for a particular

data set does not necessarily indicate a useful model. For

any particular data set. all the models considered produced

predictions which were very highly correlated with the

actual numbers of bugs. However. the error rates calculated

from the individual data sets varied considerably for all

except the original model. The analysis of the linear

regression coefficients indicated that the coefficient of

variability for our original model was

other models investigated. it ranged

Thus. out of all of these models. only

12% while for the

from 39% to 182%.

the original one

relating V to bugs has an error rate which is reasonably

constant across several data sets. This is not to be

construed as proof that it is the best model for predicting

validation bugs. It only means that given our current level

of understanding and ability to measure, the model based on

V is the most satisfactory of the currently available

measures.
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Table 5: Linear regression coerricients.and mean statistics
obtained in analysis of various models and how they
relate to validation bugs.

V Total N E '1 1og2'1
Stmts.

Akiyama 3277 167.6 335.2 82.8 *10 5 372.5

Lip & Tha 2982 32.8 248.4 264.0 *10 5 264.8

Shooman 2422 88.9 237.8 8.49*10 5 262.4

Bel & SuI 3000 3900. 520. 1.06*10 5 635.9

il 2920 1047. 334.9 89.1 *10 5 383.9

S 358 1903. 131.1 122.3 *10 5 175.7

CV 12.3% 182% 39.1% 137% 45.8%

(qlog,q)!L '1 1o g211
,

(qlog,q')!L log(E)!L

Akiyama 9.10 »:10 5 272.6 .676*10 5 2897

Lip & Tha 21. 9 *10 5 198.7 2.89 *10 5 809

Shooman 41.6 *10 6 193.1 .680*10 5 197

Bel & SuI .224*10 6 458.7 .162*10 6 1105

il 18.2 *10 5 280.0 1. 10 *10 5 1252

S 18.0 *10 6 124.0 1. 22 *10 5 1160

CV 98.9% 44.2% 100% 92.6%



Table 6: 'Correlations of various metrics
number of validation bugs found
Thayer's and Akiyama~s data.

with
in
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the actual
Lipow and

V Total' N E 'llog21J
Stmts.

Akiyama .951 .951 .951 .977 .949

Lip & Tha .962 .957 .957 .935 .957
.

.

(qlog,.)/L '1 log2'1' (.log,.' )/L log(E)/L

Akiyama .983 .949 .942 .900

Lip & Tha .940 .958 .964 .972
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USES OF THE MODEL

An expected-bug predicting model should be found quite

useful during the development of software products. A

primary advantage of the model that has been presented here

is that it can be appl ied very early in the developmental

effort. Because it is based on software science measures,

as scon as the implementation language has been selected and

the parameters to a procedure have been determined,

estimates for V, and therefore Bv and §T can be obtained.

These estimates can then be revised. if necessary. after

implementation when V can be measured directly.

Since predictions can be made with or without an

implementation. the types of applications are varied. Those

which will be discussed here briefly include estimating

debugging times. computer usage and reliability and also

comparing programming styles and languages. It should be

emphasized at this time that the model presented here cannot

be eKpected to always work on individual programs. Rather.

like most management tools, it provides estimates for the

average case. Because of this. its usefulness to management

increases as the number of projects to which the model is

applied increases.

Timing Estimates--Qne of the most obvious applications of an

expected-bug predicting model is in producing better project

,
-:

schedules. Knowing an estimate of the number of bugs that
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need to be found and corrected during the validation phase

of the project should encourage budgeting a more realistic

amount of time for that phase.

The estimate can also be used to determine if the project

is currently on schedule. Shooman and Bolsky found that,

although there appeared to be hard and easy bugs to find and

correct, there was no apparent correlation between the

difficulty of a bug and at what time of the validation phase

it was discovered [ShB 75]. If this is indeed the case,

then on the average the ratio of the number of validation

bugs found to §v should be the same as the portion of time

in the validation phase that has elapsed. If i.t is lower.

the system may be behind schedule.

It may also be possible to estimate the average amount of

time needed to find and correct a bug. One possible model

is based on the assumption that the expected average amount

of erfort required to find a bug is proportional to the

total effort required to understand the program divided by

the expected number or bugs. That is, if there are 10 bugs

expected, one would have to understand to some degree 1/10

of the program on the average for each bug found.

Therefore. the time to find one bug during the validation

phase of a project. TV l, might be approximated using (A.7)

by



where K<l

so

is an estimate of the portion of complete

understanding of the program the programmer needs to find

the bug. The reason for introducing this factor K is that a

report by Gould and Orowngowski [GoD 72] suggests that

programmers are able to find and correct bugs without fully

understanding the program.

Substituting for T and §v. one gets

E!S

V!sooo

=K*---
V!SOOO

sooo
(4)

us

In order to use this model, a value for K is needed.

Although there is no experimentally verified value

available, a rough estimate can easily be obtained based on

the known characteristics of K. An upper bound for the

total amount of time to find and correct all the delivered

bugs would be the total validation time. This can be

approximated by 40% of the total implementation time. 4 Thus,

4Data presented by Barry Boehm indicates that the amount
of time needed for check-out and testing is 45% - 50% [Boe
73]. Wolverton's data indicates that this percentage is
closer to 35% [Wol 74]. These figures do not seem to
dispute the 40-20-40 rule of thumb which states that
analysis and design account for 40%, coding and debugging is
20%. and test and integration is 40%.



K is less than or equal to 0.40.
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Since validation time

includes preparing test data and verifying the correct runs,

K must be somewhat less than 0.40 but. of course,

significantly greater than O. Arbitrarily using 1/4 for K.

therefore, should give reasonable approximations. As an

example. estimates for Tv! for Shooman and Belsky's project

can be made.

Using (A.4) and (A.6). one finds that

L = (~/V)1/2.

Recalling that for Shooman and Bolsky's sample. V~109.000

and that for assembly language. A~.88 [Hal 77]. one obtains

L = (.88/109000)1/2 = .00283 .

Substituting into (4) and converting from seconds to hours,

3000

= 4.09 hours.

This compares with the 4.44 hours given as the sum of the

average time to find and to correct a bug.

Computer Usage Estimates--The eKpected-bug predicting model

might also be used to estimate the amount of computer time

needed to validate a system. One might assume that the

total number of computer runs needed to validate a system is

twice the number of bugs; that is, for each bug one run is
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needed to determine that there is a bug and another one to

show that the bug has been corrected. This assumption is

confirmed by data from Shooman and Belsky [ShB 75]. They

found that on the average bug detection required .61 runs

and bug correction required 1.35 runs, or approximately two

runs altogether to detect and correct each bug.

The number or runs~ Rv • needed during the validation of a

project might then be estimated as

(5)

Given (5) and the average amount of computer time that one

run takes. an estimate for the total amount of computer time

needed for validation can be made.

Another possibility is that, by assuming again that

validation is 40% of the total implementation time. an

estimate for the average number of runs needed per day

during testing and integration can be obtained. That is,

Simplifying, one gets

2*V!3000
Rv!day = --------

.40*E!(S*60*60*8)

It is surprising to find that the average number of runs

needed per day during validation is solely a function of the
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implementation level of the project and the speed of the

programmer's brain. This is by no means counterintuitve.

however. since the higher the level of an implementation.

the faster bug detection and correction should be.

Although we have no data with which to actually test this

estimate for runs needed per man-day, we can use the values

of L from the previous section and check if the results are

at least plausible. Substituting L=.00283 for Shooman and

Bolsky's data. we get

Rv/day = 48*18*.00283 = 2.45 .

This is indeed a reasonable value.

This average number of runs per day is probably not a

very important number for the programmer concerned with a

single project. However, for the management of a large

software development center, these numbers could be quite

useful. In a large enough system. a steady-state

equilibrium should exist. which would mean that the the sum

over all the projects of the average number of runs needed

per day might give a good approximation to the average daily

work-load. This could be especially useful when expansion.

either in terms of software development or hardware, is

contemplated.
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Reliability Predictions--Given the exact number of errors to

be found during the debugging of a system, one could make

very accurate statements about its reliability. If all the

bugs had been found. the system would be considered quite

reliable. If some bugs remain. the exact number of bugs

still in the system would be known. Obviously no technique

currently available, including the model presented here, can

determine the exact number of bugs in a system. Knowing a

good approximate number, however. can lead to improved

reliability estimates. If, for instance. predictions

indicated that the expected number of bugs was much higher

than the number that had been found, one ought to be

cautious about declaring the product reliable and making

delivery without insuring that it had indeed been thoroughly

tested.

The estimates could also be used in improved reliability

models. Several reliability estimating models have been

proposed. Examples of reliability models are presented in

[Mus 75. Mus 77, Sho 73. Sho 76. Suk 76. Sch 75]. In

general. a reliability model is based on the debugging

history of the project and predicts the mean time to the

ne~t failure. Most models require an estimate of the

initial number of bugs. This estimate, however, is not very

critical since it is revised using a maximum likelihood

estimate based on the debugging history. In other words.

the entire prediction relies almost entirely on the



debugging history of the project.
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Very little of the

original characteristics of the program, other than possibly

the length. are taken into account. Perhaps with the

improved estimates for the number of errors to be found,

reliability estimating models could be devised that used

more information about the project and therefore were more

reliable themselves.

Comparing Programming Styles and Languages--An interesting

application of the models presented here is in comparing

programming languages and programming styles. Recent work

by Gordon indicated that E can be used to measure the

clarity of programs [Gor 77, Gor 78]. He found that, in

general. if two programs are implemented to solve the same

problem, the one with the lower value of E was considered by

experts to be the easier to understand. Minimizing E would

be especially important when maintenance is to be the

longest phase of a project.

On the other hand, one might be more interested in

correctness than in understandability. The models presented

here might be used to compare the expected number of bugs

using varying programming styles. or varying programming

languages. to implement the algorithm.

Intuitively, one would expect that error-proneness would

generally decrease with increasing clarity. Decreasing V to

reduce the error-proneness of a procedure. does not
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guarantee a similar decrease in E and therefore an increase

in clarity. Examining the data presented in [Gor 78] shows.

however. that in almost all or the 46 comparisons of

programs presented there. V and E behave in the same manner.

In the less than 10% of the cases where a decrease in E was

not accompanied. by a decrease in V. V did not change

significantly from the original measures. In other words.

at no time was an increase in clarity, as measured by E.

found accompanied by an increase in error-proneness.

CONCLUSION

We have presented a model based on software science

Metrics to predict the

during the validation phase

model has been tested

number of bugs that will be found

of a software project. The

on the data available in the

literature. This included projects written both in assembly

language and higher level languages to solve a wide range of

problems. This is the only model that we are aware of that

fits these diverse data sets.

Several extensions to the model were also presented which

increase its usefulness. These include estimating the

average time to find and correct a bug during validation. as

well as the average number of computer runs needed per man

day during this phase of development. The preliminary

results obtained from these extensions. although not always



as initially expected. are not counteri,ntuitive.
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and

therefore. do not invalidate the hypothesis.
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APPENDIX A

The following tested hypotheses from software science are

used in this paper [Hal 77]:

Program volume. V = N log2n

Potential. or
Minimum volume. V* = (nl*+n2*)log2(nl*+n*)

(A.l)

(A.2)

(A.3)

Program level. L = V*/V (maximum value of 1) (A.4)

Language level. A = LV*

Number of mental discriminations needed to
implement or understand an algorithm, E = V/L

Time to implement an algorithm. or
To fully understand an implementation, T = E/S

.....here

(A.5)

(A.5)

(A.7)

(A.S)

11, ~ number of unique operators used in a program

112 ~ number of unique operands used in a program

111* ~ minimum number of unique operators needed to
express the algorithm in a "Potential Language"

~ 2

n2* = minimum number of conceptually unique operands
needed to express the algorithm in a "Potential
Language"

= the number of input-output parameters

N 1 = total number of operator usages

N2 - total number of operand usages

N = N I + N2 = actual length
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s = the Stroud number ~ 18 elementary mental
discriminations per second rOT the
average programmer.

When the software science Metrics are not available.

estimates can be obtained from the number of executable

statements in the implementation. P.

assembly language

To estimate N for an

N ~ 8/3 * P (A.9)

is used and for Fortran (and similar higher level languages)

N ~ 7.6 * P (A.10)

is used. Also. when necessary. it is assumed that nl~n2,1

which reduces (A.i) to

Fl ~ nlog.(nI2) (A. 11)

IThe maximum error would occur if either nl=O or n:z=O.
In this case. ~ = nlog2n. Assuming nl~n2' the estimate
becomes ~ = nIog 2 n - n giving a relative error of 1/log2 n.
Since the difference between nl and n2 can not be this
large, the relative error introduced by this assumption is
always less than 1!log2n.
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