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QUANTITATIVE ESTIMATES OF THE CONVERGENCE

OF THE EMPIRICAL COVARIANCE MATRIX

IN LOG-CONCAVE ENSEMBLES

RADOS�LAW ADAMCZAK, ALEXANDER E. LITVAK, ALAIN PAJOR,
AND NICOLE TOMCZAK-JAEGERMANN

1. Introduction

Let X ∈ R
n be a centered random vector with covariance matrix Σ and consider

N independent random vectors (Xi)i≤N distributed as X. By the law of large

numbers, the empirical covariance matrix 1
N

∑N
i=1 Xi⊗Xi converges to EX⊗X =

Σ as N → ∞. Our aim is to give a quantitative estimate of the rate of this
convergence, that is, to estimate the size N of the sample for which

(1.1)
∥∥∥ 1

N

N∑
i=1

Xi ⊗Xi − Σ
∥∥∥ ≤ ε‖Σ‖

holds with high probability.
This question was investigated in [12], motivated by a problem of complexity in

computing volumes in high dimensions. In particular the authors proved that

E

∥∥∥ 1

N

N∑
i=1

Xi ⊗Xi − Σ
∥∥∥ ≤ C

n2

N
‖Σ‖,

where C = maxi≤N E|Xi|4/(E|Xi|2)2. Chebyshev’s inequality yields then a first
estimate: for any ε > 0, δ ∈ (0, 1),

(1.2) P

(∥∥∥ 1

N

N∑
i=1

Xi ⊗Xi − Σ
∥∥∥ ≤ ε‖Σ‖

)
≥ 1− δ

whenever N ≥ C
εδn

2.

Received by the editors December 4, 2008.
2000 Mathematics Subject Classification. Primary 52A20, 46B09, 52A21; Secondary 15A52,

60E15.
Key words and phrases. Convex bodies, log-concave measures, isotropic measures, random

matrices, norm of random matrices, uniform laws of large numbers, approximation of covariance
matrices.

Work on this paper began when the first author held a postdoctoral position at the Depart-
ment of Mathematical and Statistical Sciences, University of Alberta in Edmonton, Alberta. The
position was partially sponsored by the Pacific Institute for the Mathematical Sciences.

The fourth author holds the Canada Research Chair in Geometric Analysis.

c©2009 American Mathematical Society

535

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



536 R. ADAMCZAK, A. E. LITVAK, A. PAJOR, AND N. TOMCZAK-JAEGERMANN

When random vectors are standard Gaussian, the covariance matrix is the iden-
tity and it is known (see the survey [8]) that (1.1) holds with high probability
whenever N ≥ 4n/ε2. This raises the question about the order of the best N .
In particular, can it be proportional to n, under reasonable assumptions? More
precisely, the question in [12] was phrased in the following setting.

Let K ⊂ R
n be a convex body and let X ∈ K be a random point uniformly

distributed on K. Suppose that X is centered at 0 and that the covariance matrix
of X is the identity of Rn. In such a case we shall say that X (or K) is isotropic.
Note that any convex body with nonempty interior has an affine isotropic image.
In this setting and under these assumptions, the question may be stated as follows:

Question. Let K be an isotropic convex body in R
n. Given ε > 0, how many

independent points Xi uniformly distributed on K are needed for the empirical
covariance matrix to approximate the identity up to ε with overwhelming proba-
bility?

Our main aim in this paper is to answer this question. As is well known to
specialists, a good framework for this kind of geometric probabilistic question is
given by a log-concave distribution (see below for the definition). This is a stable
and well-structured class of measures in R

n that contains a uniform measure on
convex bodies. Thus our goal is to estimate

(1.3) P

(∥∥∥ 1

N

N∑
i=1

Xi ⊗Xi − Σ
∥∥∥ ≤ ε‖Σ‖

)
,

where Σ is the covariance matrix of a centered random vector X ∈ R
n with a

log-concave distribution and (Xi) are N independent random vectors distributed
as X.

Since for a symmetric matrix M , one has ‖M‖ = supy∈Sn−1〈My, y〉, (1.1) is
implied by

(1.4)
∣∣∣ 1
N

N∑
i=1

(〈Xi, y〉2 − E〈Xi, y〉2)
∣∣∣ ≤ ε〈Σy, y〉 for all y ∈ R

n.

In the case when the covariance matrix is the identity, this is equivalent to

(1.5) 1− ε ≤ 1

N

N∑
i=1

〈Xi, y〉2 ≤ 1 + ε for all y ∈ Sn−1.

Because of the linear invariance, there is no loss of generality in considering just
this case when the covariance matrix is the identity.

In this framework, a breakthrough was achieved in [7], where it was proved that
for any ε, δ ∈ (0, 1), there exists C(ε, δ) > 0 such that if a body K is isotropic,
then N = C(ε, δ)n log3 n i.i.d. uniformly distributed points on K satisfy (1.2).

This estimate was further improved to N = C(ε, δ)n log2 n in [23] and to N =
C(ε, δ)n logn in [9] and [22]; the former paper treated the case when K is invariant
under every reflection with respect to coordinate subspaces, and the latter proved
the estimate in full generality.

One should note that in all these results, the probability in (1.2) does not go to
1 as n goes to infinity, as one expects in this type of high dimensional phenomena.
This probability, 1− δ, is given by a parameter δ and C(ε, δ) depends on it. Thus
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CONVERGENCE OF THE EMPIRICAL COVARIANCE MATRIX 537

letting δ tend to zero may destroy the estimate on N . To emphasize this important
feature we will talk about overwhelming probability if the probability goes to 1 as
n goes to infinity.

The first result establishing (1.1) with overwhelming probability was given in
[18]. When a body K is invariant under every reflection with respect to coordinate
subspaces, it is proved in [2] that for any ε ∈ (0, 1) there exist C(ε) > 0 such
that (1.5) holds whenever N ≥ C(ε)n and with probability going to 1 as n goes
to infinity. Finally, the present paper shows, as a consequence of our main results
(Theorems 4.1 and 4.2), that the same is true for an arbitrary body K (in the
isotropic position).

An important related direction concerns norms of random matrices with inde-
pendent log-concave columns (or rows). More precisely, let X ∈ R

n be a centered
random vector with a log-concave distribution such that the covariance matrix is
the identity. Consider N independent random vectors (Xi)i≤N distributed as X

and define A = A(N) to be the n ×N matrix with (Xi)i≤N as columns. For n,N
arbitrary (and N not too large, actually, n = N being the central case) the question
is to prove an estimate for the norm ‖A‖ as an operator A : �N2 → �n2 , valid with
overwhelming probability. This problem can be viewed as an “isomorphic form” of
an upper estimate in (1.5) (for n = N , say), and the papers discussed above pro-
vided some answers (with “parasitic” logarithmic factors) to this question as well.
The present article gives optimal estimates for ‖A‖ (in Theorem 3.6 and Corollaries
3.8 and 4.12); for example, for the square matrix if n = N , we have ‖A‖ ≤ C

√
n,

with overwhelming probability.
To observe still one more point of view, for arbitrary n and N , consider again

A = A(N). The set of n × n matrices may be equipped with the distribution
of AA∗ to be a matrix probability space and because of the analogy with Random
Matrix Theory, in particular with the Wishart Ensemble, let us call it a Log-concave
Ensemble.

In the last decades, in Asymptotic Geometric Analysis, considerable work and
progress have been achieved in understanding the properties of random vectors with
a log-concave distribution, and more recently, in understanding spectral properties
of random matrices with independent rows (or columns) with a log-concave distri-
bution. It appears that in high dimension they behave somewhat similarly as if
the coordinate would be independent. This leads by analogy with Random Matrix
Theory to questions on the spectrum of AA∗ similar to those of the Wishart Ensem-
ble. One important difference is that now the entries are dependent but strongly
structured by the log-concavity hypothesis.

Denote by λ1 = λ1(A
(N)) ≤ · · · ≤ λn = λn(A

(N)) the eigenvalues of AA∗ (the
squares of the singular values of A). It was proved in [21] that when n/N goes to
β ∈ (0, 1) as n,N → ∞, then the empirical measures of the eigenvalues have a limit.
It is the so-called Marchenko-Pastur distribution, as for the Wishart Ensemble when
all entries of the matrix A are i.i.d. It is also known ([4]) in the case when all the
entries of A are i.i.d. (with a finite fourth moment) and limn→+∞

n
N = β ∈ (0, 1)

that limλ1/N = (1−
√
β)2 and limλn/N = (1 +

√
β)2. One could conjecture that

such results are also valid in the log-concave setting. Nevertheless, these results are
asymptotic and not quantitative (given fixed dimension).

Problem (1.5) is of course equivalent to quantitative estimates for λ1(A
(N)) and

λn(A
(N)), that is, of the support of the spectrum of A. An answer is given by
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Proposition 4.4, where it is shown that for n ≤ N ≤ exp(
√
n),

1− C

√
n

N
log

2N

n
≤ 1

N

N∑
i=1

〈Xi, y〉2 ≤ 1 + C

√
n

N
log

2N

n
for all y ∈ Sn−1

holds with probability larger than 1 − exp(−c
√
n), where C, c > 0 are numerical

constants. Thus, putting β = n
N ∈ (0, 1), we get

1− C
√
β log (2/β) ≤ λ1

N
≤ λn

N
≤ 1 + C

√
β log (2/β)

with overwhelming probability. As a consequence already mentioned earlier, ‖A‖ ≤
C(

√
N +

√
n) with overwhelming probability, where C > 0 is a numerical constant

(Corollary 4.12).
Our general method follows an approach that can be traced back to Bourgain [7]

(cf. also [10]). It relies upon a crucial new ingredient of a novel chaining argument
that in an essential way depends on the distribution of coordinates of a point on
the unit sphere. What makes this approach work, by rather subtle estimates, is a
special structure of the sets used for the chaining.

To describe a very rough idea of this structure, involved in the proof of Theorem
3.6 below, assume for simplicity that m = n = 2s and let ak = 2s−k for 1 ≤ k ≤ s.
For each k, first consider the subset of the Euclidean unit ball in R

N of all vectors
that have the support of cardinality less than or equal to ak and with the �∞-norm
of the coordinates bounded by αk, and then define M(k) to be a preassigned εk net
(in the Euclidean norm) of this set, where 0 < αk, εk < 1 are judiciously fixed in
advance. Using sets M(k) in successive steps of chaining we arrive at the set M
that consists of sums v =

∑
k vk where the vk’s are mutually disjointly supported

vectors from M(k) (assuming that the Euclidean norm of v is less than 2). As can
be expected the actual definition of M contains a number of delicate points which
were omitted here and can be found at the beginning of the proof of Theorem 3.6.
However it is given in just one step without discussing each individual step of the
chaining.

The paper is organized as follows. In Section 2 we present some definitions and
preliminary tools. In Section 3 we study the norm of a restriction of the matrix
A = A(N) defined by

Am = sup
F⊂{1,...,N}

|F |≤m

‖A|RF ‖ = sup
z∈SN−1

| supp z|≤m

|Az|.

We show in Theorem 3.6 that with overwhelming probability,

Am ≤ C

(√
n+

√
m log

2N

m

)
.

In Section 4.1 we prove the result announced in the abstract, answering a question
from [12]. This theorem appears as a particular case of a more general study of

sup
y∈Sn−1

∣∣∣ 1
N

N∑
i=1

(〈Xi, y〉p − E〈Xi, y〉p)
∣∣∣

defined for any p ≥ 1. Such processes have been studied in [10], [11] and [17].
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Section 4.2 describes several observations for norms of random matrices from �2
to �p, p �= 2. In the final Section 4.3 we sketch a more elementary proof of the main
result of Section 4.1, when p = 2.

2. Notation and preliminaries

We equip R
n and R

N with the natural scalar product 〈 ·, ·〉 and the natural
Euclidean norm | · |. We also denote by the same notation | · | the cardinality of a
set. In this paper,X will denote a random vector in R

n and (Xi) will be independent
random vectors with the same distribution as X. By Id we shall denote the identity
on R

n and by Σ = Σ(X) = EX ⊗X, the covariance matrix of X (here X ⊗X is
the rank one operator defined by X ⊗ X(y) = 〈X, y〉X, for all y ∈ R

n). By ‖M‖
we shall denote the operator norm of a matrix M , that is, ‖M‖ = sup|y|=1 |My|.

Definition 2.1. A random vector X ∈ R
n is called isotropic if

(2.1) E〈X, y〉 = 0, E |〈X, y〉|2 = |y|2 for all y ∈ R
n,

in other words, if X is centered and its covariance matrix is the identity:

EX ⊗X = Id .

Recall that a function f : Rn → R is called log-concave if for any θ ∈ [0, 1] and
any x1, x2 ∈ R

n,

f
(
θx1 + (1− θ)x2

)
≥ f(x1)

θf(x2)
1−θ.

Definition 2.2. A measure µ on R
n is log-concave if for any measurable subsets

A,B of R
n and any θ ∈ [0, 1],

µ(θA+ (1− θ)B) ≥ µ(A)θµ(B)(1−θ)

whenever the set

θA+ (1− θ)B = {θx1 + (1− θ)x2 : x1 ∈ A, x2 ∈ B}

is measurable.

The Brunn-Minkowski inequality provides examples of log-concave measures that
are the uniform Lebesgue measure on compact convex subsets of Rn as well as their
marginals (cf., e.g., [24]). More generally, Borell’s theorem [5] characterizes the
log-concave measures that are not supported by any hyperplane as the absolutely
continuous measures (with respect to the Lebesgue measure) with a log-concave
density. Note that the distribution of an isotropic vector is not supported by any
hyperplane. Moreover, it is known [6] that if a measure is log-concave, then linear
functionals exhibit a subexponential decay. To be more precise, recall that for a
random variable Y , the ψ1-norm of Y is

‖Y ‖ψ1
= inf

{
C > 0 ; E exp

(
|Y |
C

)
≤ 2

}
.

A straightforward computation shows that for every integer p ≥ 1,

(2.2) (E|Y |p)1/p ≤ cp‖Y ‖ψ1
,

where c is an absolute constant.
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We can now state the subexponential decay of linear functionals in terms of the
ψ1-norm [6]:

Lemma 2.3. Let X ∈ R
n be a centered random vector with a log-concave distribu-

tion. Then for every y ∈ Sn−1,

‖ 〈X, y〉 ‖ψ1
≤ ψ (E|〈X, y〉|2)1/2,

where ψ > 0 is a universal constant. Moreover, if X has a symmetric distribution,
then ψ = 2.

The moreover part easily follows by a direct calculation (see [20]).
Putting together (2.2) and Lemma 2.3, we get that for every y ∈ Sn−1,

(2.3) (E| 〈X, y〉 |p)1/p ≤ Cp (E|〈X, y〉|2)1/2,
where C is an absolute positive constant.

3. Norm of a random matrix

In this section, X1, . . . , XN are independent random vectors in R
n. Mostly we

work with i.i.d. random vectors, distributed according to an isotropic, log-concave
probability measure on R

n. A random n × N matrix whose columns are Xi’s is
denoted by A and its operator norm from �N2 to �n2 is denoted by ‖A‖. We will also
use the following related notation, for 1 ≤ m ≤ N :

Am = sup
F⊂{1,...,N}

|F |≤m

‖A|RF ‖ = sup
z∈SN−1

| supp z|≤m

|Az|.

Note that Am is increasing in m. Given a set E ⊂ {1, ..., N}, by PE we denote
the orthogonal projection from R

N onto the coordinate subspace of vectors whose
support is in E. Such a subspace is denoted by R

E .

Lemma 3.1. Let X1, . . . , XN be i.i.d. random vectors, distributed according to an
isotropic, log-concave probability measure on R

n. There exists an absolute positive
constant C0 such that for any N ≤ exp(

√
n) and for every K ≥ 1 one has

max
i≤N

|Xi| ≤ C0K
√
n

with probability at least 1− exp(−K
√
n).

Proof. By [22] we have that for every i ≤ N ,

P
{
|Xi| ≥ Ct

√
n
}
≤ exp(−tc

√
n),

where C and c are absolute positive constants. The result follows by the union
bound (and adjusting absolute constants). �

Lemma 3.2. Let x1, . . . , xN ∈ R
n. There exists a set E ⊂ {1, ..., N} such that∑

i �=j

〈xi, xj〉 ≤ 4
∑
i∈E

∑
j∈Ec

〈xi, xj〉 .

Proof. Clearly one has

2N−2
∑
i �=j

〈xi, xj〉 =
∑

E⊂{1,...,N}

∑
i∈E

∑
j∈Ec

〈xi, xj〉 ≤ 2N max
E⊂{1,...,N}

∑
i∈E

∑
j∈Ec

〈xi, xj〉 ,

from which the lemma follows. �
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Now, given an E ⊂ {1, ..., N}, ε, α ∈ (0, 1], by N (E, ε, α) we denote an ε-net of
BN

2 ∩ αBN
∞ ∩R

E in the Euclidean metric. A standard volume estimate shows that
we may assume that the cardinality of N (E, ε, α) does not exceed (3/ε)m, where
m is the cardinality of E.

We will need the following two lemmas.

Lemma 3.3. Let X1, . . . , XN be independent random vectors in R
n and let ψ > 0

such that

sup
i≤N

sup
y∈Sn−1

‖ 〈Xi, y〉 ‖ψ1
≤ ψ.

Let m ≤ N , ε, α ∈ (0, 1] and L ≥ 2m log 12eN
mε . Then

P

⎛
⎝ sup

F⊂{1,...,N}
|F |≤m

sup
E⊂F

sup
z∈N (F,ε,α)

∑
i∈E

∣∣∣∣∣∣
〈
ziXi,

∑
j∈F\E

zjXj

〉∣∣∣∣∣∣ > ψ αLAm

⎞
⎠ ≤ e−L/2.

Proof. Denote the underlying probability space by Ω. For F ⊂ {1, ..., N} with
|F | ≤ m, E ⊂ F , and z ∈ N (F, ε, α), define the subset Ω(F,E, z) of Ω by

Ω(F,E, z) =

⎧⎨
⎩
∑
i∈E

∣∣∣∣∣∣
〈
ziXi,

∑
j∈F\E

zjXj

〉∣∣∣∣∣∣ > ψαLAm

⎫⎬
⎭ .

Fix F , E and z as above and set y =
∑

j∈F\E zjXj . Clearly, y is independent of

the vectors Xi, i ∈ E, and |y| ≤ Am. Note that |y| > 0 on Ω(F,E, z) (otherwise
〈ziXi, y〉 = 0 for all i ∈ E and the sharp inequality defining Ω(F,E, z) would be
violated). Thus, using the fact that ‖z‖∞ ≤ α, we obtain

∑
i∈E

∣∣∣∣∣∣
〈
ziXi,

∑
j∈F\E

zjXj

〉∣∣∣∣∣∣ ≤ αAm

∑
i∈E

|〈Xi, y/|y|〉| ,

on Ω(F,E, z). Since Am > 0 on Ω(F,E, z), this implies that

P (Ω(F,E, z)) ≤ P

(∑
i∈E

|〈Xi, y/|y|〉| > ψL

)
.

On the other hand, by Chebyshev’s inequality and the assumption on the ψ1-norms
of linear functionals, the latter probability is less than

e−L
E exp

(∑
i∈E

|〈Xi, y/|y|〉|
ψ

)
≤ 2|E| e−L ≤ 2m e−L.
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Therefore by the union bound,

P

⎛
⎝ sup

F⊂{1,...,N}
|F |≤m

sup
E⊂F

sup
z∈N (F,ε,α)

∑
i∈E

∣∣∣∣∣∣
〈
ziXi,

∑
j∈F\E

zjXj

〉∣∣∣∣∣∣ > ψαLAm

⎞
⎠

≤
m∑

k=1

(
N

k

)
2m

(
3

ε

)m

sup
F,E,z

P (Ω(F,E, z))

≤
m∑

k=1

(
N

k

)
2m

(
3

ε

)m

2m e−L ≤
(
eN

m

)m (
12

ε

)m

e−L

= exp

(
m log

12eN

mε
− L

)
,

which implies the result. �
We will also need another lemma of a similar type. We provide the proof for the

sake of completeness.

Lemma 3.4. Let X1, . . . , XN be independent random vectors in R
n and let ψ > 0

such that
sup
i≤N

sup
y∈Sn−1

‖ 〈Xi, y〉 ‖ψ1
≤ ψ.

Let 1 ≤ k,m ≤ N , ε, α ∈ (0, 1], β > 0, and L > 0. Let B(m,β) denote the set of
vectors x ∈ βBN

2 with | supp x| ≤ m and let B be a subset of B(m,β) of cardinality
M . Then

P

⎛
⎝ sup

F⊂{1,...,N}
|F |≤k

sup
x∈B

sup
z∈N (F,ε,α)

∑
i∈F

∣∣∣∣∣∣
〈
ziXi,

∑
j �∈F

xjXj

〉∣∣∣∣∣∣ > ψαβLAm

⎞
⎠

≤ M

(
6eN

kε

)k

e−L.

Proof. The proof is analogous to the argument in Lemma 3.3. For F ⊂ {1, ..., N}
with |F | ≤ k, x ∈ B, and z ∈ N (F, ε, α), consider

Ω(F, x, z) =

⎧⎨
⎩
∑
i∈F

∣∣∣∣∣∣
〈
ziXi,

∑
j �∈F

xjXj

〉∣∣∣∣∣∣ > ψαβLAm

⎫⎬
⎭ .

Fix F , x, z as above and set y =
∑

j �∈F xjXj . Clearly, y is independent of

the vectors Xi, i ∈ F ; moreover, |y| ≤ βAm, and, similarly as before, |y| > 0 on
Ω(F, x, z). Thus, using the fact that ‖z‖∞ ≤ α, we obtain

∑
i∈F

∣∣∣∣∣∣
〈
ziXi,

∑
j �∈F

xjXj

〉∣∣∣∣∣∣ ≤ αβAm

∑
i∈F

|〈Xi, y/|y|〉| ,

on Ω(F, x, z). Therefore, again as in Lemma 3.3, we have

P (Ω(F, x, z)) ≤ P

(∑
i∈F

|〈Xi, y/|y|〉| > ψL

)

≤ e−L
E exp

(∑
i∈F

|〈Xi, y/|y|〉|
ψ

)
≤ 2|F | e−L ≤ 2k e−L.
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By the union bound we get

P

⎛
⎝ sup

F⊂{1,...,N}
|F |≤k

sup
x∈B

sup
z∈N (F,ε,α)

∑
i∈F

∣∣∣∣∣∣
〈
ziXi,

∑
j �∈F

xjXj

〉∣∣∣∣∣∣ > ψαβLAm

⎞
⎠

≤ M

k∑
l=1

(
N

l

) (
3

ε

)k

2k e−L ≤ M

(
eN

k

)k (
6

ε

)k

e−L,

which proves the result. �

Remark 3.5. Observe that if the Xi are i.i.d. random vectors, distributed according
to an isotropic, log-concave probability measure on R

n, then, by Lemma 2.3, they
satisfy the condition for the ψ1-norm of Lemmas 3.3 and 3.4.

Theorem 3.6. Let n ≥ 1 and 1 ≤ N ≤ e
√
n be integers. Let X1, . . . , XN be

i.i.d. random vectors, distributed according to an isotropic, log-concave probability
measure on R

n. Let K ≥ 1. Then there are absolute positive constants C and c
such that

P

(
∃m ≤ N : Am ≥ CK

(√
n+

√
m log

2N

m

))
≤ exp

(
−cK

√
n
)
.

Remark 3.7. Let X ∈ R
n be a random vector with an isotropic exponential distri-

bution, that is, with the density defined for x = (xi) ∈ R
n by

∏n
1

1√
2
exp(−

√
2|xi|).

It is clearly an isotropic vector with a log-concave distribution. Consider now the
matrix A(N) built as before from a sample of X of size N . Since

P(|X| ≥ t
√
n) ≥

∫
|s|≥t

√
n

1√
2
exp(−

√
2|s|) ds = exp(−

√
2t
√
n),

we get that for any 1 ≤ m ≤ N ,

P(Am ≥ t
√
n) ≥ exp(−

√
2t
√
n).

This shows that the probability estimate in Theorem 3.6 is optimal up to numerical
constants. The analysis of this example shows that up to numerical constants the
logarithmic term in the estimate of Am in Theorem 3.6 is also optimal (for the
details, see [1]).

Letting m = N we get a clearly optimal estimate for the operator norm ‖A‖,
valid with overwhelming probability.

Corollary 3.8. In the setting of Theorem 3.6 we get, for every K ≥ 1,

(3.1) ‖A‖ ≤ CK
(√

n+
√
N
)
,

with probability at least 1− e−cK
√
n, where C, c > 0 are absolute constants.

Remark 3.9. The final remark of [7] states that by refining a bit the method of proof
of Lemma 2 of that paper one may obtain that if X1, . . . , Xn are n independent
vectors in R

n distributed according to a probability measure µ on R
n satisfying

‖〈x, y〉‖ψ1
< 1/

√
n for all y ∈ Sn−1, then, with probability 1 − δ, the matrix A

admits the bound for the operator norm:

‖A‖ ≤ C(δ)

(∫ (
max
1≤i≤n

|Xi|
)

dµ+ 1

)
.
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By Lemmas 2.3 and 3.1, and taking into account the normalization, this would
imply a version of (3.1) with N = n and probability 1− δ.

Remark 3.10. Note that
√
n +

√
m log 2N

m in the formula in Theorem 3.6 can be
substituted with

√
n+

√
m log

2N

max{n,m} .

Indeed, if m ≥ n, there is nothing to prove; otherwise,

√
n+

√
m log

2N

m
=

√
n+

√
m log

n

m
+
√
m log

2N

n
≤ 2

√
n+

√
m log

2N

n
.

Finally, we obtain another immediate consequence.

Corollary 3.11. There are absolute positive constants C and c such that for every
n ≥ 1, 1 ≤ N ≤ e

√
n, K ≥ 1, and Xi’s as in Theorem 3.6 one has

P

(
∃E⊂{1,...,N}

∣∣∣∣∣
∑
i∈E

Xi

∣∣∣∣∣ ≥ CK

(√
n|E|+ |E| log 2N

n

))
≤ exp

(
−cK

√
n
)
.

Proof. Given E set m = |E|. Consider the vector z ∈ SN−1 defined by zi = 1/
√
m

if i ∈ E and zi = 0 otherwise. We have∣∣∣∣∣
∑
i∈E

Xi

∣∣∣∣∣ = √
m|Az| ≤

√
mAm.

Therefore Theorem 3.6 and Remark 3.7 imply the result. �

Proof of Theorem 3.6. As N ≤ e
√
n, it is easy to see, by applying the union bound

and adjusting absolute constants, that it is sufficient to prove that for K sufficiently
large and every fixed m ≤ N , one has

P

(
Am ≥ CK

(√
n+

√
m log

2N

m

))
≤ exp

(
−cK

√
n
)
.

We shall define a set M of vectors with a special structure and supports less
than or equal to m which serves simultaneously two purposes: we will be able to
estimate supx∈M |Ax| with large probability, and we will use M to approximate
an arbitrary vector from BN

2 of support less than or equal to m. Then a standard
argument will lead to the required estimate for Am.

First observe that if for a vector x ∈ SN−1 there is a simultaneous control of the
size of the support and its �∞-norm (more precisely, | supp x| ∼ s and ‖x‖∞ ≤ s−1/2,
for some s ≥ 1), then |Ax| can be estimated, with large probability, directly by using
Lemmas 3.2 and 3.3 (it is also a part of the estimates below). It is therefore natural
to expect vectors from M to be sums of (disjointly supported) vectors admitting
such a simultaneous control as above. Formally, the definition of M splits into two
cases. If

(3.2) m log
48eN

m
≤

√
n,

we set

M =
⋃

E⊂{1,...N}
|E|=m

N (E, 1/4, 1).
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Otherwise, let l be the smallest integer such that

(3.3)
m

2l
log

48e2lN

m
≤

√
n,

and fix positive integers a0, a1, . . . , al such that ak ≤ m 2−k+1 for 1 ≤ k ≤ l and

a0 ≤ m 2−l, and
∑l

k=0 ak = m. (We shall later set ak := [m 2−k+1] − [m 2−k] for

1 ≤ k ≤ l and a0 := [m 2−l].)
Then set M = M0 ∩ 2BN

2 , where M0 consists of all vectors of the form x =∑l
k=0 xk, where the xi have disjoint supports and

x0 ∈
⋃

E⊂{1,...N}
|E|≤a0

N (E, 1/4, 1), xk ∈
⋃

E⊂{1,...N}
|E|≤ak

N
(
E, 2−k,

√
2k

m

)
for 1 ≤ k ≤ l.

Note that for every vector x ∈ M we have | supp x| ≤
∑l

0 ak = m and |x| ≤ 2.
We shall consider the details of the case m log(48eN/m) >

√
n (the other case,

when (3.2) holds, can be treated similarly; actually, it is even simpler, since the

construction of M is simpler). Fix x ∈ M of the form x =
∑l

k=0 xk and let Fk be
the support of xk (if there are more than one such representations, we fix one of
them). Denote the coordinates of x by x(i), i ≤ N . Then

|Ax|2 =

〈∑
i≤N

x(i)Xi,
∑
i≤N

x(i)Xi

〉
=

∑
i≤N

x(i)2|Xi|2 +
∑
i �=j

〈x(i)Xi, x(j)Xj〉

≤ 2max
i

|Xi|2 +Dx ≤ 2max{2max
i

|Xi|2, Dx},(3.4)

where

Dx =
∑
i �=j

〈x(i)Xi, x(j)Xj〉 .

Note that by Lemma 3.1, maxi |Xi| ≤ C0K
√
n with probability larger than 1 −

e−K
√
n, and we would like to get a similar estimate for Dx.

To this aim we split Dx according to the structure of x. Namely we let

D′
x :=

l∑
k=0

∑
i,j∈Fk

i�=j

〈x(i)Xi, x(j)Xj〉

and

D′′
x : =

l∑
k=0

∑
i∈Fk
j �∈Fk

〈x(i)Xi, x(j)Xj〉

= 2

l∑
k=1

∑
i∈Fk

∑
r∈Gk

〈
x(i)Xi,

∑
j∈Fr

x(j)Xj

〉
,

where Gk = {0, k + 1, k + 2, . . . , l}. Note that

Dx = D′
x +D′′

x .
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We first estimate D′
x. By Lemma 3.2 we obtain that for every k there exists a

subset F̄k of Fk such that

D′
x ≤ 4

l∑
k=0

∑
i∈F̄k

j∈Fk\F̄k

〈x(i)Xi, x(j)Xj〉

≤ 4 sup
F⊂{1,...,N}
|F |≤m/2l

sup
E⊂F

sup
v∈N (F,1/4,1)

∑
i∈E

∣∣∣∣∣∣
〈
viXi,

∑
j∈F\E

vjXj

〉∣∣∣∣∣∣
+ 4

l∑
k=1

sup
F⊂{1,...,N}
|F |≤2m/2k

sup
E⊂F

sup
v∈N (F,2−k ,

√
2k/m)

∑
i∈E

∣∣∣∣∣∣
〈
viXi,

∑
j∈F\E

vjXj

〉∣∣∣∣∣∣ .

We now apply Lemma 3.3 to each summand in the sum above with L = 2K
√
n,

ε = 1/4, α = 1 for the first summand (note that such an L satisfies the condition)

and with L = 4m
2k

K log 12eN4k

m , ε = 2−k, α =
√

2k

m for k ≥ 1. By the union bound

we obtain

P

(
sup
x∈M

D′
x > 8ψKAm

√
n+ 2ψKAm

l∑
k=1

√
2k

m

8m

2k
log

12eN4k

m

)

≤ exp
(
−K

√
n
)
+

l∑
k=1

exp

(
−K

2m

2k
log

12eN4k

m

)

≤ exp
(
−K

√
n
)
+ l exp

(
−K

2m

2l
log

12eN4l

m

)
,

where ψ is the absolute constant from Lemma 2.3.
Therefore, the choice of l implies the following bound, with some absolute posi-

tive constant C,

P

(
sup
x∈M

D′
x > AmK

(
8ψ

√
n+ Cψ

√
m log

2N

m

))
≤ exp

(
−K

√
n
)
+ l exp

(
−K

√
n
)
≤ (2

√
n+ 1) exp

(
−K

√
n
)
.

(We also used the estimate l ≤ 2
√
n, valid when m ≤ N ≤ e

√
n.)

The estimate for D′′
x essentially follows the same lines. In a sense it is simpler,

since we don’t need to apply Lemma 3.2. For every 1 ≤ k ≤ l we consider Mk =

M′
k ∩ 2BN

2 , where M′
k consists of all vectors of the form x = x0 +

∑l
s=k+1 xs,

where the xi (i = 0, k = 1, . . . , l) have pairwise disjoint supports and

x0 ∈
⋃

E⊂{1,...,N}
|E|≤a0

N (E, 1/4, 1), xs ∈
⋃

E⊂{1,...,N}
|E|≤as

N
(
E, 2−s,

√
2s

m

)
for s ≥ k + 1.
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Then Mk ⊂ 2BN
2 and

|Mk| ≤ 12a0

l∏
s=k+1

(3 · 2s)as

(
N

as

)
≤ 12a0

l∏
s=k+1

(
3 · 2seN

as

)as

≤ exp

(
m

2l
log 12 +

l∑
s=k+1

2m

2s
log

3e4sN

2m

)
≤ exp

(
l+1∑

s=k+1

2m

2s
log

3e4sN

2m

)

≤ exp

(
m

2k

(
log

6e4kN

m

l−k∑
s=0

1

2s
+ log 4

l−k∑
s=1

s

2s

))
≤ exp

(
4m

2k
log

6e4kN

m

)
.

We also observe that

D′′
x = 2

l∑
k=1

∑
i∈Fk

〈
x(i)Xi,

∑
r∈Gk

∑
j∈Fr

x(j)Xj

〉

≤ 2
l∑

k=1

sup
F⊂{1,...,N}
|F |≤2m/2k

sup
u∈N (F,2−k,

√
2k/m)

sup
v∈Mk

∑
i∈F

∣∣∣∣∣∣
〈
uiXi,

∑
j �∈F

vjXj

〉∣∣∣∣∣∣ .
Now we apply Lemma 3.4 to each summand with

L = L(k) =
12m

2k
K log

12e4kN

m
,

ε = εk = 2−k, α = αk =
√
2k/m, β = 2, B = Bk = Mk.

Using the union bound we obtain

P

(
D′′

x > 48ψAmK
l∑

k=1

√
2k

m

m

2k
log

12e4kN

m

)

≤
l∑

k=1

exp

(
4m

2k
log

12e4kN

m
+

2m

2k
log

3e4kN

m
−K

12m

2k
log

12e4kN

m

)

≤
l∑

k=1

exp

(
−K

6m

2k
log

12e4kN

m

)
≤ l exp

(
−K

6m

2l
log

12e4lN

m

)
.

As in the case for D′
x it follows that

P

(
sup
x∈M

D′′
x > 3CψAmK

√
m log

2N

m

)
≤ 2

√
n exp

(
−K

√
n
)
,

where C is the same absolute constant as above. Since Dx = D′
x +D′′

x , then

(3.5) P

(
sup
x∈M

Dx > KAm

(
8ψ

√
n+ 4Cψ

√
m log

2N

m

))
≤ (4

√
n+ 1)e−K

√
n.

Passing now to the approximation argument, pick an arbitrary z ∈ SN−1 with
| supp z| ≤ m. Define the following subsets of {1, . . . , N} depending on z. Denote
the coordinates of z by zi (i = 1, . . . , N). Let n1, . . . , nN be such that |zn1

| ≥
|zn2

| ≥ . . . ≥ |znN
|, so that zni

= 0 for i > m (since | supp z| ≤ m). If condition
(3.2) holds we denote the support of z by E0 and consider only this E0. Otherwise
we set

E0 = {ni}1≤i≤m/2l
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and

E1 = {ni}m/2<i≤m, E2 = {ni}m/4<i≤m/2, . . . , El = {ni}m/2l<i≤m/2l−1 ,

where l is the smallest integer satisfying (3.3) (as before). (For small values of n
it can happen that E0 is empty, but it does not create any difficulty in the proof
below.) Clearly, we have

a0 := |E0| ≤ m/2l, ak := |Ek| ≤ m/2k + 1 ≤ m/2k−1 for every 1 ≤ k ≤ l,

and
∑l

i=0 ai = m. Note that the numbers ak do not depend on z, although the
sets Ek do. Finally, since z ∈ SN−1, we also observe that for every k ≥ 1,

‖PEk
z‖∞ ≤ |zns

| ≤
√

2k

m
,

where s = [m/2k].
Note that for every k ≥ 1 the vector PEk

z can be approximated by a vector

from N
(
Ek, 2

−k,
√

2k

m

)
and the vector PE0

z can be approximated by a vector

from N (E0, 1/4, 1). Thus there exists x ∈ M, with a suitable representation x =∑l
k=0 xk, such that

|z − x|2 ≤
l∑

k=0

|PEk
z − xk|2 ≤ 2−4 +

l∑
k=1

2−2k < 0.4.

Moreover, x is chosen to have the same support as z, and thus w = z − x has the
support | suppw| ≤ m.

Considering all z ∈ SN−1 with | supp z| ≤ m it follows that

Am = sup
z∈SN−1

| supp z|≤m

|Az| ≤ sup
x∈M

|Ax|+
√
0.4 sup

w∈SN−1

| suppw|≤m

|Aw| = sup
x∈M

|Ax|+
√
0.4Am,

which implies that

Am ≤ 3 sup
x∈M

|Ax|.

Recall that by (3.4) for every x ∈ M we have

|Ax|2 ≤ 2max{2max
i

|Xi|2, Dx},

so passing to the supremum,

(3.6) A2
m ≤ 9 sup

x∈M
|Ax|2 ≤ 9max{4max

i
|Xi|2, 2 sup

x∈M
Dx}.

Applying Lemma 3.1 and (3.5) we get

Am ≤ K (6C0 + 144ψ)
√
n+ 72CψK

√
m log

2N

m

with probability larger than

1− (4
√
n+ 2) exp

(
−K

√
n
)
≥ 1− exp

(
−cK

√
n
)
,

where c is an absolute positive constant. (In fact this estimate for probability
requires that n is sufficiently large, but, as K ≥ 1 was arbitrary, we can adjust the
constants.) This concludes the proof. �
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Remark 3.12. Consider now a more general situation in which X1, X2, . . . , XN (the
columns of the matrix A) are still i.i.d. centered and log-concave, but not necessarily
isotropic. Then there exists an n × n matrix T , such that (Xi)

N
i=1 has the same

distribution as (TYi)
N
i=1, where Y1, . . . , YN are isotropic log-concave random vectors

in R
n. For the purpose of computing probabilities we may assume that Xi = TYi.

Therefore, with probability at least 1− exp(−cK
√
n), we have for all m ≤ N ,

Am = sup
y∈Sn−1

sup
z∈SN−1

| supp z|≤m

∣∣∣ N∑
i=1

〈Xizi, y〉
∣∣∣ = sup

y∈Sn−1

sup
z∈SN−1

| supp z|≤m

∣∣∣ N∑
i=1

〈Yizi, T
∗y〉

∣∣∣
≤ ‖T ∗‖CK

(√
n+

√
m log

2N

m

)
= CKκ

(√
n+

√
m log

2N

m

)
,

where κ = ‖T ∗‖ =
√
‖Σ‖ (note that Σ = TT ∗).

We conclude this section with a more technical variant of Theorem 3.6. Note
that in particular it requires weaker conditions on the Xi and does not require any
bounds on N .

Theorem 3.13. Let 1 ≤ n and 1 ≤ N . Let X1, . . . , XN be independent random
vectors in R

n such that

sup
i≤N

sup
y∈Sn−1

‖ 〈Xi, y〉 ‖ψ1
≤ ψ.

Let A be a random n × N matrix whose columns are Xi’s, and Am, m ≤ N , is
defined as before. Then for every 1 ≤ m ≤ N , every 0 ≤ l ≤ logm, and every
K ≥ 1 one has

P

(
Am ≥ CψK

(
m

2l
log

48eN2l

m
+
√
m log

2N

m

)
+ 6max

i≤N
|Xi|

)

≤ (1 + 2l) exp

(
−2K

m

2l
log

12eN2l

m

)
,

where C is an absolute constant. In particular, choosing 0 ≤ l ≤ logm to be the
largest integer satisfying

2m

2l
log

12eN2l

m
≥

√
m log

2N

m

we obtain that for every K ≥ 1,

P

(
Am ≥ CψK

√
m log

2N

m
+ 6max

i≤N
|Xi|

)
≤ (1 + 2 logm) exp

(
−K

√
m log

2N

m

)
.

Remark 3.14. Note that from the definitions we immediately have

Am ≥ A1 ≥ max
i≤N

|Xi|.

For completeness we outline a proof of Theorem 3.13.

Proof. (Sketch) We proceed as in the proof of Theorem 3.6. So first we construct
M. If l = 0 we define M exactly as after formula (3.2); otherwise it will be
constructed in the same way as it was constructed after formula (3.3) (note that
now l is a fixed number). Then we estimate Dx = D′

x + D′′
x . As before we use

Lemmas 3.3 and 3.4.
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The only difference is that for the first summand in the formula for D′
x we use

Lemma 3.3 with L = 4Km
2l
log 48eN2l

m instead of L = 2K
√
n. This will give us that

P

(
sup
x∈M

D′
x > 16AmKψ

m

2l
log

48eN2l

m
+ CAmKψ

√
m log

2N

m

)

≤ exp

(
−2K

m

2l
log

48eN2l

m

)
+ l exp

(
−2K

m

2l
log

12eN4l

m

)
and

P

(
sup
x∈M

D′′
x > 3CψAmK

√
m log

2N

m

)
≤ l exp

(
−K

6m

2l
log

12e4lN

m

)
.

Thus, with another absolute positive constant C we have

P

(
sup
x∈M

Dx > CAmKψ

(
m

2l
log

48eN2l

m
+
√
m log

2N

m

))

≤ (1 + 2l) exp

(
−K

2m

2l
log

12eN2l

m

)
.

Finally we apply the same approximation procedure. By (3.4) and approximation
we get formula (3.6),

A2
m ≤ max{36max

i
|Xi|2, 18 sup

x∈M
Dx},

which implies the result, by adjusting constants, if necessary. The “in particular”
part of the theorem is trivial. �

Remark 3.15. It is possible to extend Theorem 3.13 to a ψp-setting, similar to the
one considered in [10]. Let p ∈ [1, 2] and let X be a random vector such that for
some ψp > 0 one has

E exp ((|〈X, y〉|/ψp)
p) ≤ 2

for every y ∈ Sn−1. Then, adjusting Lemmas 3.3 and 3.4, and repeating the proof
of Theorem 3.13 we can get

P

(
Am ≥ CψpK

√
m

(
log

2N

m

)1/p

+ 6max
i≤N

|Xi|
)

≤ (1 + 2 logm) exp

(
−Kp

√
m log

2N

m

)
.

However we will not pursue this direction here.

4. Kannan-Lovász-Simonovits question

In this section, we answer the question presented in the introduction: Let K
be an isotropic convex body in R

n. Given ε > 0, how many independent points
Xi uniformly distributed on K are needed for the empirical covariance matrix to
approximate the identity up to ε with overwhelming probability?

Let X ∈ R
n be a centered random vector with covariance matrix Σ and consider

N independent random vectors (Xi)i≤N distributed asX. Using empirical processes
tools, we first prove a more general statement (Proposition 4.4) and then give
applications to approximation of the empirical covariance matrix and to estimates
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of different norms of the matrix A = A(N). In a final subsection we give a more
elementary proof of the case (p = 2) that corresponds to the original question in
[12].

4.1. Approximation of covariance matrix. First note that because of the linear
invariance, (1.5) implies that∥∥∥ 1

N

N∑
i=1

Xi ⊗Xi − Σ
∥∥∥ ≤ ε‖Σ‖.

Therefore without loss of generality we restrict ourselves to the case when the
covariance matrix is the identity.

Theorem 4.1. Let X1, . . . , XN be i.i.d. random vectors, distributed according to
an isotropic, log-concave probability measure on R

n. For every ε ∈ (0, 1) and t ≥ 1,
there exists C(ε, t) > 0, such that if C(ε, t)n ≤ N , then with probability at least

1− e−ct
√
n, ∥∥∥ 1

N

N∑
i=1

Xi ⊗Xi − Id
∥∥∥ ≤ ε,(4.1)

where c > 0 is an absolute constant. Moreover, one can take

C(ε, t) = Ct4ε−2 log2(2t2ε−2),

where C > 0 is an absolute constant.

Since for a symmetric matrixM , one has ‖M‖ = supy∈Sn−1〈My, y〉 and E〈Xi, y〉2
= |y|2, one can rewrite (4.1) as

sup
y∈Sn−1

∣∣∣ 1
N

N∑
i=1

(〈Xi, y〉2 − E〈Xi, y〉2)
∣∣∣ ≤ ε.

This way, approximating the covariance matrix becomes a special case of a more
general problem, concerning the uniform approximation of the moments of one
dimensional marginals of an isotropic log-concave measure by their empirical coun-
terparts. In particular, Theorem 4.1 is implied by the following result.

Theorem 4.2. Let X1, . . . , XN be i.i.d. random vectors, distributed according to
an isotropic, log-concave probability measure on R

n. For any p ≥ 2 and for every
ε ∈ (0, 1) and t ≥ 1, there exists C(ε, t, p) > 0, such that if C(ε, t, p)np/2 ≤ N , then

with probability at least 1− e−cpt
√
n (where cp > 0 depends only on p),

sup
y∈Sn−1

∣∣∣ 1
N

N∑
i=1

(|〈Xi, y〉|p − E|〈Xi, y〉|p)
∣∣∣ ≤ ε.(4.2)

Moreover, one can take C(ε, t, p) = Cpt
2pε−2 log2p−2(2t2ε−2), where Cp depends

only on p.

Remark 4.3. Proofs of both theorems, 4.1 and 4.2, use Theorem 3.6, which requires
the condition N ≤ exp(

√
n). For larger N , however, the result follows by a formal

argument. Assume that the statement has been proved for N ≤ exp(
√
n) and

assume that N > exp(
√
n). Let Xi = {Xi(k)}nk=1 ∈ R

n, i ≤ N , be the random
vectors under consideration. Pick the smallest m such that N ≤ exp(

√
m). Clearly,

m > n. Now consider the random vectors Yi = {Yi(k)}mk=1 ∈ R
m, i ≤ N , defined
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by Yi(k) = Xi(k) for k ≤ n and Yi(k) = gik for k > n, where gik are independent
Gaussian N (0, 1) random variables. Then the Yi are isotropic log-concave random
vectors to which the result can be applied. Identifying y = {y(k)}nk=1 ∈ Sn−1 with
z = {z(k)}mk=1 ∈ Sm−1, defined by z(k) = y(k) for k ≤ n, z(k) = 0 for k > n, we
get

sup
y∈Sn−1

∣∣∣ 1
N

N∑
i=1

(|〈Xi, y〉|p − E|〈Xi, y〉|p)
∣∣∣

≤ sup
y∈Sm−1

∣∣∣ 1
N

N∑
i=1

(|〈Yi, y〉|p − E|〈Yi, y〉|p)
∣∣∣ ≤ ε

with probability even higher than claimed. Thus in the proofs of both theorems we
may assume without loss of generality that N ≤ exp (

√
n).

In the first step of the proof of Theorem 4.2 we shall use some tools from the
probability in Banach spaces, in particular classical symmetrization and contraction
methods as in [11] and [17]. These tools work for general empirical processes and
are not necessary in our setting since we are dealing more specifically with powers
of linear forms. We choose this approach, though, as it requires fewer computations
and leads to a unified, simpler and more transparent presentation.

Theorem 4.2 is an easy consequence of the following technical proposition applied
with s = t.

Proposition 4.4. In the setting of Theorem 4.2, if n ≤ N ≤ e
√
n, then for any

s, t ≥ 1, the estimate

sup
y∈Sn−1

∣∣∣ 1
N

N∑
i=1

(|〈Xi, y〉|p − E|〈Xi, y〉|p)
∣∣∣

≤ Cp−1tsp−1p logp−1
(2N

n

)√ n

N
+

Cpspnp/2

N
+ Cppp

( n

2N

)s

(4.3)

holds with probability at least

1− exp(−cs
√
n)− exp

(
− cp min{u, v}

)
,

where u = t2s2p−2n log2p−2(2N/n), v = ts−1
√
Nn/ log(2N/n), C, c > 0 are abso-

lute constants and cp > 0 depends on p only.

Remark 4.5. The two parameters s and t play different roles in the proof and reflect
different asymptotic behaviors of the probability with which (4.4) holds. The first
parameter s is related to a level of truncation of linear forms, whereas the second is
a factor in the deviation when one deals only with the truncated part. For instance,
by taking s = t1/2, it allows us to get a probability converging to one as t → ∞ if
both dimensions are fixed.

Before we proceed to the proof of the above proposition, let us introduce some
tools from the classical theory of probability in Banach spaces. Below, ε1, . . . , εN
will always denote a sequence of independent Rademacher variables, independent
of the sequence X1, . . . , XN .

Lemma 4.6 (Contraction principle; see [16], Theorem 4.12). Let F : R+ → R+ be
convex and increasing. Further let ϕi : R → R, i ≤ N be 1-Lipschitz with ϕi(0) = 0.
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Then, for any bounded set T ⊂ R
N ,

EF
(1
2
sup
t∈T

∣∣∣ N∑
i=1

εiϕi(ti)
∣∣∣) ≤ EF

(
sup
t∈T

∣∣∣ N∑
i=1

εiti

∣∣∣).
Using standard symmetrization inequalities for sums of independent random

variables (see, e.g., Chapter 2.3 of [26]) and applying the lemma with F ≡ 1, and

ϕi(s) =
|s|p∧Bp

pBp−1 for s ∈ R, we obtain the following corollary.

Corollary 4.7. Let F be a family of functions, uniformly bounded by B > 0. Then
for any independent random variables X1, . . . , XN and any p ≥ 1, we have

E sup
f∈F

∣∣∣ N∑
i=1

(|f(Xi)|p − E|f(Xi)|p)
∣∣∣ ≤ 4pBp−1

E sup
f∈F

∣∣∣ N∑
i=1

εif(Xi)
∣∣∣.

We will also use the celebrated Talagrand concentration inequality for suprema of
bounded empirical processes [25]. The version from [13], presented below, provides
the best-known constants in this inequality (we will however not take advantage of
explicit constants). For a simple proof (with worse constants) we refer the reader
to [14, 15].

Lemma 4.8 ([13], Theorem 1.1). Let X1, X2, . . . , XN be independent random vari-
ables with values in a measurable space (S,B) and let F be a countable class of
measurable functions f : S → [−a, a] such that for all i, Ef(Xi) = 0. Consider the
random variable

Z = sup
f∈F

N∑
i=1

f(Xi).

Then, for all t ≥ 0,

P(Z ≥ EZ + t) ≤ exp
(
− t2

2(σ2 + 2aEZ) + 3at

)
,

where

σ2 = sup
f∈F

N∑
i=1

Ef(Xi)
2.

Proof of Proposition 4.4. For simplicity, throughout this proof we will use the letter
C to denote absolute constants, whose values may change from line to line.

For B > 1 (to be specified later) consider

E sup
y∈Sn−1

∣∣∣ N∑
i=1

(
(|〈Xi, y〉| ∧B)p − E(|〈Xi, y〉| ∧B)p

)∣∣∣
≤ 4pBp−1

E sup
y∈Sn−1

∣∣∣ N∑
i=1

εi(|〈Xi, y〉| ∧B)
∣∣∣,
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where the last line follows from Corollary 4.7. The function t �→ |t| ∧ B is a
contraction, so

E sup
y∈Sn−1

∣∣∣ N∑
i=1

(
(|〈Xi, y〉| ∧B)p − E(|〈Xi, y〉| ∧B)p

)∣∣∣
≤ 8pBp−1

E sup
y∈Sn−1

∣∣∣ N∑
i=1

εi〈Xi, y〉
∣∣∣ ≤ 8pBp−1

E

∣∣∣ N∑
i=1

εiXi

∣∣∣
≤ 8pBp−1

√
Nn.

Since by (2.3), E(|〈Xi, y〉| ∧B)2p ≤ C2pp2p, Lemma 4.8 implies that for t ≥ 1, with
probability at least

1− exp
(
− 64B2p−2t2Nn

2NC2pp2p + 32pB2p−1
√
Nn+ 24pB2p−1t

√
Nn

)
≥ 1− exp(−cp min(t2nB2p−2, t

√
Nn/B)),(4.4)

one has

sup
y∈Sn−1

∣∣∣ N∑
i=1

(
(|〈Xi, y〉| ∧B)p − E(|〈Xi, y〉| ∧B)p

)∣∣∣ ≤ 16tpBp−1
√
Nn.(4.5)

Observe that

sup
y∈Sn−1

∣∣∣ 1
N

N∑
i=1

(|〈Xi, y〉|p − E|〈Xi, y〉|p)
∣∣∣

≤ sup
y∈Sn−1

∣∣∣ N∑
i=1

1

N
(|〈Xi, y〉| ∧B)p − E(|〈Xi, y〉| ∧B)p)

∣∣∣
+ sup

y∈Sn−1

1

N

N∑
i=1

(|〈Xi, y〉|p −Bp)1{|〈Xi,y〉|≥B}

+ sup
y∈Sn−1

1

N
E

N∑
i=1

(|〈Xi, y〉|p −Bp)1{|〈Xi,y〉|≥B}.

Each of the three terms obtained is estimated separately, with the first term
already discussed in (4.5) and (4.4). By (2.3) and Chebyshev’s inequality we have

E|〈Xi, y〉|p1{|〈Xi,y〉|≥B} ≤ ‖〈Xi, y〉‖p2p
√
P(|〈Xi, y〉| ≥ B) ≤ Cpppe−B/C .

Together with the previous inequalities this implies that

sup
y∈Sn−1

∣∣∣ 1
N

N∑
i=1

(|〈Xi, y〉|p − E|〈Xi, y〉|p)
∣∣∣

≤ 16tpBp−1

√
n

N
+ sup

y∈Sn−1

1

N

N∑
i=1

|〈Xi, y〉|p1{|〈Xi,y〉|≥B} + Cpppe−B/C ,(4.6)

with probability at least

1− exp(−cp min(t2nB2p−2, t
√
Nn/B)).
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Thus it remains to estimate supy∈Sn−1

∑N
i=1 |〈Xi, y〉|p1{|〈Xi,y〉|≥B}. To this end

we use Theorem 3.6 and Remark 3.10. It follows that for s ≥ 1, with probability
at least 1− e−cs

√
n, we have, for all m ≤ N and all z ∈ SN−1 with | supp z| = m,

(4.7)
∣∣∣ N∑
i=1

ziXi

∣∣∣ ≤ Cs
(√

n+
√
m log

(2N
n

))
.

Dualizing this estimate and using the fact that for p ≥ 2, the �p-norm is dominated
by the �2-norm, we obtain, for any set E ⊂ {1, . . . , N},

sup
y∈Sn−1

(∑
i∈E

|〈Xi, y〉|p
)1/p

≤ sup
y∈Sn−1

(∑
i∈E

|〈Xi, y〉|2
)1/2

≤ Cs
(√

n+
√
|E| log

(2N
n

))
.(4.8)

For an arbitrary y ∈ Sn−1, let EB = EB(y) := {i ≤ N : |〈Xi, y〉| ≥ B}. Then, by
(4.8),

B|EB|1/2 ≤
(∑

i∈EB

|〈Xi, y〉|2
)1/2

≤ Cs
(√

n+
√
|EB| log

(2N
n

))
.

Thus, whenever

(4.9) B ≥ 2Cs log
(2N

n

)
,

we obtain (for a different absolute constant C),

|EB| ≤ Cs2nB−2.

This combined with (4.8) implies, after taking the pth powers and again adjusting

constants, that with probability at least 1− e−cs
√
n, for all y ∈ Sn−1,

N∑
i=1

|〈Xi, y〉|p1{|〈Xi,y〉|≥B} =
∑
i∈EB

|〈Xi, y〉|p

≤ Cpsp
(
np/2 + np/2spB−p logp

(2N
n

))
.

Setting B = 2Cs log(2N/n), so that (4.9) is satisfied, and combining the resulting
estimate with (4.6), we get

sup
y∈Sn−1

∣∣∣ 1
N

N∑
i=1

(|〈Xi, y〉|p − E|〈Xi, y〉|p)
∣∣∣

≤ 16Cp−1tsp−1p logp−1
(2N

n

)√ n

N
+

Cpspnp/2

N
+ Cppp

( n

2N

)s

,

with probability at least

1− exp(−cs
√
n)− exp

(
− cp min

(
t2s2p−2n log2p−2(2N/n),

ts−1
√
Nn

log(2N/n)

))
.

This completes the proof of Proposition 4.4. �
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Remark 4.9. Let G ∈ R
n be a standard Gaussian vector with the identity as the

covariance matrix and let h be a standard Gaussian random variable. Assume that
h and G are independent and put X = hG ∈ R

n. Clearly its covariance matrix
is the identity, and it is easy to check that ‖〈X, y〉‖ψ1

≤ c|y|, for every y ∈ R
n,

where c is a numerical constant. Nevertheless, it is known from [3] that X does not
satisfy the conclusion of Lemma 3.1; in fact the density of X is not log-concave.
Now let us consider the matrix A = A(N) with i.i.d. copies Xi = hi Gi, i = 1, . . . , N
as columns with N ≤ en, where (hi) are i.i.d. copies of h and similarly (Gi) i.i.d.
copies of G, (hi) and (Gi) independent. One can check that

E sup
y∈Sn−1

1

N

N∑
1

|〈Xi, y〉|2 = E sup
y∈Sn−1

1

N

N∑
1

h2
i |〈Gi, y〉|2

≥ E sup
i

1

N
h2
i |Gi|2 ≥ c

n

N
logN,

where c > 0 is a numerical constant. Thus ‖A‖ ≥
√
cn logN . This example shows

that the subexponential decay of linear forms (ψ1-norm bounded) is not sufficient
for our problem.

Remark 4.10. In comparison, a sub-Gaussian decay of linear forms is sufficient.
Indeed, it is known (see for instance [19]) that if there exists c > 0 such that
E exp

(
|c〈X, y〉|2

)
≤ 2 for every y ∈ Sn−1, then (1.5) holds with probability larger

than 1− exp(−c′n) for some numerical constant c′ > 0.

Remark 4.11. Another not necessarily log-concave example for which the conclu-
sions of Theorems 3.6 and 4.1 are valid is obtained when ‖〈X, y〉‖ψ1

≤ c|y|, for
every y ∈ R

n and |X| ≤ C
√
n where c, C > 0 are numerical constants.

4.2. Additional observations. We note several observations for norms of random
matrices from �2 to �p, p �= 2.

Corollary 4.12. For 1 ≤ N ≤ e
√
n, let Γ be a random N × n matrix with rows

X1, . . . , XN . Then for p ≥ 2, with probability at least 1 − e−cp
√
n (where cp > 0

depends only on p),

‖Γ‖�2→�p ≤ Cp(N
1/p + n1/2),(4.10)

with Cp > 0 depending only on p. Moreover

c̃pN
1/p + c

√
n ≤ E‖Γ‖�2→�p ≤ C̃p(N

1/p + n1/2),(4.11)

where C̃p, c̃p > 0 depend only on p and c > 0 is an absolute constant.

Proof. Inequality (4.10) for N ≤ n follows from Theorem 3.6 and the comparison
between �p-norms. For N ≥ n, the inequality follows from Proposition 4.4.

Since by log-concavity, moments and quantiles of ‖Γ‖�2→�p are equivalent, (4.10)
implies that

E‖Γ‖�2→�p ≤ C̃p(N
1/p + n1/2).

On the other hand, a single row of Γ has expected Euclidean norm of the order
of

√
n and a single column of Γ has expected ‖ · ‖p-norm of the order of c(p)N1/p,

so the left-hand side of (4.11) follows trivially. �
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Corollary 4.13. For 1 ≤ N ≤ e
√
n, let Γ be a random N × n matrix with rows

X1, . . . , XN . Then for p ∈ [1, 2), with probability at least 1− e−c
√
n (where c > 0 is

an absolute constant),

‖Γ‖�2→�p ≤ C(N1/p +N1/p−1/2n1/2)(4.12)

for some absolute constant C > 0. Moreover

c̃(N1/p +N1/p−1/2n1/2) ≤ E‖Γ‖�2→�p ≤ C̃(N1/p +N1/p−1/2n1/2),(4.13)

where C̃, c̃ > 0 are absolute constants.

Proof. Inequality (4.12) and the right-hand side of (4.13) follow from the corre-
sponding results for p = 2, since

‖Γ‖�2→�p ≤ N1/p−1/2‖Γ‖�2→�2 .

To prove the left-hand side of (4.13), it is enough to notice that if 1/p∗ + 1/p = 1,
then

E‖Γ‖�2→�p ≥ E

∣∣∣ N∑
i=1

1

N1/p∗ Xi

∣∣∣ ≥ c̃N1/2−1/p∗
n1/2 = c̃N1/p−1/2n1/2

and the expected �p-norm of a single column of Γ is at least c̃N1/p. �
One can also obtain an almost-isometric result for p ∈ [1, 2).

Theorem 4.14. Let X1, . . . , XN be i.i.d. random vectors, distributed according
to an isotropic, log-concave probability measure on R

n. For any p ∈ [1, 2) and for

every ε ∈ (0, 1) and t ≥ 1, there exists C(ε, t) > 0 such that if C(ε)n ≤ N ≤ e
√
n,

then with probability at least 1− e−ct
√
n (where c > 0 is an absolute constant),

sup
y∈Sn−1

∣∣∣ 1
N

N∑
i=1

(|〈Xi, y〉|p − E|〈Xi, y〉|p)
∣∣∣ ≤ ε.(4.14)

Moreover, one can take C(ε, t) = Ct2pε−2 log2p−2(2t2pε−2), where C > 0 is an
absolute constant.

Proof. Since the proof differs only by technical details from the corresponding ar-
gument for p ≥ 2, we will just indicate the necessary changes. We will use the
notation from the proof of Proposition 4.4.

Just as before, we truncate at the level of Ct log(2N/n) and use the contraction
principle to handle the bounded part of the process. As for the unbounded part, we
also proceed as before; however, now we use the comparison between the �k2-norm
and the �kp-norm for p < 2 and k = |EB| ≤ n, which yields

sup
y∈Sn−1

∣∣∣ 1
N

N∑
i=1

(|〈Xi, y〉|p − E|〈Xi, y〉|p)
∣∣∣

≤ 16Cp−1tpp log
(2N

n

)p−1
√

n

N
+

Cptpn

N
+

Cpppn

N
,

with probability at least

1− exp(−ct
√
n)− exp(−cmin(t2n log2p−2(2N/n),

√
Nn/ log(2N/n)))

(the constants in the exponents can be made independent of p, since now p runs
over a bounded interval). This allows us to finish the proof. �
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Remark 4.15. The isomorphic result for p = 1 was proven in [10]. The same paper
also considers p ∈ (0, 1).

4.3. Elementary approach for p = 2. As announced earlier we will now briefly
describe a more elementary proof of Theorem 4.1 and Theorem 4.2 for p = 2.
In this case, the classical Bernstein inequality and a net argument on the sphere
may replace the contraction principle and concentration of measure for empirical
processes, which have been used (via Lemma 4.8) to prove (4.5). The remaining
part of the proof is left unchanged.

The key point is the following well-known observation:

Lemma 4.16. Let xi, i = 1, 2, . . . , N , be arbitrary vectors in R
n. Let ε ∈ (0, 1)

and let N be a cε-net of Sn−1, for some constant c ∈ (0, 1). If we have

sup
y∈N

∣∣∣ 1
N

N∑
i=1

(〈xi, y〉2 − 1)
∣∣∣ ≤ ε,

then

sup
y∈Sn−1

∣∣∣ 1
N

N∑
i=1

(〈xi, y〉2 − 1)
∣∣∣ ≤ c′ε,

where c′ depends on c.

We postpone the proof of this lemma and pass to the proof of Theorems 4.1 and
4.2.

Fix a cε-net N of Sn−1 of cardinality at most (3/cε)n, and fix B > 0 to be
determined later. Pick an arbitrary y ∈ Sn−1.

For the reader’s convenience, we recall Bernstein’s inequality.

Proposition 4.17 (Bernstein’s inequality; cf., e.g., [26]). Let Zi be independent
random variables, centered and such that |Zi| ≤ a for all 1 ≤ i ≤ N . Put Z =
1
N

∑N
i=1 Zi. Then for all τ ≥ 0,

P(Z ≥ τ ) ≤ exp
(
− τ2N

2(σ2 + aτ/3)

)
,

where

σ2 = (1/N)

N∑
i=1

V ar(Zi).

In our case Zi = (|〈Xi, y〉| ∧ B)2 − E(|〈Xi, y〉| ∧ B)2, for 1 ≤ i ≤ N , a = B2.
Since E(|〈Xi, y〉|)2 = 1, then (2.3) implies that

V ar(Zi) ≤ E(|〈Xi, y〉| ∧B)4 ≤ c.

Setting τ = tB
√
n/N we infer that

∣∣∣ 1
N

N∑
i=1

(
(|〈Xi, y〉| ∧B)2 − E(|〈Xi, y〉| ∧B)2

)∣∣∣ ≥ tB
√

n/N

with probability at most

exp
(
−cmin

(
t2B2n, t

√
Nn/B

))
.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



CONVERGENCE OF THE EMPIRICAL COVARIANCE MATRIX 559

By the union bound,

sup
y∈N

∣∣∣ 1
N

N∑
i=1

(
(|〈Xi, y〉| ∧B)2 − E(|〈Xi, y〉| ∧B)2

)∣∣∣ ≤ tB
√
n/N,(4.15)

with probability at least

1− exp
(
n log

( 3

cε

)
− cmin(t2nB2, t

√
Nn/B)

)
.

This estimate corresponds to (4.5).
Using this estimate with B = Ct log(2N/n) and handling the unbounded part

the same way as in Proposition 4.4 (see the argument that follows (4.5)) we obtain

sup
y∈N

∣∣∣ 1
N

N∑
i=1

(|〈Xi, y〉|2 − E|〈Xi, y〉|2)
∣∣∣

≤ Ct2 log
(2N

n

)√ n

N
+

C2t2n

N
+

4C2n

N
,(4.16)

with probability at least

1− exp(−ct
√
n)− exp

(
n log

( 3

cε

)
− cmin

(
t4n log2(2N/n),

√
Nn

C log(2N/n)

))
.

This corresponds to the estimates in Proposition 4.4 (for s = t).
Now, for N ≥ C(ε, t)n, and C(ε, t) sufficiently large, the right-hand side of (4.16)

is at most ε and 5/(cε) ≤ 2N/n, which leads to the probability above to be at least
1− exp(−ct

√
n). So with the same probability we get

sup
y∈N

∣∣∣ 1
N

N∑
i=1

(|〈Xi, y〉|2 − E|〈Xi, y〉|2)
∣∣∣ ≤ ε.

We can now conclude by Lemma 4.16 applied pointwise with xi = Xi(ω) for ω from
the event on which our estimates hold (recall that by the isotropicity assumption
we have E|〈Xi, y〉|2 = 1).

Proof of Lemma 4.16. Consider the semi-norm ‖ · ‖ on R
n defined by

‖y‖ =
( 1

N

N∑
i=1

|〈xi, y〉|2
)1/2

,

for y ∈ R
n. Our assumptions imply that

1− ε ≤
√
1− ε ≤ sup

y∈N
‖y‖ ≤

√
1 + ε ≤ 1 + ε/2.

The triangle inequality and homogeneity of ‖ · ‖ imply, by a standard argument,
that

sup
y∈Sn−1

‖y‖ ≤ (1 + ε/2)(1− cε)−1 ≤ 1 + δ,

where

δ =
1 + 5c− 3c2

2(1− c)
ε.
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To get a lower estimate, write an arbitrary y ∈ Sn−1 in the form y = y1 + cεy2,
with y1 ∈ N and y2 ∈ Sn−1. Then ‖y‖ ≥ ‖y1‖−cε‖y2‖ ≥ (1−ε)−cε(1+δ) ≥ 1−δ1,
where

δ1 =
2 + c+ 3c2 − 3c3

2(1− c)
ε.

Thus for all y ∈ Sn−1, |‖y‖−1| ≤ c1ε for some c1 depending only on c. In particular
‖y‖ ∈ [0, 1 + c1]. Using the fact that the function t �→ t2 is Lipschitz with constant
2(1 + c1) on the interval [0, 1 + c1], we conclude that

sup
y∈Sn−1

∣∣∣ 1
N

N∑
i=1

(〈xi, y〉2 − 1)
∣∣∣ ≤ c′ε,

where c′ = 2c1(1 + c1) depends only on c. �
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