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Abstract— Eddy current stimulated thermography is an 

emerging technique for non-destructive testing and evaluation of 

conductive materials. However, quantitative estimation of the 

depth of subsurface defects in metallic materials by thermography 

techniques remains challenging due to significant lateral thermal 

diffusion. This work presents the application of eddy current 

pulse-compression thermography to detect surface and subsurface 

defects with various depths in an aluminum sample. Kernel 

Principal Component analysis and Low Rank Sparse modelling 

were used to enhance the defective area, and cross-point feature 

was exploited to quantitatively evaluate the defects’ depth. Based 

on experimental results, it is shown that the crossing point feature 

has a monotonic relationship with surface and subsurface defects’ 
depth, and it can also indicate whether the defect is within or 

beyond the eddy current skin depth. In addition, the comparison 

study between aluminum and composites in terms of impulse 

response and proposed features are also presented. 

 
Index Terms— Crossing Point Feature, Defect depth evaluation, 

Eddy Current Pulse-Compression Thermography, Kernel 

Principal Component Analysis, Low-Rank Sparse modelling 

I. INTRODUCTION 

LUMINUM (Al) material is used in many industrial 

applications including aerospace components due to its 

low weight and high strength-to-weight ratio. Therefore, the 

evaluation of surface and subsurface cracks and discontinuities 

in Al components is of high importance. So far, various Active 

Thermography (AT) techniques have been exploited to evaluate 

the defect depth in conductive metallic materials including 

Pulsed Thermography (PT) [1] , Pulse-Phase Thermography 

(PPT) [2] and Lock-in Thermography (LT) [3]. These 

techniques can be applied on most of the heat sources, either 

being surface stimulation, e.g. flash lamp [4] and LED [5], or 

volumetric e.g. eddy current.  

Among these AT techniques, one of the most extensively 

applied is the Eddy Current Pulsed Thermography (ECPT). 

ECPT uses a coil driven by an alternating current to generate 

Eddy Current (EC) inside the Sample Under Test (SUT), thus 

increasing the temperature of the SUT due to the Joule effect. 

ECPT has been demonstrated being able to detect surface 

cracks with higher reliability and reproducibility than vibro-

thermography and laser thermography [6]. In addition, the high 

performance of ECPT, e.g. robustness to lift-off variations and 

applicability to defect orientation characterization and depth 

estimation, makes it suitable for fast quantitative evaluation [7]. 

The application of ECPT has been investigated for both 

detection and characterization of material degradation and 

failure such as fatigue cracks, corrosion and residual stress [8]. 

The detection of defects in metallic materials by means of 

ECPT relies on two physical phenomena, since surface and 

subsurface defects can indeed react differently to the excitation: 

Joule heating through eddy current and the heat diffusion. The 

former plays the main role in the detection of surface and 

subsurface cracks located within the range of the theoretical 

skin depth of EC, due to increased current density. Therefore, 

features in the heating stage (e.g. peak time, peak magnitude) 

are investigated to characterize surface or shallow sub-surface 

defects. Instead, when the defect is located beyond the skin 

depth, the detection is mainly due to the diffusion of Joule 

heating from outer areas to inner ones. In this case, relevant 

features that are useful for classification purposes are extracted 

mainly during the cooling stage (e.g. phase information, 

thermal signal reconstruction). However, due to the low 

thickness and high thermal conductivity of SUT, it is more 

challenging to detect subsurface defects beyond the skin depth 

since the lateral heat diffusion is not negligible with respect to 

the through-thickness one.  

To tackle this challenge and to improve the detection 

capability of standard ECPT, a combination of pulse-

compression (PuC) techniques and EC excitation was proposed 

recently as Eddy Current Pulse-Compression Thermography 

(ECPuCT) scheme, either by means of coded excitations [9] or 

without using them [10]. It has been reported in literature that 

PuC combined with AT, improves the achievable Signal-to-

Noise Ratio (SNR) even while using low-power heat sources 

[11, 12]. The present authors recently showed how ECPuCT 

can be fruitfully applied on the inspection of CFRP material 

[9]. This technique is based on the exploitation of a phase-

modulated current waveform to excite EC within the sample 

and of a proper filter matched to this excitation (the so called 

matched-filter) that is applied pixel-wise on time trends to 
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retrieve the impulse response of the SUT as a series of 

thermograms. In addition, in [9] such approach was further 

extended to quantitative analysis by exploiting proposed feature 

extraction strategy. 

Besides improving the detectability of defects beyond the 

skin depth by ECPuCT technique, the application of feature 

extraction methods on thermogram time sequences, i.e. on 

impulse responses, is equally important to conduct quantitative 

study of defect depth. Feature extraction methods can be 

divided into two main categories: those analyzing the transient 

response of each single pixel of thermogram, such as peak time, 

response differential, Fourier transform , wavelet transform 

[13], and the ones processing thermal images to extract image-

based features for estimation of defect location, such as 

Principal Component Analysis (PCA), Independent Component 

Analysis ICA and Singular Value Decomposition (SVD) [14]. 

These two approaches have pros and cons: transient response-

based features can directly quantify signals but lack of 

visualization ability to provide the profile of defect, while 

image-based features on thermal images can provide the defect 

profile based on statistical distribution. However, the results of 

the latter approach are difficult to be interpreted physically, 

hindering the further application of quantitative analysis.  

To solve the mentioned problem, this paper provides two 

state-of-the-art pattern recognition techniques, Kernel Principal 

Component Analysis (K-PCA) and Low Rank Sparse pattern 

modelling (LRS), to directly decompose impulse responses 

obtained by ECPuCT rather than thermal images, according to 

second approach, for subsurface and surface defect pattern 

defection.  

Overall, this work presents novel approaches on experiment, 

post-processing and quantitative evaluation of subsurface and 

surface defects in an artificially-defected thin Al plate, of which 

the flow diagram is shown in Fig. 1. As showed in Fig. 1-block 

1, a Barker Code (BC) modulated EC excitation was applied to 

obtain raw data of subsurface and surface defects with various 

depths. Then, PuC process was implemented on the raw data to 

retrieve the impulse response of each individual pixel as shown 

in block 2. In block 3, two defect detection techniques, K-PCA 

and LRS, were used to decompose the impulse responses for 

defective area location. A comparison between these two 

techniques was also done in terms of SNR values for surface 

and subsurface detects. Finally, in block 4, features including 

the crossing point of impulse responses collected on defective 

and non-defective areas for subsurface and surface defects were 

used for comparing and evaluating the various defects and their 

depths. The comparison between cross-point feature for 

quantitative evaluation of Al and composite samples is also 

provided in block 4, based on previous work [9]. 

This paper is organized in five sections: Section II describes 

the proposed methodologies, including theory of ECPuCT and 

mathematical implementation of K-PCA and LRS on impulse 

responses, Section III illustrates the experimental setup and the 

SUT. In Section IV, the experimental results are presented and 

discussed, and finally, Section V draws the conclusion and 

describe the future work. 

II. PROPOSED METHODOLOGY. 

A. Eddy current pulse-compression thermography 

Pulse-compression is a wide-spread measurement technique 

used to estimate the impulse response of a Linear Time 

Invariant (LTI) system in a noisy environment, or in case of 

poor SNR values [15]. In standard ECPT, a short pulse 

excitation induces the eddy currents inside the SUT to heat it 

up. Please note that “short” is here referred to the typical times 

of heat propagation. Therefore, the so-provided heating 

stimulus can be modelled, from a thermal point of view, as a 

Dirac’s Delta function 𝛿(𝑡), and the corresponding output 𝑦(𝑡), 
i.e. the pixel temperature/emissivity amplitude recorded while 

time elapses, is a good approximation of the impulse response ℎ(𝑡) . Features of interest are obtained by analyzing the ℎ(𝑡) within a chosen range of interest 𝑇ℎ, as depicted in Fig. 2. 

As showed in Fig. 2, in ECPT the excitation is considered 

instantaneous and the sample’s thermal impulse response is 

measured for a time of interest 𝑇ℎ , which is the expected 

impulse response time duration. In ECPuCT, the sample is 

excited with a coded excitation of duration 𝑇 and thermograms 

are collected for an overall time duration of 𝑇 + 𝑇ℎ . An 

estimated impulse response ℎ̃(𝑡)  of duration 𝑇ℎ  is retrieved 

after performing the PuC algorithm. 

PuC relies on the existence of a pair of signals, an excitation 

signal 𝑠(𝑡) of duration 𝑇 and bandwidth 𝐵, and a matched filter Ψ(𝑡), such that their convolution “∗” approximates the Dirac's 

Delta function 𝛿(𝑡): 𝑠(𝑡) ∗ Ψ(𝑡) = 𝛿(𝑡) ≈ 𝛿(𝑡) (1) 

If Eq. (1) is satisfied, and 𝑠(𝑡) excites a SUT characterized by 

the ideal impulse response ℎ(𝑡), then an estimate ℎ̃(𝑡) of the ℎ(𝑡)  is obtained by convolving the output signal 𝑦(𝑡) with Ψ(𝑡). Eq. (2) shows the mathematical formulation for a single 

pixel of the acquired thermograms, in presence of an Additive-

White-Gaussian-Noise 𝑒(𝑡), which is considered uncorrelated 

with Ψ(𝑡). The impulse response can be obtained as: 

 
Fig. 1.  System diagram of the proposed methodology. 

 



ℎ̃(𝑡) = 𝑦(𝑡) ∗ Ψ(𝑡)  𝑦(𝑡)=ℎ(𝑡)∗𝑠(𝑡)+𝑒(𝑡)⇒                        = ℎ(𝑡) ∗ 𝑠(𝑡) ∗ Ψ(𝑡) + 𝑒(𝑡) ∗ Ψ(𝑡)          = ℎ(𝑡) ∗ 𝛿(𝑡) + �̃�(𝑡) ≈ ℎ(𝑡) + �̃�(𝑡) (2) 

The main advantage of ECPuCT with respect to ECPT is 

that the impulse response can be estimated by delivering energy 

to the system in a significantly longer time. This flexibility can 

be exploited, as in the present case, either to increase the SNR 

by providing more energy than in the pulsed scheme or to use 

lower power heating sources while maintaining the same SNR 

level. This latter application is particularly useful to avoid 

possible thermal shocks in sensitive materials [16]. In both 

cases, having fixed the heat source power and the excited 

bandwidth 𝐵 , the SNR gain is proportional to the 𝑇 × 𝐵 

product of the coded signal and it can be enhanced almost 

arbitrarily by increasing the time duration 𝑇. It should be also 

noted that the limited 𝑇 × 𝐵 product of practically-employed 

coded signals results in an ℎ̃(𝑡) always affected by the so-called 

“side-lobes”, i.e. any local maxima of the 𝛿(𝑡)  in Eq. (2) 

different from the main correlation peak. 

This can be improved by a proper choice of the matched 

filter signal Ψ(t) [16]. In this paper, 𝑠(𝑡) is a Barker Code (BC) 

of order equal to 13 and the matched filter Ψ(t) is the time-

reversed sequence of the input coded signal, i.e. 𝑠(−𝑡) [17]. 

Details about the BC signal and how to implement it in 

ECPuCT will be shown in the next section. 

 

B. Defected area detection techniques based on the retrieved 

impulse response 

To quantitatively evaluate the depth of subsurface defects, 

defected area should be enhanced in order to select the defective 

pixels for further analysis. The observation model of the 

recorded thermogram sequences after PuC can be considered as: 𝑌(𝑡) ≈∑𝑚𝑖𝐻𝑖(𝑡)𝐶
𝑖=1  (3) 

where {𝐻𝑖(𝑡)𝜖𝑅𝑁𝑥×𝑁𝑦}  represents the set of 𝐶 patterns, and 𝑁𝑥 × 𝑁𝑦  denotes the total number of x and y pixels of the 

acquired thermograms. These patterns include defective, non-

defective, coil and non-heated areas.  𝑚𝑖  denotes the mixing 

parameter that describes the contribution of different thermal 

patterns to the observation output 𝑌(𝑡). The goal is to extract 𝐻𝑑(𝑡), which describes the defective area impulse response. To 

accomplish this, two approaches have been exploited here: K-

PCA and LRS. Detailed implementation process is shown in 

Fig. 3 and mathematical explanations are as follows: 

 

1) Kernel Principal Component Analysis  𝑌(𝑡)  introduced in Eq. (3), can be expressed as a 

combination of every pixel’s impulse response as follows: 𝑌(𝑡) = [ℎ̃1(𝑡), ℎ̃2(𝑡), … , ℎ̃𝑀−1(𝑡), ℎ̃𝑀(𝑡)] (4) 

The reshaped data can be recognized as a matrix having 

dimension of 𝑄 ×𝑀, where 𝑄 denotes the number of frames 

recorded by the IR camera, i.e. 𝑇ℎ × 𝐹𝑃𝑆 and 𝑀 is equal to 𝑁𝑥 × 𝑁𝑦 . To simplify the mathematical explanation, ℎ̃(𝑡) is 

here replaced by ℎ̃. By using the kernel method, the impulse 

response is projected to the kernel space 𝜙, thus obtaining the 

kernel matrix 𝐾(𝑖, 𝑗) as: 

𝐾(𝑖, 𝑗) = 1𝑀∑(𝜙(ℎ̃𝑖) − 1𝑀∑𝜙(ℎ̃𝑗𝑀
𝑗=1 ))𝑀

𝑖=1 (𝜙(ℎ̃𝑖) − 1𝑀∑𝜙(ℎ̃𝑗𝑀
𝑗=1 ))Τ (5) 

where 𝜙 is Gaussian kernel function, defined as Eq. (6): 𝜙(ℎ̃𝑖) = exp (−‖ℎ̃𝑖 × ℎ̃𝑖𝑇‖222𝜎2 ) (6) 

The kernel matrix 𝐾(𝑖, 𝑗) of Eq. (5) can be simply named as 𝐾. The eigenvector 𝛼 of 𝐾 can be obtained as: 𝜆𝑖𝛼𝑖 = 𝐾𝛼𝑖 (7) 

Based on the obtained eigenvectors 𝛼𝑖 , the enhanced 

thermal pattern can be projected as: 𝐻𝑑(𝑡)  = [𝛼1, … , 𝛼𝑇] 𝑌(𝑡)𝑇 (8) 

 

2) Low Rank Sparse Pattern Modelling 

Sparse pattern refers to the significance of the data, which 

can be equalized to defective impulse response. Thus, the 

observation model 𝑌(𝑡) can be expressed as: 𝑌(𝑡) = [∑𝑚𝑖𝐻𝑖(𝑡)⏟    𝐿 ] + 𝑚𝑗𝐻𝑗(𝑡)⏟    𝑆 + 𝑁𝐶−1
𝑖=1  (9) 

where 𝑌(𝑡) is considered as linear combination of three types 

of 𝐻(t) ’s, which denote the low-rank matrix 𝐿  (e.g. non-

defective area, background and non-heated area), the sparse 

pattern 𝑆 (e.g. defective area impulse response), which contain 

few non-zero values and the noise 𝑁. To make it simplified, low 

rank pattern is denoted by 𝐿 and sparse pattern is denoted by 𝑆. 

To obtain sparse pattern 𝑆, it can be reformulated as follows: 𝑆 = 𝑀𝑁𝑇 (10) 

Thus, the extraction of 𝑆 can be solved as:  min𝑀,𝑁,𝐿{𝑝 𝑟𝑎𝑛𝑘(𝐿) + 𝜑𝑚‖𝑀‖22 +𝜑𝑛‖𝑀‖22 + ‖𝑌 − 𝐿 − 𝑆‖𝐹2} (11) 

where 𝑝  controls the rank of 𝐿 , 𝜑𝑚  and 𝜑𝑛  are for the 

regulation of 𝑀 and 𝑁. The solution of Eq. (11) can be divided 

into two sub-problems, which are implemented as follows:  (𝐿)𝑖 = 𝑎𝑟𝑔min𝐿 {‖𝐿 − (𝑌 − 𝑆)𝑖−1‖𝐹2 + 𝑝 ‖𝐿‖∗} (12) 

 
Fig. 2.  Comparison of principles between (a) eddy current pulse 

thermography, (b) eddy current pulse compression thermography. 



(𝑆)𝑖 = 𝑎𝑟𝑔min𝑀,𝑁 {‖(𝑌 − (𝐿)𝑖 − 𝑆‖𝐹2 + 𝜑𝑚2 ‖𝑀‖22 + 𝜑𝑛2 ‖𝑀‖22} (13) 

Eq. (12) is referred as low rank estimation and can be solved 

by singular value threshold algorithm and Eq.(13) is referred as 

sparse decomposition and can be solved using Bayesian matrix 

factorization approach [18]. Once obtained 𝑆, which contains 

the defective impulse responses, the damaged area can be 

enhanced as follows: 𝐻𝑑(𝑡) = 𝑆 ∗  𝑌(𝑡)𝑇 (14) 

These two techniques are applied on the impulse responses 

and help to identify the defective area for further analysis. To 

compare the performance of two post-processing techniques, 

the SNR value is calculated for quantitative study as defined 

below: 𝑆𝑁𝑅(𝑡) = ℎ𝐷(𝑡) − ℎ(𝑡)𝜎ℎ(𝑡)  (15) 

where ℎ𝐷(𝑡) is the impulse response of defected area averaged 

over a 2×3-pixel region, ℎ(𝑡) is the impulse response averaged 

over all thermogram pixels and 𝜎ℎ(𝑡) is the standard deviation 

of the same 2×3-pixel region. 

III. EXPERIMENTAL SETUP 

This section describes the experimental setup and how to 

employ the coded signal for modulating the induction heating 

system in on/off state by means of a bipolar BC signal with total 

bit length of 13. The BC code is not employed in its original bit 

version, meaning that each “1” and “-1” of the original BC is 
padded with a series of “1” or “-1” respectively to allow the 
heat source spreading enough energy toward the SUT. In 

addition, by changing the single bit duration, one can tune the 

frequency spectrum of the resulting BC. This assures exciting a 

continuous range of thermal diffusion length 𝜇 values, which 

allows defects buried at different depths to be detected. Fig. 4 

shows the employed BC signal with bit length of one second at 

50 frames per second (FPS). For the chosen BC, the heat 

emission has an almost flat spectrum from DC to 0.50 Hz, i.e. 

thermal waves are generated in this frequency range having the 

same amplitude/power density. In ECPuCT, the chosen BC 

modulates the induction heating unit, i.e. the on/off time 

instants at which a current 𝐼  of given amplitude 𝐴𝑚𝑝  and 

frequency 𝑓𝑐𝑎𝑟𝑟𝑖𝑒𝑟  flows within the coil. 

Fig. 5 shows the ECPuCT system. An Agilent 33500B signal 

generator was used to send both the BC modulating signal to 

the induction heating system and a reference clock trigger to the 

IR camera to acquire thermograms at 50 FPS. A Cheltenham 

EasyHeat 224 induction heating unit is used for exciting the coil 

with a maximum excitation power and current values of 2.40 

kW and 400 A respectively with tunable 𝑓𝑐𝑎𝑟𝑟𝑖𝑒𝑟  within 150 to 

400 kHz. For the reported experimental results, values of 

excitation current 𝐼 equal to 250 A and 𝑓𝑐𝑎𝑟𝑟𝑖𝑒𝑟  equal to 270 

kHz were selected. Water cooling was implemented to cool 

down the coil and the lift-off maintained at 1.00 mm from the 

SUT. Only one side of the coil with the length 9.30 mm was 

selected as linear coil to induce parallel eddy currents inside the 

SUT. IR camera was the FLIR SC655, equipped with an un-

cooled microbolometer detector array with the resolution of 

640×480 pixels, the spectral range of 7.5 - 14.0 µm and NETD 

< 30 mK The IR camera recorded the surface temperature 

distribution of the 𝑇 = 13 𝑠 BC as well as additional 𝑇ℎ = 30 𝑠 
of cooling period [19] with a frame rate of 50 Hz, see Fig.4 and 

Fig.6(a). Finally, the captured thermogram sequences were 

transmitted to a PC for visualization and postprocessing, 

including signal pre-process, PuC, defect detection and feature 

extraction. An example of a captured thermal raw signal from 

the investigated SUT is shown in Fig.6(b) for a single pixel, 

whilst Fig.6(d) depicts the same signal but after applying PuC, 

thus after exploiting Eq. (2). For the sake of completeness, it 

must be note that a step-heating contribution \must be removed 

from the raw signal before applying faithfully the PuC 

algorithm, see Fig.6(c). Note that this is an unavoidable passage 

whenever PuC is aimed at being exploited in combination with 

unipolar heating sources, as for the present case. The reader is 

referred for example to [9-12,15,16,19] for understanding how 

to successfully remove the step-heating contribution - thus to 

pass from the signal depicted in Fig.6(b) to the one in Fig.6(c), 

exploiting for example a linear/non-linear fitting function - 

before applying the PuC algorithm.  

Measurements were executed on a specimen with artificial 

defects. The specimen was made of 2024-T3 aluminum alloy 

with an electric conductivity equal to 18.8 MS/m, magnetic 

permeability of 1.26 H/m, and a thickness of 2.00 mm. All the 

defects were machined as small notches having a length of 3.00 

mm and width of 0.10 mm, with varying depths from the 

inspection surface. Defects’ depth varied from 1.60 mm to 0.20 

mm with a step of 0.20 mm corresponding to defects D1 to D8 

respectively. D9 is a through-hole notch. To have optimal 

 
Fig. 3.  Implementation of K-PCA and LRS for defect area detection. 

 
Fig. 4.  Employed BC modulation on eddy current excitation. 

 
Fig.5.  Experimental setup: (1) computer with software, (2) signal 

generator, (3) IR camera, (4) EasyHeat induction heating system, (5) 

work head, (6) coil, (7) sample under test. 



interaction of the induced field lines and the defects, the coil 

was placed perpendicular to the defects. Fig. 7 depicts the 

sketch of the sample. To give the reader a better idea of the 

sample’s geometry, the surface and subsurface defect depths are 

shown in Table I. 

 
TABLE I 

 SUBSURFACE AND SURFACE DEFECT DEPTHS (MM) 

  Defect 

No. 

Location 

D1 D2 D3 D5 D5 D6 D7 D8 

Surface 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 

Subsurface 1.60 1.40 1.20 1.00 0.80 0.60 0.40 0.20 

 

IV. RESULTS AND ANALYSIS 

A.  Subsurface defect location and detection techniques  

After the mathematic discussion in Section II-B, two pattern 

recognition techniques, K-PCA and LRS, were applied and 

compared in this work for defect detection. The reconstruction 

images of subsurface defects of D8 with 0.20 mm depth, D7 

with 0.40 mm depth and D4 with 1.00 mm depth are shown in 

Fig. 8 to Fig. 10 respectively. Before further analysis of the 

reconstructed images, it should be noted that the EC skin depth 

at the frequency of 270 kHz in Al is approximately 0.22 mm, 

therefore it is expected that only for D8 (with depth equal to 

0.20 mm) the main contribution will be given by Joule’s 

 
Fig. 6.  (a) applied Barker Code signal; (b) a single pixel reshape of the 

raw acquired signal; (c) same signal as in (b), but after having performed 

the step-heating contribution removal; (d) signal after Pulse-

compression. 

 

 
Fig. 7.  Sketch of the sample: (a) plane view;(b) cross section sketch 

under different inspection modes. 

 
Fig. 8.  Detected area using K-PCA and LRS of D8 with 0.20 mm depth 

in subsurface mode.  

 
Fig. 9.  Detected area using K-PCA and LRS of D7 with 0.40 mm depth 

in subsurface mode. 

 
Fig. 10.  Detected area using K-PCA and LRS of D4 with 1.00 mm depth 

in subsurface mode. 



heating, while the thermal diffusion will be the dominant 

phenomenon for the deeper subsurface defects.  In Fig. 8, a 

defective area is observed at the bottom of the crack in K-PCA1 

to K-PCA3 and LRS2 to LRS4 images due to the increased EC 

density caused by diversion of induced current lines around the 

edges of the crack, since the eddy currents will always follow 

the path of minimum resistance. Hence, in non-defective area, 

EC lines are distributed evenly on the surface adjacent to the 

coil in a depth equal to the standard penetration depth. When a 

discontinuity exists, it interrupts or deviates the EC lines. 

Aggregation points will be made at the two crack ends, 

generating hot spots in thermal images.  

The quantitative comparison between K-PCA and LRS is 

conducted in terms of SNR according to Eq. (15). The 

maximum SNR values obtained for defects D8 to D4 by K-PCA 

and LRS are shown in Table II and Table III. It is noted that 

LRS method provides better robustness than K-PCA in the first 

four components, suggesting that LRS can be applied for 

locating the defect when defect’s depth is lower than 0.20 mm. 

However, K-PCA provides higher SNR maxima than LRS for 

D8 and D7. It can be also noted that the maximum SNR values 

of defects obtained by K-PCA and LRS show monotonic 

relationship with defect depths as illustrated in Fig. 11. Due to 

direct interaction of EC, defect D8 is identified with 

significantly higher SNR than other defects.  

The improvement gained by using K-PCA and LRS are 

visible if the best thermal images obtained just after performing 

the PuC algorithm are shown. For this reason, the thermal 

images having the maximum SNR values for the investigated 

defects after PuC are depicted in Fig 12. It can be noted that the 

defect signature is less significant if compared with the K-PCA 

and LRS reconstruction images in Fig.8, Fig.9, Fig.10. For 

instance, the hot spot showed in Fig. 8, which is the signature 

of subsurface defect with 0.2mm depth, is clearer compared 

with best thermal image of D8 shown in Fig. 12. In addition, 

the best thermal images of D7 and D4 present lower signature 

of defects, while K-PCA3 images in Fig. 9 and Fig. 10 can 

reveal the location of defect. 

 
TABLE II 

SNR VALUES FOR K-PCA 

Defect No. PC1 PC2 PC3 PC4 

D8 (0.20mm) 3.99 5.34 6.00 0.05 

D7 (0.40mm) 2.34 0.82 2.54 1.06 

D6 (0.60mm) 2.29 2.16 1.79 1.37 

D5 (0.80mm) 2.01 0.54 1.01 0.69 

D4 (1.00mm) 1.89 0.48 1.02 0.94 

 

TABLE III 

SNR VALUES FOR LRS 

 

 

 

 

 

 

 

 

To summarize, although the relationship of SNR and depth 

remains monotonic, the sensitivity is reduced when the defect 

is beyond the skin depth. Starting from these results, the 

defective pixels and non-defective pixels’ time-trend are 

analyzed for further study in the next Section. 
 

B. Comparison study of depth evaluation for surface and 

subsurface defects using crossing point feature 

As discussed in the previous section, the pattern of 

subsurface and surface defects was enhanced through K-PCA 

and LRS techniques. In this section, the impulse responses of 

defective and non-defective areas were selected for crossing 

point feature calculation. The defective pixels were manually 

selected as a 10 × 1 pixels area, while a non-defective area 

having the same size was selected 6 pixels away from the right 

side of defective area. Then, the impulse responses were 

averaged over the selected pixels and the crossing point of the 

two curves was obtained accordingly. The proposed crossing 

point feature was previously validated for evaluation of 

delamination depth in a Carbon fiber reinforced polymer 

(CFRP) material in reflection and transmission mode using 

ECPuCT [9].  

It can be observed from Fig. 13 and Fig. 14 that the amplitude 

of the impulse response of the defective area is larger than that 

of non-defective one. The relative peak difference between 

defective and non-defective in subsurface mode is smaller than 

that of surface mode due to lower SNR values for subsurface 

defects.  

For subsurface defects’ depth evaluation, it is observed from 

Fig. 13 that all defect and non-defect impulse responses have 

two crossing points, as highlighted in the same figure. The two 

crossing points can be interpreted by the defect’s interaction 

with EC and the thermal wave. Thus, the first crossing point 

suggests the dominant Joule heating effect, while the second 

one can be associated to the dominant thermal diffusion. In case 

of D8 in Fig. 13, the presence of two crossing points in both 

Defect No. LRS1 LRS2 LRS3 LRS4 

D8 (0.20mm) 4.27 4.82 5.35 5.00 

D7 (0.40mm) 2.40 2.29 2.52 2.25 

D6 (0.60mm) 2.42 2.51 2.34 2.35 

D5 (0.80mm) 2.03 1.88 2.07 1.41 

D4 (1.00mm) 1.58 1.90 1.34 0.12 

 
Fig. 12.  Best thermal images obtained after Pulse-compression. 

 
Fig. 11.  Relationship between maximum SNR and defect depth in K-PCA 

and LRS. 



heating and cooling stages can be related to the fact that defect’s 

depth almost coincides with the skin depth. In fact, the 

theoretical skin depth for Al is 0.22 mm, so both phenomena 

are simultaneously significant as mentioned in Part A of the 

current Section. Thus, the following general conclusion can be 

inferred: if the first crossing point is not at the starting point as 

it shown for D8 and D9 in Fig. 13, the defect is within the skin 

depth and it is detectable due to the EC interaction difference 

between defect and non-defect areas. On the other hand, if two 

crossing exist, one just as a superposition happening at the 

beginning and one after the peak, i.e. in cooling stage, this 

indicates that the defect is beyond the skin depth, see for 

example D4-D7 in Fig 13. In other words, the EC difference 

between defect and non-defect areas does not exist or is 

considerably low and strictly requires the thermal waves to 

interact to be detected. 

Fig. 14 shows that two crossing points are found due to Joule 

heating and thermal diffusion for surface defects, thus one 

during the heating stage and the other happening during the 

cooling stage. Furthermore, it is also found that all the surface 

defects’ first crossing points are not exactly at the starting point, 

and this is due to the EC difference between defect and non- defect area, see Fig 14. It should be pointed out that the first 

crossing point of surface defect is not reliable for a faithfull 

depth evaluation. This is because there is a fast interaction of 

EC with surface defects, provoking the first crossing points of 

D1 to D8 in Fig. 14 happening all during the first 15 frames, 

therefore difficult to be resolved in the time domain. In 

addition, all the impulse responses of surface defects reach the 

peak value at the same time, which is shown in Fig. 16. 

Furthermore, Fig. 16 highlights that two stages can be identified 

in impulse response for surface defects: heating and cooling 

responses. The heating response of all the surface defects is due 

to interaction with EC, which generates different response delay 

such that deeper defects are heated slower than shallower ones. 

Instead, mentioned delay is more significant during the cooling 

stage, showing that deeper defects cool down slower than 

shallower ones. Thus, the crossing point in the cooling stage can 

quantify the defect depth in surface mode as showed in Fig. 14 

and Fig. 15(b). In addition, in subsurface mode, the crossing 

point time instant is found within a certain period, i.e. from 

frame 154 to frame number 174. 

Based on the above discussion for selecting  approriate 

crossing points for depth evaluation, the finds can be 

generalised to the following statements: 

1) The first crossing point can be used for subsurface defects, 

provided that the defect is within the skin depth; furthermore  

the determing criteria for defect within the skin depth is based 

on the first actual crossing point, thus excluding the crossing at 

the starting point due to EC difference; 

2) The second crossing point should be used if the defect is 

located beyond the skin depth.  

3) For surface defects, the second crossing point for depth 

evaluation shall always be used due to fast EC interaction. 

As showed in Fig. 15(a) and Fig.15(b), the crossing point 

feature in subsurface surface modes shows a monotonic 

relationship with defects’ depth, provided that an appropriate 

crossing point is considered as for the above discussion. The 

crossing points in defects D4 to D7 (deeper ones) showed in Fig 

13 are in the cooling stage of the impulse responses, which  
Fig. 14.  Crossing point feature of surface defect depth evaluation 

 
Fig. 15.  Error bar plot of crossing point feature in: (a) subsurface defect, 

(b) surface defect. 

 

 
Fig. 16.  Normalized impulse responses of surface defect of D1, D4 and 

D7. 

 
Fig. 13.  Crossing point feature of subsurface defect depth evaluation. 



corresponds to the depth of the defect and the heat transfer 

phenomena, i.e. deeper defects need longer time to be detected. 

Note also that the detection capability of ECPuCT for 

subsurface defects is limited to 1.00 mm depth, a fact that is due 

to a significant thermal conductivity and fast diffusion of heat 

in Al material.  

The new proposed features can also be compared with 

previous work  reported in [19]. It is known that the defect depth 

can be assessed by calculating the time instant at which the SNR 

is maximum. Fig. 17 depicts the time at which the maximum 

SNR is found for a given defect against the defect depth. The 

mentioned relation shows a monotonic trend with defect depth, 

but it has less sensitivity toward increasing depths compared 

with the crossing point feature. The same shortcoming can be 

observed in Fig. 11 as well, i.e. SNR feature has less sensitivity 

for deeper defects. Based on the current research on Al and 

previously on a CFRP sample [9], the proposed crossing point 

of impulse response feature from defective and non-defective 

areas is then validated. 

Through above discussion and analysis, it has been proved 

that the time instant (or frame number) of crossing points 

between impulse responses from defective and non-defective 

areas can help to estimate the defect depth. It is also possible to 

determine whether the defect is within the skin depth of EC or 

not, based on the crossing point position.  
 

C.  Comparison study between composites and Aluminum 

material with proposed feature. 

As mentioned before, ECPuCT system was also applied on 

CFRP to quantify the depth of artificial delamination buried 

from 0.46 mm to 2.30 mm from the inspected surface. This 

Section compares the difference between the impulse responses 

of CFRP and Al to better illustrate the physics behind. 

 It can be observed from Fig. 18 that the impulse responses 

of CFRP and Al have different behaviors. With respect to the 

investigated CFRP sample, Al heats up and cools down faster 

due to its higher thermal conductivity. During the cooling stage, 

the impulse response of CFRP shows significant reduction of 

cooling rate around the 100th frame, i.e. 𝑡 = 2 𝑠. This can be 

interpreted as the diffusion of the heat from the inner volume to 

the surface, leading to a reduction in the cooling rate in later 

response. The skin depth of CFRP is higher than that of Al 

material due to lower thermal conductivity. In particular, for the 

same 𝑓𝑐𝑎𝑟𝑟𝑖𝑒𝑟  value mentioned in Section III, the skin depth in 

CFRP is higher than the thickness of the sample itself, thus the 

heating mode can be considered as volumetric. On the other 

hand, the heat transfer in the Al sample happens mainly close 

to the surface because the skin depth is significantly lower in 

value than the sample thickness. We believe that the volumetric 

heating mode causes the difference in the response curves, i.e. 

slower cooling rate in CFRP with respect to Al sample, as 

illustrated in Fig. 18(a) and Fig. 18(b). This hypothesis is also 

supported by other experimental findings. For instance, as 

highlighted in Fig 17, the peak time of Al sample was found 

slightly earlier than that of CFRP samples. Further, surface 

defects with different heights have the same peak time shown 

in Fig. 16, a fact that is in line with previous work making use 

of PEC [20]. In addition, the significant difference in the 

cooling trend of the impulse responses of Al and CFPR samples 

is shown in Fig 18. Further quantitative analysis can also be 

conducted in line with thermographic signal reconstruction 

(TSR) and other transient thermal responses [21].  

Fig. 19 shows the depth evaluation of subsurface defects in 

Al and CFRP by crossing point feature. Due to the volumetric 

heating, this feature in CFRP has stronger linearity when 

plotted versus defect’s depth with respect to the same analysis 

carried out for the Al sample. According to Section IV B, the 

crossing point on the left side of the peak or near the peak 

indicates the dominance of Joule heating. For the CFRP sample, 

the estimated skin depth is 1.84mm, so most of the defects lie 

in the skin depth range, as shown in Fig 19(a), though it must 

be also considered that EC are induced even deeper, and indeed 

the crossing point feature is quite linear for all the defects. It is 

also observed that the crossing point feature in Al and CFRP for 

defects within the skin depths exhibits different linear slopes 

compared with the feature in thermal diffusion stage for 

subsurface defects.  

 
Fig. 17.  Feature of maximum SNR time for subsurface defect depth 

evaluation. 

 

 
Fig. 18.  Comparison of normalized impulse response of subsurface 

defects: (a) CFRP sample with defect depth of 0.46 mm, Aluminium 

sample with defect depth of 0.40 mm;(b) CFRP sample with defect depth 

of 0.69 mm, Aluminium sample with defect depth of 0.60 mm. 

 
Fig. 19.  Comparison of crossing point feature of subsurface defects: (a) 

CFRP sample with defect depths of 0.46 mm to 2.30 mm ;(b) Aluminium 

sample with defect depths of 0.00 mm to 1.00 mm. 



V. SUMMARY AND FUTURE WORK 

This work presented the application of ECPuCT to detect 

subsurface and surface defects with various depths on Al 

sample. The conclusions are as follows: 

1) The proposed crossing point feature between defective 

and non-defective impulse responses has monotonic 

relationship with the depth of subsurface and surface 

defects in Al material; 

2) The subsurface defects within eddy current skin depth 

have two crossing points. If the defect depth is smaller 

than or comparable to the skin depth, the first crossing 

point can be used for depth estimation; when defects’ 
depth is larger than the skin depth, the first crossing point 

is the starting point due to no EC difference, thus only the 

second crossing point in the cooling stage is meaningful 

and it should be used for defect depth estimation; 

3) Similarly, surface defects have two crossing points. Thus, 

the evaluation of defect depths can only be conducted in 

the cooling stage with proposed feature. This is because 

the fast interaction between EC and defect does not 

produce faithful impulse response within the heating 

stage; 

4) The proposed crossing points show a good ability to 

evaluate defect depths, not only within the eddy current 

skin depths but also beyond it. 

It must be stressed out that the abovementioned findings, 

related to the use of K-PCA and LRS applied over ECPuCT, 

can be extended to PEC thermography for example but also to 

any other stimulated thermography implying volumetric 

heating, provided that the hypothesis of Linearity and Time 

Invariance are fulfilled. 

Future works will investigate the evaluation limitation of 

defect depths in the cooling stage in comparison with other 

active thermography scheme. Furthermore, next works will be 

focused on the analysis of different stages of impulse responses 

for extracting multiple properties of the defects, such as their 

width and thickness. It would be also interesting to compare the 

defect depth evaluation capability of ECPuCT with that 

achievable by using EC testing on a given benchmark sample, 

together with machine learning and feature extraction 

approaches [21]. 
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