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Propagation-based X-ray phase-contrast computed tomography (PBI) has

already proven its potential in a great variety of soft-tissue-related applications

including lung imaging. However, the strong edge enhancement, caused by the

phase effects, often hampers image segmentation and therefore the quantitative

analysis of data sets. Here, the benefits of applying single-distance phase

retrieval prior to the three-dimensional reconstruction (PhR) are discussed and

quantified compared with three-dimensional reconstructions of conventional

PBI data sets in terms of contrast-to-noise ratio (CNR) and preservation of

image features. The PhR data sets show more than a tenfold higher CNR and

only minor blurring of the edges when compared with PBI in a predominately

absorption-based set-up. Accordingly, phase retrieval increases the sensitivity

and provides more functionality in computed tomography imaging.
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1. Introduction

Within the aim of unravelling the patho-mechanism of lung

disease and the testing of novel treatments, there is still a

strong need for improvement of lung imaging techniques and

their application in preclinical disease models. Owing to the

very nature of the lung with its air–tissue interfaces, lung

imaging remains challenging for most imaging modalities

(Kauczor & Kreitner, 1999). Propagation-based phase-

contrast computed tomography (PBI) has already been

proven valuable in applications focusing on low-absorbing

tissue (‘soft tissue’) (Kitchen et al., 2005; Sera et al., 2005). The

obtained edge effects facilitate the delineation of the airways,

but on the other hand hamper or prohibit further quantitative

analysis relying on threshold-based segmentation of the data

sets. To circumvent this problem, edge-suppression techniques

or low-pass filters can be used to remove these effects.

However, this also diminishes the quality of the image

features, especially for edges. Here, we propose and validate

the application of a single-distance phase-retrieval method

(Paganin et al., 2002) for in-line phase-contrast computed

tomography (CT) imaging of a mouse lung in situ filled with

air at a physiological pressure. Several other phase-retrieval

techniques utilizing multiple sample-to-detector distances

(Mayo et al., 2012; Kostenko et al., 2013; Cloetens et al., 1999)

have been utilized before but are not practical for several

reasons: e.g. they need an advanced imaging set-up and are

very sensitive to variations in the incident beam, an aspect

which needs to be considered at synchrotron light sources.

Additionally, the movement and differences in the total

amount of optical energy between projections acquired at

different distances causes slight shifts and results in further

alterations and artefacts. More importantly, multiple

measurements increase the exposure time and dose delivered

to the biological sample. Therefore, a single-distance phase-

retrieval algorithm based on the transfer of intensity equation

(Paganin et al., 2002; Gureyev et al., 2009; Teague, 1983), which

only requires one CT data set obtained at a single sample-to-
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detector distance, has many advantages. This algorithm

reconstructs the three-dimensional distribution of the complex

refractive index, ~nnðrÞ = 1 � � rð Þ + i�ðrÞ, inside the sample by

using X-ray projection images acquired at different view

angles (rotational position of the sample). This class of algo-

rithms can strictly speaking only be applied for ‘homogeneous’

objects, which are either pure absorption, pure phase objects

or objects characterized by a constant ratio of the real to the

imaginary parts of the refractive index, i.e. �ðrÞ=�ðrÞ = � = a

constant (Paganin et al., 2002). Although biological samples do

not satisfy this assumption, it has been demonstrated by Wu et

al. (2005) that these kinds of algorithms can still be applied for

biological samples which are predominately composed of

materials with a low atomic number (Z < 10), referred to as

‘soft tissue’ within this article. Here we use an in situ mouse

lung sample and show that, even in the presence of material

with Z > 10, such as bone, the image quality can be dramati-

cally increased by single-distance phase retrieval and exceeds

that of PBI.

2. Methods

2.1. Sample preparation

The chest imaged in this study was taken from a mouse

sacrificed using a xylazine–tiletamine–zolazepam overdose. In

order to reproduce conditions which resemble the in vivo

situation, the lung was inflated in situ with air, under a

constant pressure of 30 cm water column (2.94 kPa), through

a series of smaller tubings, down to a polyethylene cannula

(PE50) fixed inside the trachea with a cotton wire. To block

the air inside the lung the trachea was tied up. Following this

procedure the sample was kept at room temperature for 2 h, in

order to avoid any ‘rigor mortis’-based alterations. In the final

step the sample was embedded in 1% agarose gel, inside a

30 ml falcon tube (Fisher Scientific, USA) serving as a sample

holder, thus avoiding air leakage, alterations and movement

during the time course of the X-ray examination. The agarose

gel was left to set for another 30 min at 277 K, which allowed

for a complete gelatinization of the gel. Following this

procedure the sample was placed inside the SYRMEP

beamline experimental hutch 30 min before imaging, thus

allowing for temperature adaptation in order to suppress any

alterations of the lung during the scanning process.

2.2. Data acquisition

The chest area of the sample was scanned at the SYRMEP

beamline of the Elettra synchrotron light source (Trieste,

Italy). The sample was scanned at three sample-to-detector

distances of 7 cm, 30 cm and 100 cm, with the following

parameters: X-ray energy = 22 keV, with a spatial resolution of

9 mm; field of view of 18 mm� 12 mm; 1800 projections over a

full rotation of 360�.

2.3. Phase retrieval

Owing to phase contrast, the obtained projection images

display a mix of absorption-based contrast and edge effects

whose magnitudes depend on the sample-to-detector distance.

In order to enable threshold-based segmentation and to fully

exploit the potential of phase-contrast CT, it is necessary to

calculate an image which is predominated by the real part of

the complex refractive index and without the edge effects.

Therefore, to reconstruct the complex refractive index ~nnðrÞ in

the sample, a single-distance phase-retrieval algorithm, based

on the transfer of intensity equation (TIE), is applied to the

acquired data sets (Paganin et al., 2002). Furthermore, only

one scan per sample is needed, thus enabling an overall

scanning time of about 1.5 h in a 360� mode and therefore

reduces artefacts based on alterations of biological samples

over time. We used a TIE phase-retrieval algorithm imple-

mented in the X-Tract software package developed at CSIRO

(Paganin et al., 2002).

For this algorithm a priori knowledge of the ratio (�)

between � and � of the refractive index is needed. Here we

used � = 1950 for lung tissue. This value is based on the

standardization of lung tissue by the International Commis-

sion on Radiological Protection (ICRP) which is described

by hydrogen, carbon and oxygen in the following ratios:

H 10, C 0.83, O 5 (Berger, 1992). This soft-tissue equivalent

was used in the online calculator for the refractive index

(Center of X-ray Optics, Lawrence Berkeley National

Laboratory, http://henke.lbl.gov/optical_constants/getdb2.

html) to obtain �.

To evaluate the benefit of single-distance phase retrieval

over conventional PBI, slices were also reconstructed without

prior application of a phase-retrieval algorithm.

2.4. Post-processing and quantification

All scans were reconstructed after application of the TIE

phase-retrieval algorithm (PhR) and without phase retrieval

(PBI). For quantitative analysis the PBI and PhR data sets

were registered to the PBI 7 cm data set using a two-dimen-

sional cross-correlation evaluation in order to identify the

corresponding slice and a Fourier–Mellin algorithm to detect

in-plane scaling, rotation and translation (Zitová & Flusser,

2003). The two-dimensional cross correlation used as a

measure for similarity between two images was strongly

influenced by the edge effects in the PBI data sets and

prevented the Fourier–Mellin algorithm from converging.

Therefore, the PBI data sets were filtered only for the regis-

tration process by using a normal mean filter (size 3 � 3 � 3

voxels) to suppress the edge effects. Profiles at air–tissue

interfaces were calculated to assess the edge quality in the

images. Standard deviations and mean values were measured

in different volumes of interest (0.4 mm2) for fat, air, soft

tissue and bone in all data sets. The contrast-to-noise ratio

(CNR) between two adjoined tissues was calculated based on

equation (1) (Muhogora et al., 2008).

In order to assess the quality of the edges in the images, the

edge-enhancement index [EEI; equation (2)] (Donnelly et al.,

2006) was calculated. However, the highest and lowest value

(P and L) on a profile plot used in the proposed equation (2)

by Donnelly et al. is difficult to define within the sometimes
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sparsely sampled line profile, especially in the presence of the

edge effects of the PBI images. Thus, we introduced a measure

based on a non-linear fit of a sigmoid function [equation (3)]

on these profiles. In order to avoid the registration process

from influencing the noise level determination, the noise level

was measured in the original untransformed data.

CNR ¼
g1 � g2

ð1=2Þ � 2
1 þ �

2
2

� �� �1=2
; ð1Þ

where g1 and g2 are the mean intensity values of a given

homogenous area (size 0.4 mm2) in tissue and in air, respec-

tively, and �1 and �2 are the corresponding standard devia-

tions;

EEI ¼
P� L

� 2
1 þ �

2
2

� �1=2
; ð2Þ

where P and L are the highest and lowest values on a profile

plot of an air–tissue interface (length 0.1 mm), and �1 and �2

are the standard deviations of the profile regions depicting

pure air and pure tissue, respectively;

sig xð Þ ¼
k1

1þ exp �k2 xþ k3ð Þ
� �þ k4; ð3Þ

where the different constants ki are used to adjust the sigmoid

function to the present line profile. The steepness of the edge

is depicted by the constant k2.

3. Results

3.1. Overall performance of the used phase-retrieval
algorithm

With increasing sample-to-detector distance the filtered

back-projection (FBP) reconstruction of the PBI data sets

reveals higher magnitudes of phase effects (Fig. 1a). Phase

retrieval is meant to calculate the �-distribution (real part) of

the complex refractive index within the sample and should

therefore be independent of the sample-to-detector distance.

The PhR results (Fig. 1b) in general show the expected

behaviour apart from a slight increased blurring, thus indi-

cating the successful application of the used algorithm.

3.2. Quantitative comparison of the reconstructed phase-
retrieved data sets with the PBI data sets

In general, quantitative comparison is hampered by the fact

that these two image types represent different features of the

studied object: absorption plus edge enhancement in the PBI

data sets, and phase-shift-dominated contrast without edge

effects in the PhR data sets. Both can be advantageous in

terms of the application of different image-processing proto-

cols. Therefore, the following analysis is mainly meant to show

the feasibility of using these data for threshold-based image

segmentation or for visual inspection of the images. Thus, both

contrast but also the quality of the edges of image features

need to be addressed. The contrast is a measure of the

effectiveness to discriminate between adjacent tissues and is

positively dependent on the difference in the tissues’ respec-

tive grey values and negatively influenced by the noise level.

In order to quantify the image contrast and account for the

presence of noise, the contrast-to-noise ratio [equation (1)]

was measured.
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Figure 1
Comparison of the edge effects within the PBI data sets (a) at 7, 30 and 100 cm sample-to-detector distances. A clear increase of the edge effects can be
seen with increasing distance. (b) The respective results from the TIE phase-retrieval algorithm (PhR) with a �-to-� ratio optimized for lung soft tissue,
therefore bone structures appear blurred. Besides a slight increased blurring at 100 cm the images look alike and present a higher contrast than the PBI
data sets. Note that only the central part of the data is shown for convenience. The full reconstruction represents the entire cross section of the sample.



The same two-dimensional regions solely containing air or

soft tissue (three different regions each, measured on six

slices) with a size 0.4 mm2 were identified and their mean

values and standard deviation were calculated in all data sets.

These regions were selected away from tissue interfaces as to

not be affected by the edges effects. The calculated CNR

values show a high CNR between air and soft tissue within the

lung of up to 29 for the phase-retrieved data set at 100 cm

sample-to-detector distance (Table 1). Given the fact that the

CNR increases with increasing sample-to-detector distance,

this implies that imaging at higher distances may further

enhance the results.

Additionally, five line profiles (0.2 mm length) at an air–

soft-tissue interface were measured and the average of these

line profiles was used to analyse the edge quality using

equation (2) (EEI). As shown in Table 1, the EEI values for

the PhR data sets are higher due to the strongly reduced noise

of the profile. Therefore, EEI cannot reflect the true situation

displayed in Fig. 2(a) compared with Fig. 2(b) which shows a

much steeper and higher edge due to the edge effects in the

PBI rather than in the PhR data sets.

Therefore, in order to quantify and compare the steepness

of the edges and the influence of the edge effects we used a

non-linear fitting regime for the measured profiles utilizing a

sigmoid function [equation (3)] (Fig. 2, Table 1). Based on this

equation the parameter k2 reflects the steepness of the edge.

In order to provide more intuitive values, the highest k2 value

(PBI 30 cm) was set to 100% and all the other values were

expressed as a ratio of this reference value (steepness-of-fit).

In contrast to EEI, the steepness-of-fit parameter reflects the

observed increase in blurring in the phase-retrieved data sets

and shows a slight decrease from 8% for 7 cm to 5% for

100 cm. This behaviour will hamper the use of very large

sample-to-detector distances at least if a high spatial resolu-

tion in the range of the pixel size of the detection system is

needed. Owing to the strong edge effects in the PBI data sets

the edges appear steeper compared with the PhR data sets,

ranging from 57% for 7 cm to 100% at 30 cm. The breakdown

in the edge steepness at 100 cm in the PBI data is caused by

phase effects produced by the tissue texture, which carries

more weight at greater sample-to-detector distances, and by

the appearance of higher-order interference fringes, which

cannot be properly sampled with the limited detector pixel

size of 9 mm (binning 2 � 2 used in this study). These effects

create massive distortion of the measured edge profile which

prevents the applicability of a fitting approach with a sigmoid

function [equation (3)] and therefore diminishes the measured

edge-steepness.
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Table 1
Quantitative results of the image comparison.

PBI PhR

7 cm 30 cm 100 cm 7 cm 30 cm 100 cm

CNR air–soft-tissue 1.55 � 0.23 0.92 � 0.25 0.73 � 0.25 9.33 � 0.92 17.54 � 1.77 29.29 � 10.55
EEI 8.80 � 1.39 12.45 � 0.80 11.24 � 2.07 25.41 � 2.29 51.31 � 5.01 63.03 � 2.02
Steepness of fit 57% 100% 15% 8% 7% 5%

Figure 2
Comparison of the edge quality between PBI (a), PhR (b) and filtered
PBI data sets (c). (a)–(c) show profile plots at the same location in PBI
and PhR data sets obtained with a 30 cm sample-to-detector distance. In
order to suppress the influence of noise, five individual profiles (blue
dots) were measured and the average profile (black line) was used for
evaluation. The red line resembles the fit of the sigmoid function
[equation (3)]. A clearly steeper edge is apparent in (a) due to the strong
edge effects; (b) shows a smoother edge but in combination with reduced
noise; (c) presents the profile of the PBI data set after iterative use of a
low-pass filter to reach the same edge steepness as in (b).



3.3. Does phase retrieval do more than a low-pass filter
applied to the raw data sets?

As shown in Fig. 2(a), PBI at 30 cm is characterized by

strong edge effects and therefore presents very steep edges

compared with the phase-retrieval data set PhR of the same

sample-to-detector distance (Fig. 2b). In order to prove that

phase retrieval cannot be substituted by a simple low-pass

filter to remove the edge effects, the PBI data set was

gradually filtered using a Gaussian filter (kernel with 3 pixels)

until the profile presented the same steepness as the PhR data

set. Even in this ideal situation where the CNR is increased

due to the suppressed noise, it only reaches about 5 as against

17.5 obtained with the PhR data set. This indicates that phase

retrieval cannot be substituted by low-pass filtering.

3.4. Single-distance phase-retrieval applied to in-line
phase-contrast synchrotron-radiation-based CT data sets
of an in situ mouse lung opens up for structural analysis
of lung tissue

Utilizing the TIE phase-retrieval algorithm we have

reached a more than ten times higher CNR value in the images

of an in situ mouse lung. Fig. 3 exemplifies the difference in the

appearance of PBI and PhR data sets by showing the same

slice at 30 cm cut in the middle. In Fig. 3(a), PBI depicts the

clear delineation of the air to soft-tissue interface and the

presence of strong edge effects. The blue line in the profile

plot at position P shows the large variation of the grey values

and the strong edge effect at the interface. In addition, the

overall histogram of this slice allows no contrast-based

separation of tissues, presenting only one Gaussian-shaped

distribution [Fig. 3(b), blue histogram]. In contrast, the PhR

data set in Fig. 3(b) shows no signs of edge effects. The profile

plot (red) depicts a common stair-shaped function with low

variation within the air and the soft-tissue plateau phase. The

histogram clearly shows at least two components for air and

soft tissue which enables threshold-based segmentation and

therefore quantitative image analysis.

4. Discussion

Here we present the benefits of utilizing in-line phase-contrast

CT for lung imaging in combination with single-distance phase

retrieval as demonstrated on an in situ mouse lung sample.

The application of in-line phase-contrast CT on lungs exploits

the presence of the air–tissue interfaces and provides signifi-

cantly better delineation of the airways than several other

applications (Siu et al., 2008; Sera et al., 2005; Kitchen et al.,

2005). On the other hand, the strong edge effects in the data

sets hamper the segmentation of different components (air,

soft tissue) and therefore prevent a quantitative analysis.

By utilizing single-distance phase retrieval, as demonstrated

in this study, data sets can be generated which predominately

show the distribution of the real part of the complex refractive

index within the samples and do not display any edge effects.

We verified the reliability of this approach by analysing the

same lung sample at different sample-to-detector distances

and obtained the same results with every distance. Remark-

ably, the CNR of the generated data sets are more than ten

times higher than with the classical absorption-based mode

(short sample-to-detector distance). It has to be stated that the

ten-fold gain in CNR is related to many different factors,

including the overall set-up of the experiment, the character-

istics of the chosen sample, the sample-to-detector distances,

the resolution of the used detector system, characteristics

of the incident X-ray beam, the used implementation of the

reconstruction and the phase-retrieval software. Therefore,

the calculated factor of ten does not represent a general rule

when comparing phase-retrieved images with PBI images and

may vary in other set-ups. Beltran et al. for instance reported

a 9–200-fold increase in CNR (Beltran et al., 2011).

In addition, CNR is an image parameter, which can be

easily increased by de-noising. This usually suppresses high

spatial frequencies and therefore diminishes the quality of

edges. Therefore, it should not be used for quantification of

image quality without a measure of the preservation of image

sharpness. We repeatedly applied mean filtering on the PBI
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Figure 3
A direct comparison of the image features for PBI (a) and the TIE phase-
retrieved data set (b) is shown, both obtained for the same sample at an
object-to-detector distance of 30 cm (this figure depicts only the central
part of the reconstruction for convenience). As indicated in the detailed
views, PBI presents strong edge effects when compared with PhR. The
overall grey value histograms (lower right corner) for PBI (blue) and PhR
(red) show that, due to the phase effects overlaying the measured
absorption, only one Gaussian-shaped peak can be seen. Therefore, no
intensity-based segmentation between air and tissue can be performed. In
contrast, after phase retrieval the histogram is clearly composed of two
density intervals. The line profile at the position P in PBI (blue) and PhR
(red) in the lower left-hand corner shows large variations and a strong
edge effect for PBI, whereas in PhR the profile resembles the expected
jump-function for a simple air–tissue interface. These drastic edge effects
also cause negative values lower than the value for air, within the bronchi
(dark contours). Therefore, the airways may appear filled, which is not
the case. Note that the �-to-� ratio for PhR was optimized for soft tissue
and did not match the ratio of bone, which is why ribs and spine appear
more blurred than in PBI.



images to reach the same CNR as measured by PhR, but

observed a dramatically lower sharpness of the edges than in

PhR. This demonstrates that single-distance phase retrieval

cannot be substituted by filtering of PBI images.

Interestingly, in the normal PBI data sets we also observed a

decrease in CNR with increasing sample-to-detector distance.

This is in contrast to our previous findings from the analysis of

a phantom filled with different substances and imaged with

two sample-to-detector distances (Gureyev et al., 2013). We

believe the loss in CNR is caused by the intrinsic small density

variation within biological tissue, such as the lung. Even in

areas solely composed of one tissue type, these variations

cause additional phase effects which increase the image ‘noise’

and therefore diminish the CNR. This notion is supported

by Donnelly et al. (2003), who quantitatively analysed the

dependency of the observed phase effects of certain systemic

parameters and found a strong impact of tissue texture and

scattering on the detection of the phase effect fringes in

biological samples. Our findings support these studies and

underline the importance of evaluating novel imaging

approaches in biological specimens.

Our data show that, even if biological samples do not fulfil

the preconditions of a ‘homogeneous’ object (Gureyev et al.,

2009) for single-distance phase-retrieval algorithms and the

generated data sets therefore predominately reflect only the

real part of the complex refractive index, the achieved image

quality outperforms that of absorption-based CT and PBI

(phase-contrast CT without phase retrieval). In addition, the

same short imaging time can be maintained with this single-

distance phase-retrieval approach, something that would be

impossible with other algorithms requiring multiple sample-

to-detector distances. However, as previously reported

(Beltran et al., 2011), the application of this class of phase-

retrieval algorithms requires a priori knowledge of the �-to-�
ratio of the refractive index of the analysed sample. In our

study we accordingly chose the appropriate ratio for lung

tissue (�-to-� ratio = 1950). Therefore, the bone details, like

the spine and rib cage, appear blurred in the reconstructions

due to the fact that they are characterized by a �-to-� ratio

of about 250 (Center of X-ray Optics, Lawrence Berkeley

National Laboratory, http://henke.lbl.gov/optical_constants/

getdb2.html), based on the composition of bone of H 0.06,

C 0.28, N 0.3, O 4.1, P 7, Ca 15 as found in the database of the

National Institute of Standards and Technology (NIST). This

underlines the fact that single-distance phase-retrieval algo-

rithms cannot be used to calculate the �-value distribution

of the refractive index in samples with a strong variance of

�-to-� ratios.

Another interesting result is that the analysed CNR in the

phase-retrieved data rises with increasing sample-to-detector

distances. This suggests that setting up imaging beamlines with

greater sample-to-detector distances may improve the quality

of such a lung imaging approach even further. The measured

gain in CNR directly translates into an increased sensitivity,

which will allow for precise three-dimensional analysis of

morphological alterations within, for instance, mouse lung

disease models. We therefore believe that the method

presented here can be beneficial in a wide variety of similar

preclinical studies.
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