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Brain functional connectivity can be characterized by the temporal evolution of correlation between signals

recorded from spatially-distributed regions. It is aimed at explaining how different brain areas interact within

networks involved during normal �as in cognitive tasks� or pathological �as in epilepsy� situations. Numerous

techniques were introduced for assessing this connectivity. Recently, some efforts were made to compare

methods performances but mainly qualitatively and for a special application. In this paper, we go further and

propose a comprehensive comparison of different classes of methods �linear and nonlinear regressions, phase

synchronization, and generalized synchronization� based on various simulation models. For this purpose,

quantitative criteria are used: in addition to mean square error under null hypothesis �independence between

two signals� and mean variance computed over all values of coupling degree in each model, we provide a

criterion for comparing performances. Results show that the performances of the compared methods are highly

dependavxx on the hypothesis regarding the underlying model for the generation of the signals. Moreover,

none of them outperforms the others in all cases and the performance hierarchy is model dependent.
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I. INTRODUCTION

Brain functional connectivity is defined as the way differ-

ent brain areas interact within networks involved during nor-

mal �as in cognitive tasks� or pathological �as in epilepsy�
activity. It can be characterized by the temporal evolution of

the cross correlation �in a wide sense� between signals re-

corded from spatially distributed regions. During the past

decades, numerous techniques have been introduced for

measuring this correlation. In the early fifties, the first devel-

oped methods �1� were based on the cross-correlation func-

tion and its counterpart in the frequency domain, i.e., the

coherence function �2,3� just after fast Fourier transform

�FFT� algorithms were introduced �4�. Some other methods

based on a similar concept but using time-varying linear

models to estimate the cross correlation were introduced later

and were used to characterize the relationship between brain

oscillations in the time and/or frequency domain �5,6�.
As the aforementioned methods are mostly linear, recently

a considerable number of studies have been dedicated to the

development of nonlinear methods �7�, mostly because of the

nonlinear nature of mechanisms at the origin of electroen-

cephalographic �EEG� signals. A family of methods based on

mutual information �8� or on nonlinear regression �9,10� was

first introduced in the EEG field. Another family is currently

developing, based on works related to the study of nonlinear

dynamical systems and chaos �11,12�. The latter family can

be divided into two groups: �i� phase synchronization �PS�
methods �13,14� which first estimate the instantaneous phase

of each signal and then compute a quantity based on

covariation of extracted phases to determine the degree of

the relationship; �ii� generalized synchronization �GS� meth-

ods �15,16� which also consist of two steps, in the first one,

state space trajectories are reconstructed from scalar time

series signals and in the second one, an index of similarity is

computed to quantify the similarity between these trajecto-

ries.

Given the number and the variety of methods introduced

for characterizing brain signal interactions and considering

the diversity of situations in which these methods are ap-

plied, there is a need for identifying objectively, among

available methods, those which offer the best performances.

Recently, some efforts have been made for comparing meth-

ods but mainly qualitatively �17,18� and for particular appli-

cations �19,20�.
In this paper, we go further and propose a comprehensive

comparison of the aforementioned classes of methods �linear

and nonlinear regression, phase synchronization, and gener-

alized synchronization� based on various simulation models

�linearly correlated noises, nonlinear coupled oscillators, and

coupled neuronal population models� in which a coupling

parameter can be tuned. Methods are compared according to

quantitative criteria: �i� the mean square error �MSE� under

null hypothesis �independence between the two analyzed sig-

nals�; �ii� the mean variance �MV� computed over all values

of the coupling parameter in each model; �iii� in addition to

two preceding criteria, we proposed a criterion related to the

method sensitivity.

The paper is organized as follows: Sec. II introduces

simulation models and briefly reviews some of the methods

widely used in the field of EEG to estimate the degree of

relationship between two signals. The results are presented in

Sec. III and discussed in Sec. IV.
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II. METHODS

A. Models

In this section general features of models considered in

this study are introduced. Each of them is a more or less

simplified version of a general finite dimensional state-space

model with three inputs and two outputs. This general model

denoted by MX,Y
C is decomposed in two subsystems S1 and S2

as illustrated in Fig. 1. To describe state evolution �on dis-

crete time or on continuous time� of the global system two

finite dimensional marginal state vectors, respectively, de-

noted X and Y, must be introduced. In an EEG measurement

perspective, X and Y macroscopically represent dynamical

states of two functionally interdependent neuronal subpopu-

lations, respectively. Each subsystem is specified by a state

evolution equation:

X�t + �� = F�
C„X�t�;v���,t � � � t + �…,X�t� � R

m,

Y�t + �� = G�
C„Y�t�;w���,t � � � t + �…,Y�t� � R

n,

where matrix C= �Ci,j� is a matrix of positive numbers inter-

preted in the sequel as a coupling parameter which weights

the effect of “nonautonomous” terms v and w, respectively,

on states X and Y �Fig. 1�.
The inputs N1, N2, and N3 are mutually independent, zero-

memory, zero-mean, and unit-variance stochastic processes

�white noises� which can be interpreted, in a physiological

perspective, as influences from distant neural populations.

Input N3 corresponds to a possible shared afference. The sca-

lar outputs x and y, in the same perspective, correspond to

two EEG channels. If it exists, the dynamical “coupling”

between states X and Y is represented through a functional

dependence of v on Y and on the shared input N3 and

through the dependence of w on X and N3:

v�t� = g1„C1,1,N1�t�,N3�t�,Y�t�… ,

w�t� = g2„C2,1,N2�t�,N3�t�,X�t�… .

The models for the two output scalar signals are:

x�t� = h1„X�t�,Y�t�,m1�t�… ,

y�t� = h2„X�t�,Y�t�,m2�t�… ,

g1, g2, h1, and h2 are deterministic functions. The measure-

ment noises, if present, are modeled by two independent ran-

dom processes m1�t� and m2�t�.
If v does not depend on Y�·� and w does not depend on

X�·� and if furthermore N3=0, then the two subsystems S1

and S2 are disconnected. In this case and when inputs N1 and

N2 are present, outputs x and y are statically independent if

h1 �respectively, h2� is not a function of Y �respectively, X�.
Then equations become x�t�=h1(X�t�) and y�t�=h2(Y�t�), in

the absence of measurement noise.

The dashed lines in Fig. 1 correspond to the influences of

S2 on the signal x. These influences are not considered in the

present study �neither a feedback influence of X on Y nor a

forward influence of Y on x� except for one model �the

model denoted by M1 hereafter�. This consideration corre-

sponds to a causal influence directed from S1 to S2 and

clearly does not address the most general bidirectional situ-

ation which is beyond the scope of this paper. Consequently,

matrix C is the parameter which tunes the dependence of y

on X. When C is null no dependence exists. Dependence

between the two systems is expected to increase with C co-

efficients. Depending on the model type, for large values of

these coefficients and when N2=0 and m2=0, output y be-

comes a deterministic function of state X and of N3.

In order to comprehensively simulate a wide range of

coupled temporal dynamics we used various mathematical

models as well as a physiologically relevant computational

model of EEG simulation from coupled neuronal popula-

tions. Motivations for the choice of these kinds of relation-

ship models in the context of brain activity are discussed in a

previous work �21�.
Degenerated model M1 is derived by setting C1,1=C2,1

=c and by letting the other matrix coefficient equal to zero

with x=X=v and y=Y =w. This model generates two broad-

band signals �x ,y� from the mixing of the two independent

white noises �N1 ,N2� with the common noise �N3�:

x = �1 − c�N1 + cN3,

y = �1 − c�N2 + cN3,

where 0�c�1 is the coupling degree; for c=0 the signals

are independent and for c=1 they are identical.

In model M2, the general description above reduces to:

v=N1, w=N2, x=h1�X�, C2,3=c, and y=h2�X ,Y ,c�. The

other coefficients of the matrix C are all equal to zero. In

practice, four low-pass filtered white noises �F1, F2, F3, and

F4� are combined in two ways to generate two narrowband

signals around a frequency f0. Generated signals share either

a phase relationship �PR� or an amplitude relationship �AR�,
only:

PR: �x = A1 cos�2�f0t + �1� ,

y = A2 cos�2�f0t + c�1 + �1 − c��2� ,
�

FIG. 1. General finite dimensional state-space model �composed

of two coupled subsystems S1 and S2� with three inputs N1, N2, N3

and two outputs x, y. Models considered in this study correspond to

simplified versions of this model. See text for details.
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AR: �x = A1 cos�2�f0t + �1� ,

y = �cA1 + �1 − c�A2�cos�2�f0t + �2� ,
�

where A1=�F1
2+F2

2, A2=�F3
2+F4

2, �1=arctan� F2

F1
�, �2

=arctan� F4

F3
�, and 0�c�1. For c=0, the two generated sig-

nals have independent phase and amplitude and for c=1,

they have identical phase or amplitude.

We also evaluated interdependence measures on coupled

temporal dynamics obtained from two models of coupled

nonlinear oscillators, namely the Rössler �22� and Hénon

�23� deterministic systems. In model M3, where two Rössler

systems �24� are coupled, the driver system is

dx1

dt
= − �xx2 − x3,

dx2

dt
= �xx1 + 0.15x2,

dx3

dt
= 0.2 + x3�x1 − 10� ,

and the response system is

dy1

dt
= − �yy2 − y3 + c�x1 − y1� ,

dy2

dt
= �yy1 + 0.15y2,

dy3

dt
= 0.2 + y3�y1 − 10� ,

here �x=0.95, �y =1.05, and c is the coupling degree. For

this model, C2,1=c �other Ci,j are equal to zero�, v=N1=N2

=N3=0, w=g2�X ,c� and the outputs are linear forms of the

state vectors: x=h1�X�=HX and y=h2�Y�=HY.

In model M4, we used two Hénon maps to simulate a

unidirectional coupled system. The Hénon map �25� is a non-

linear deterministic system which is discrete by construction.

Here, the driver system is

x�n + 1� = 1.4 − x2�n� + bxx�n − 1� ,

and the response system is

y�n + 1� = 1.4 − „cx�n�y�n� + �1 − c�y2�n�… + byy�n − 1� ,

where c is a coupling degree and bx=0.3; to create different

situations, once by is set to 0.3 to have two identical systems

�M4a� and once by is set to 0.1 to have two nonidentical

systems �M4b�.
For each of these two cases �identical or different sys-

tems�, we added some measurement noise to verify the ro-

bustness of estimators against changes in signal-to-noise ra-

tio �S/N�, here we evaluated the noise-free case �S/N=inf.�
and S/N=2. S/N was computed as the ratio of standard de-

viation �Std� of the signal over the Std of the noise. In this

case, this model matches the general description figure with

C2,1=c, v=N1=N2=N3=0, w=g2�X ,c�, x=h1�X�=HX+m1,

and y=h2�Y�=HY +m2.

Finally, to further match dynamics encountered in real

EEG signals, especially in epilepsy, we considered a physi-

ologically relevant computational model of EEG generation

from a pair of coupled populations of neurons �26�. Each

population contains two subpopulations of neurons that mu-

tually interact via excitatory or inhibitory feedback: main

pyramidal cells and local interneurons. The influence from

neighboring is modeled by an excitatory input p�t� �i.e., here

N1 or N2� that globally represents the average density of

afferent action potentials �Gaussian noise�. Since pyramidal

cells are excitatory neurons that project their axons to other

areas of the brain, the model accounts for this organization

by using the average pulse density of action potentials from

the main cells of a first population as an excitatory input to a

second population of neurons. A connection from a given

population i to a population j is characterized by parameter

Kij which represents the degree of coupling associated with

this connection. Other parameters include excitatory and in-

hibitory gains in feedback loops as well as an average num-

ber of synaptic contacts between subpopulations. Appropri-

ate setting of parameters Kij allows for building systems

where neuronal populations can be unidirectionally and/or

bidirectionally coupled. In model M5, we considered the

case of two populations of neurons unidirectionally coupled

�K12=c is varied and K21 stays equal to 0�. This model was

used to generate two kinds of signal: background

�M5�BKG�� and spiking �M5�SPK�� EEG activity. For both

cases, the normalized coupling parameter was varied from 0

�independent situation� to 1 value under which temporal dy-

namics of signals stay unchanged. Following the general de-

scription of the simulation model we have, C2,1=c, v=N1,

w=g2�X ,c ,N2�=N2+cHX, N3=0, x=h1�X�=HX, and y

=h2�Y�=HY. Here, HX and HY are linear forms of the state

vectors.

B. Interdependence measures and coupled systems

In an experimental context, the classical approach to

evaluate a functional coupling between two systems S1 and

S2 is a two step procedure. The first step consists of building

an indicator of relationship between state vectors X and Y.

The second step focuses on the estimation of the indicator as

a function of the two outputs x and y observed over a sliding

window of fixed length. The window length is set so that the

observed signals are locally stationary. A naïve approach is to

reduce this functional coupling to the value of parameter C

in a given model MX,Y
C , and hence to restrict the character-

ization to an estimation of this parameter. Indeed a value of

C is not a definitive answer to the problem. The link, in a

given model, between this value and the joint dynamical ac-

tivity of coupled systems is generally not simple to establish

theoretically. However, in some particular cases it can be

derived analytically �see Appendix A�. Even in the case

where we have an exact mathematical model MX,Y
C allowing

to accurately simulate the joint evolution of state vectors X

and Y, it can be hard to closely analyze the functional rela-
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tionship between them. The difficulty is that a general defi-

nition of a functional relationship index r�MX,Y
C � from X to Y,

which should be taken as an “absolute reference,” does not

exist �a particular definition will generally capture only some

cross-dynamical features�. Furthermore a theoretical defini-

tion is not sufficient. It is also necessary to make a measure-

ment from output signals x and y, i.e., to build an estimator

r̂�x ,y� of r�MX,Y
C �. In a model identification approach a natu-

ral estimator should be r̂�x ,y�=r�M
X,Y

Ĉ�x,y�� where Ĉ�x ,y� is an

estimation of C in model MX,Y
C . This model based approach is

beyond the scope of this paper. Our concern here is essen-

tially to compare various coupling functionals R�x ,y� defined

directly on a pair of scalar observation signals without ex-

plicit reference to an underlying model. In this study, com-

pared functionals and corresponding estimators R̂�x ,y� are

those widely used in the literature �see Sec. II C�. These

measures can be considered as descriptive methods.

C. Evaluated interdependence measures

We investigated the most widely used methods for char-

acterizing stationary interactions between systems. These

may be divided into three categories: �i� linear and nonlinear

regression: Pearson correlation coefficient �R2�, coherence

function �CF�, and nonlinear regression �h2�; �ii� phase syn-

chronization: Hilbert phase entropy �HE�, Hilbert mean

phase coherence �HR�, wavelet phase entropy �WE�, and

wavelet mean phase coherence �WR�; �iii� generalized syn-

chronization: three similarity indexes �S ,H ,N� and synchro-

nization likelihood �SL�.
Here we review succinctly their definitions.

�i� For two time series x�t� and y�t�, Pearson correlation

coefficient is defined in the time domain as follows �27�:

R2 = max
�

cov2„x�t�,y�t + ��…
var„x�t�…var„y�t + ��…

,

where var, cov, and � denote, respectively, variance, covari-

ance, and time shift between the two time series.

The magnitude-squared CF can be formulated as �28�:

��xy�f��2 =
�Sxy�f��2

Sxx�f� · Syy�f�
,

where Sxx�f� and Syy�f� are, respectively, the power spectral

densities of x�t� and y�t�, and Sxy�f� is their cross-spectral

density. It is the counterpart of R2 in the frequency domain

and can be interpreted as the squared modulus of a

frequency-dependent complex correlation coefficient.

Among nonlinear regression analysis methods, we chose a

method introduced in the field of EEG analysis by Lopes da

Silva and colleagues �29� and more recently evaluated in a

model of coupled neuronal populations �30�. Based on the

fitting of a nonlinear curve by piecewise linear approxima-

tion �31�, this method provides a nonlinear correlation coef-

ficient referred to as h2:

hxy
2 = max

�
	1 −

var„y�t + ��/x�t�…
var„y�t + ��…


 ,

where

var„y�t + ��/x�t�… � arg min
g

�E�y�t + �� − g„x�t�…�2� ,

where g�·� is a function which approximates the statistical

relationship from x�t� to y�t�.
�ii� Phase synchronization estimation consists of two steps

�13�. The first step is the instantaneous phase extraction of

each signal and the second step is the quantification of the

degree of synchronization via an appropriate index. Phase

extraction can be done by different techniques. Two of them

are used in this work: the Hilbert transform and the wavelet

transform. Using the Hilbert transform, analytical signal as-

sociated to a real time series x�t� is derived:

Zx�t� = x�t� + iH�x�t�� = Ax
H�t�ei�x

H�t�,

where H, �x
H, and Ax

H�t� are, respectively, the Hilbert trans-

form, the phase, and the amplitude of x�t�. Complex continu-

ous wavelet transform can also be used to estimate the phase

of signal �32�:

Wx�t� = �	 * x��t� =� 	�t��x�t − t��dt� = Ax
W�t�ei�x

W�t�,

where 	, �x
W, and Ax

W�t� are, respectively, a wavelet function

�e.g., Morlet used here�, the phase, and the amplitude of x�t�.
Once phase extraction is performed on the two signals under

analysis, several synchronization indexes can be used to

quantify the phase relationship. In this study, we explored

two of them both based on the shape of the probability den-

sity function �pdf� of the modulo 2� phase difference ��
= ��x−�y�mod2��. The first index is stemmed from Shannon

entropy and defined as follows �33�:

� =
Hmax − H

Hmax

, H = − �
i=1

M

pi ln pi,

where M is the number of bins used to obtain the pdf, pi is

the probability of finding the phase difference � within the

ith bin, and Hmax is given by ln M. The second index which

is named mean phase coherence corresponds to �E�ei��� and

is estimated in �34� by:

R =  1

N
�
t=0

N−1

ei��t� ,

where N is the length of time series. Combining two ways of

phase extraction and two indices for quantification of phase

relationship, we obtain four different measures of interdepen-

dencies: HE, HR, WE, and WR.

�iii� Generalized synchronization is also a two step proce-

dure. First, a state space trajectory is reconstructed from each

scalar time series using a time delay embedding method �35�.
This technique makes it possible to investigate the interac-

tion between two nonlinear dynamical systems without any

knowledge about governing equations. First, for each dis-

crete time n a delay vector corresponding to a point in the

state space reconstructed from x is defined:
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Xn = �xn,xn+�, . . . ,xn+�m−1���,n = 1, . . . ,N ,

where m is the embedding dimension and � denotes time lag.

The state space of y is reconstructed in the same way. Sec-

ond, synchronization is determined via a suitable measure.

Four measures, all based on conditional neighborhood, are

presented in this study. The principle is to quantify the prox-

imity, in the second state space, of the points whose temporal

indices are corresponding to a neighboring points in the first

state space. Three of these measures S, H, and N �15�, which

are also sensitive to the direction of interaction, originate

from this principle and use an Euclidean distance:

S�k��X�Y� =
1

N
�
n=1

N
Rn

�k��X�

Rn
�k��X�Y�

,

H�k��X�Y� =
1

N
�
n=1

N

log
Rn

�N−1��X�

Rn
�k��X�Y�

,

N�k��X�Y� =
1

N
�
n=1

N
Rn

�N−1��X� − Rn
�k��X�Y�

Rn
�N−1��X�

,

where R
n

�k��X� is computed

Rn
�k��X� =

1

k
�
j=1

k

�Xn − Xrn,j
�2,

and R
n

�k��X �Y� is

Rn
�k��X�Y� =

1

k
�
j=1

k

�Xn − Xsn,j
�2,

where �·� is the Euclidean distance; rn,j , j=1, . . . ,k and

sn,j , j=1, . . . ,k, respectively, stand for the time indices of the

k nearest neighbors of Xn and Yn.

The fourth measure, referred to as the SL �16�, is a mea-

sure of multivariate synchronization. Here we only focus on

the bivariate case. The estimated probability that embedded

vectors Xn are closer to each other than a distance 
 is,

Px,n

 =

1

2�w2 − w1� �
j=1

w1��n−j��w2

N

��
 − �Xn − X j��

where � stands for Heaviside step function, w1 is the Theiler

correction, and w2 determines the length of the sliding win-

dow. Letting Px,n

 = Py,n


 = Pref be a small arbitrary probability,

the above equation for Xn and its analogous for Yn, gives the

critical distances 
x,n and 
y,n from which we can determine

if simultaneously Xn is close to X j and Yn is close to Y j, i.e.,

Hn,j =2 in the equation below

Hn,j = ��
x,n − �Xn − X j�� + ��
y,n − �Yn − Y j�� .

Synchronization likelihood at time n can be obtained by av-

eraging over all values of j,

FIG. 2. Results obtained in model M1 �stochastic broadband signals�, using Monte Carlo simulation for Pearson correlation coefficient

�R2� CF�, nonlinear regression �h2�, HE, Hilbert mean phase coherence �HR�, wavelet phase entropy �WE�, and wavelet mean phase

coherence �WR�, three similarity indexes �S ,H ,N� and �SL�. �a� Simulated signals generated by model M1, �b� estimated relationships and

�c� variances of estimation.
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Sn =
1

2Pref�w2 − w1� �
j=1

w1��n−j��w2

N

�Hn,j − 1� .

All aforementioned measures but H, are normalized between

0 and 1; the value of 0 means that the two signals are com-

pletely independent. On the opposite, the value of 1 means

that the two signals are completely synchronized.

D. Comparison criteria

For all models and all values of the degree of coupling

parameter, long time series were generated in order to ad-

dress some statistical properties of the computed quantities:

�i� the MSE under null hypothesis �i.e., independence be-

tween two signals�, which could be interpreted as a quadratic

bias, defined by E���̂0−�0�2� where E is the mathematical

expectation, �0=0 and �̂0 is the estimation of �0; �ii� the MV

computed over all values ci, i=1,2 , . . . , I of the degree of

coupling and defined as
1

I
�i=1

I E���̂i−E��̂i��2� where I is num-

ber of coupling degree points and �̂i is the estimated relation-

ship for the coupling degree ci; �iii� in addition to two above

criteria, we introduced the median of local relative sensitivity

�MLRS� as a comparison criterion, it given by:

MLRS = Median�Si/�̄i�, Si =
�̂i+1 − �̂i

ci+1 − ci

, �̄i =��̂i
2 + �̂i+1

2

2
,

where Si is the increase rate of the estimated relationship and

�̄i is the square root of the average of estimated variances

associated to two adjacent values of the coupling degree.

This quantity is a reflection of the sensitivity of a method

with respect to the change in the coupling degree. We have

also retained the median of the distribution of local relative

sensitivity instead of its mean because the fluctuation in its

estimation may make this distribution very skewed. Contrary

to MSE and MV, higher MLRS values indicate better perfor-

mances.

For all models and all values of the degree of coupling,

Monte Carlo simulations were conducted to compare inter-

dependence measures provided by methods described in Sec.

II C. For the � parameter used in the GS methods, first the

mutual information as a function of positive time lag is plot-

ted and then as described in �36� the time lag � was chosen as

the abscissa value corresponding to the first minimum this

curve. The embedded dimension m, in these kinds of meth-

ods, was determined from the Cao method �37�. Appendix B

provides details about the implementation of the methods

III. RESULTS

Mean value and variance for each coupling degree are

shown in Figs. 2–7 for all methods except H that does not

provide normalized quantity. For model M1 �Fig. 2�, all

quantities but N reach the value of 1 for c=1. R2 and h2

methods behave very similarly because the relationship in

M1 is completely linear.

Regarding phase synchronization measures, we observed
a similar method behavior as curves were found to be very
close to one another. For signals generated with model M1,
SL was also found to have the maximum variance among all
measures particularly for the high values of the coupling pa-
rameter, as depicted in Fig. 2�c�. This result was not expected
because the variance generally falls for the high relationship
degree. Finally, we also observed in M1 that S and CF have
nonnegligible MSE under null hypothesis compared to other
measures.

The results obtained in model M2 are shown in Fig. 3. For
PR only �Figs. 3�a�–3�c��, we observed that PS methods ex-
hibit higher performances than other methods as expected.
Similarly, R2 and h2 methods gave rather good results. On
the opposite, GS methods and coherence had lower perfor-
mances. In the case of AR only �Figs. 3�d�–3�f��, PS methods
did not present any sensitivity to changes in the degree of
relationship as expected from their definitions. GS, R2, and
h2 methods provided quantities which slightly increase with
an increasing degree of coupling. Finally, despite what is
commonly thought, CF showed only slight sensitivity to am-
plitude covariation.

In this study, nonlinear deterministic systems �models M3

and M4� were used only for comparing the performances of

relationship estimators. Their properties were not investi-

gated in detail here as they have already been analyzed in

many previous studies �38�. For the two coupled Rössler

systems �Fig. 4�, we found that the SL method had both the

least MSE under the null hypothesis and the best sensitivity

with respect to change in the coupling degree. However, its

variance stayed high compared to other methods. Qualita-

tively, PS methods performed better in this case. A striking

result was also obtained in this case: several methods �R2, h2,

and WE� provided quantities which first increased and then

decreased for increasing low values of the coupling param-

eter �0�c�0.14�.
For coupled identical Hénon systems �M4a�, N performed

better than other methods �Fig. 5�. For nonidentical Hénon

systems �M4b�, GS methods still exhibited the best perfor-

mances �Fig. 6�. Although MSE and MV were found to be

reduced with the addition of measurement noise for all meth-

ods, it is worth mentioning that regression methods are gen-

erally more robust against noise than other approaches, es-

pecially for nonidentical coupled systems.

For the neuronal population model �model M5�, signals

were generated to reproduce normal background EEG activ-

ity �M5�BKG�� or spiking activity �M5�SPK�� as observed

during epileptic seizures. Properties of these signals are very

close to those reported in a previous attempt for comparing

relationship estimators �17�. In our study, the relationship

between the two modeled populations of neurons was unidi-

rectional. As shown in �18� in the case of background activ-

ity using surrogate data techniques, the relationship between

signals in this model are mainly linear. Thus we expected all

methods to exhibit similar behavior in this case. Results

showed that increasing the degree of coupling between neu-

ronal populations did not lead to a significant increase of

computed quantities, as shown in Figs. 7�a�–7�c�. In this situ-

ation CF and all the PS methods but HR do not detect any

relationship; other methods detect a weak relationship. For
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spiking activity, results for all methods are reported in Figs.
7�d�–7�f�. As an interesting result, we observed that WE and
CF were almost blind to the established relation. Similarly,
HE and WR only displayed a small increase with an increas-
ing of degree of coupling but their variance was low. R2, h2,
S, methods exhibited good sensitivity. However, MSE under

null hypothesis was found to be high for HR.

Results presented in Figs. 1–6 are summarized in Tables

I–III which, respectively, give the MSE under null hypoth-

esis, the MV and the MRLS for all methods and simulation

models �see Appendix C for the confidence intervals�. For
each studied situation, the best method is indicated with bold
face characters. Methods that were found to be insensitive
with respect to changes in the coupling degree are denoted
by the symbol “*.” From these tables, we deduced that for
model M1, R2 is the most appropriate estimator based on

defined criteria. For model M2, in the case of phase relation-

ship, PS methods �especially WE� perform better than other

methods. In the case of amplitude relationship, there is no

consensus for the choice of a best method as all methods are

FIG. 3. Results obtained in model M2 �stochastic narrowband signals�. �a� Simulated signals generated by model M2�PR�, �b� estimated

relationships, and �c� variances of estimation, for the PR case. �d�–�f� Results for the AR case.
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more sensitive to the phase of signals than to their envelope.

For the coupled Rössler systems �M3�, PS methods are more

suitable. For Hénon coupled systems, S and N methods had

higher performances, on average but R2 was found to be

more robust in the presence of added noise. For the neuronal

population model, in the background activity situation, R2

and h2 methods detected the presence of a relationship and

performed better than other methods; this tendency was also

confirmed in the spiking activity situation. However, it was

difficult to determine the overall best method in this second

case since criteria did not lead to consensual results.

In order to globally compare the three groups of methods,

we averaged results obtained in each simulation model for

each criterion. Results are synthesized in Fig. 8. For model

M1, regression methods perform better than others as the MV

is the lowest while the MRLS is the highest. For model M2

�in the case of PR�, it is evident that PS methods are the most

appropriate. For model M2 �in the case of AR�, there is no

consensus for the best method. For model M3, PS methods

outperform others although they are characterized by higher

MSE values. For model M4 �considering the four situations�,
GS methods have the lowest MSE and PS methods have the

lowest MV. As far as the MRLS is concerned, these two

groups of methods perform equally. Finally, for the neuronal

population model M5, regression methods outperform others

in the case of normal background EEG activity. For spiking

epilepticlike activity, these methods, in addition to PS meth-

ods have also higher performances than GS methods.

IV. DISCUSSION AND CONCLUSIONS

Numerous methods have been introduced to tackle the

difficult problem of characterizing the statistical relationship

between EEG signals without any a priori knowledge about

the nature of this relationship. This question is of great inter-

est for understanding brain functioning in normal or abnor-

mal conditions. Therefore, these methods play a key role as

they are supposed to give important information regarding

brain connectivity from electrophysiological recordings. In

this work, we compared the performances of various estima-

tors for quantifying statistical coupling between signals and

characterizing interactions between brain structures. We ana-

lyzed, quantitatively and as comprehensively as possible,

various kinds of estimators using different models of rela-

tionship for representing the wide range of signal dynamics

encountered in brain recordings. In this regard, our study

differs from that of Schiff et al. �39� who evaluated one

method to characterize dynamical interdependence �based on

mutual nonlinear prediction� on both simulated �coupled

identical and nonidentical chaotic systems as those used

here� and real �activity of motoneurons within a spinal cord

motoneuron pool� data. It also differs from other evaluation

studies which mainly focused on qualitative comparisons

�17,18� and for particular applications �19,20�.
In the particular field of EEG analysis, the model of

coupled neuronal populations is of particular relevance since

it generates realistic EEG dynamics. In this model, for back-

ground activity �that can be considered as a broadband ran-

dom signal�, we found that coherence and phase synchrony

methods �except HR� were not sensitive to the increase of the

coupling parameter whereas regression methods �linear and

nonlinear� exhibited better sensitivity. This result may be ex-

plained by the fact that the interdependence between simu-

lated signals is not entirely determined by a phase relation-

ship. This point is crucial since it illustrates the fact that the

FIG. 4. Results obtained by model M3 �Rössler coupled systems�. �a� Simulated signals, �b� estimated relationship and �c� variances of

estimation.
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choice of the method used to characterize the relationship
between signals is critical and may lead to possible mislead-
ing interpretation of EEG data.

In addition, as background activity can be recorded in
epileptic patients during interictal periods, our results also
relate to those recently published by Morman et al. �19� in

the context of seizure prediction. For thirty different mea-

sures obtained from univariate and bivariate approaches, au-

thors evaluated their ability to distinguish between the inter-
ictal period and the preseizure period �sensitivity and
specificity of all measures were compared using receiver-
operating characteristics�. In both types of approach �and
consequently for bivariate methods similar to those imple-
mented in the present study� they also found that linear

methods performed equally good or even better than nonlin-

ear methods.

FIG. 5. Results obtained for model M4a �identical Hénon coupled systems�. �a� Simulated signals generated by model M4a�S/N

=inf, the noise-free case�, �b� estimated relationship, and �c� variances of estimation, for the noise-free case. �d�–�f� Results for the

S/N�signal-to noise ratio�=2 case.
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Moreover, we did not report results about the capacity of

some measures to characterize the direction of coupling in

some models �in particular in asymmetrically coupled oscil-

lators or neuronal populations�. This issue which is beyond

the scope of the present study has already been addressed in

other reports. For instance, Quian Quiroga et al. �40� quan-

titatively tested two interdependence measures on coupled

nonlinear models �similar to those used here� for their ability

to determine if one of the systems drives the other.

To sum up, the main findings of this study are the follow-

ing: �i� some of the compared methods are insensitive to

particular signal coupling; �ii� results are very dependent on

signal properties �broad band versus narrow band�; �iii� gen-

erally speaking, there is no universal method to deal with

FIG. 6. Results obtained for model M4b �nonidentical Hénon coupled systems�. �a� Simulated signals generated by model M4b�S/N

=inf, the noise-free case�, �b� estimated relationship, and �c� variances of estimation, for the noise-free case. �d�–�f� Results for the

S/N�signal-to-noise ratio�=2 case.
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signal coupling, i.e., none of the studied methods performed

better than the other ones in all studied situations; �iv� as R2

and h2 methods showed to be sensitive to all relationship

models with average or good performances in all situations.

This latter point led us to conclude that it is reasonable to

apply R2 and h2 methods as a first attempt to characterize the

functional coupling in studied systems in absence of a priori

information about its nature. In addition, in the case where

such information is available, this study can help to choose

the appropriate method among those studied here.
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APPENDIX A: MATHEMATICAL EXPRESSION OF

THREE COUPLING FUNCTIONALS

In the ideal case, analytical expression of R�x ,y� as a

function of coupling parameter values is required to compute

MSE. Generally, this analytical expression cannot be ob-

tained except for the special cases that are developed here-

after for model M1 �R2� and model M2�PR�.
Since the noises used in model M1 are independent zero

mean and unit variance white noises, we can compute theo-

retical value for R2 as follows:

cov„x1�t�,x2�t + ��… = E�x1�t� · x2�t + ��� = � 0 if � � 0,

c2 if � = 0,
�

and

var„x1�t�… = var„x2�t + ��…

= E�x1
2�t�� = E�x2

2�t + ��� = �1 − c�2 + c2.

Substitution of theses two equations in the R2 definition leads

to:

R2�c� =
c4

��1 − c�2 + c2�2
.

For model M2�PR�, the theoretical value could be derived for

the phase synchronization methods; the phase difference in

this model is

� = „c�1 + �1 − c��2 − �1…mod�2��

= �c − 1��1 + �1 − c��2 mod�2�� .

As �1 and �2 are independent and uniformly distributed on

�−� ,��, the mean phase coherence can be derived as fol-

lows:

E�ei�� = E�ei†��c−1��1+�1−c��2�mod 2�‡�

= E�ei��c−1��1+�1−c��2�� = E�ei�c−1��1�E�ei�1−c��2� ,

E�ei��� =
1

2�
�

0

2�

ei�udu =
1

2�

1

i�
�ei2�� − 1� = ei��u

sin ��

��
,

E�ei�c−1��1�E�ei�1−c��2�

= ei��c−1�usin ��c − 1�
��c − 1�

ei��1−c�usin ��1 − c�
��1 − c�

= � sin ��1 − c�
��1 − c�

�2

.

For other synchronization indexes based on Shannon en-

TABLE I. MSE values and standard deviations �see Appendix C for computation� for studied methods and models. “*” denotes methods

that are nearly insensitive to changes in the coupling degree and for which this criterion is not applicable.

M1 M2 M3

M4a

�S/N=inf�
M4a

�S/N=2�
M4b

�S/N=inf�
M4b

�S/N=2� M5�SPK� M5�BKG�

R2 0.12

±0.004

76.42

±4.55

109.55

±2.55

0.28

±0.01

0.22

±0.01

0.26

±0.03

0.22

±0.02

63.17

±3.08

1.54

±0.09

CF
104.48

±0.33

108.22

±0.41

91.14

±5.61

107.14

±0.32

107.83

±0.41

102.53

±0.08

104.17

±0.37

* *

h2 1.10

±0.01

117.45

±3.78

151.14

±2.38

3.43

±0.04

1.33

±0.01

2.73

±0.02

1.12

±0.02

103.79

±3.25

5.99

±0.13

HE
4.98

±0.02

23.11

±0.61

63.82

±0.38

8.09

±0.03

6.87

±0.03

6.00

±0.01

5.69

±0.02

28.75

±0.49

*

HR
3.00

±0.11

175.56

±5.52

473.07

±2.23

6.26

±0.21

4.99

±0.13

2.74

±0.06

3.04

±0.10

249.31

±5.28

18.99

±0.61

WE
10.54

±0.02

20.48

±0.32

76.47

±0.55

13.01

±0.04

13.27

±0.05

12.98

±0.01

12.76

±0.03

* *

WR
8.78

±0.1

113.65

±2.97

161.50

±1.36

68.97

±0.32

65.79

±0.35

62.26

±0.05

64.22

±0.28

53.39

±0.88

*

S
75.51

±0.1

28.45

±0.82

26.59

±0.48

0.03

±0.0001

27.47

±0.06

0.03

±0.0002

27.41

±0.07

107.53

±2.51

120.04

±0.104

H
0.44

±0.28

2228.14

±34.87

441.99

±14.04

1.86

±0.18

0.50

±0.09

1.04

±0.22

0.39

±0.21

651.21

±45.65

4.21

±11.60

N
0.41

±0.35

378.44

±3.50

116.76

±5.77

0.63

±0.34

0.30

±0.27

0.55

±0.32

0.33

±0.26

201.46

±15.30

4.90

±1.87

SL
4.28

±0.33

115.25

±2.58

8.50

±2.19

4.18

±0.33

4.47

±0.25

3.83

±0.23

3.74

±0.30

41.32

±5.58

6.16

±0.88

ANSARI-ASL et al. PHYSICAL REVIEW E 74, 031916 �2006�

031916-12



tropy, the theoretical value can also be derived. As the prob-

ability distributions of �1 and �2 are uniform on �−� ,��,
those of �c−1��1 and �1−c��2 are also uniform on the in-

terval �−��1−c� ,��1−c��. Therefore the probability density

of the sum X= �c−1��1+ �1−c��2 is the convolution product

of the probability densities of �c−1��1 and �1−c��2:

p�x� = � 1

2��1 − c�
	1 −  x

2��1 − c�

 , if − 2��1 − c� � x � 2��1 − c� ,

0 otherwise.
�

TABLE II. MV values and standard deviation “*” denotes methods that are nearly insensitive to changes in the coupling degree and for

which this criterion is not applicable.

M1 M2�PR� M2�AR� M3

M4a

�S/N=inf�
M4a

�S/N=2�
M4b

�S/N=inf�
M4b

�S/N=2� M5�SPK� M5�BKG�

R2 3.6

±0.4

200.1

±3.4

366.6

±5.6

65.5

±0.6

51.7

±1.9

23.9

±0.4

17.4

±0.1

10.9

±0.2

215.8

±2.5

21.2

±0.3

CF
5.0

±0.5

14.4

±0.6

* 199.4

±1.3

26.6

±1.2

13.1

±0.4

11.6

±0.1

9.2

±0.3

* *

h2 3.7

±0.4

161.0

±2.9

274.8

±4.0

60.4

±0.6

42.0

±1.4

23.3

±0.4

21.5

±0.1

11.8

±0.3

205.0

±2.4

22.6

±0.3

HE
2.4

±0.3

57.2

±1.3

* 19.0

±0.3

25.5

±1.0

4.2

±0.1

4.2

±0.03

2.3

±0.1

45.3

±0.5

*

HR
8.8

±0.6

206.7

±3.9

* 10.1

±0.3

49.6

±1.4

28.0

±0.4

17.9

±0.1

14.8

±0.3

217.5

±2.8

65.5

±0.8

WE
1.5

±0.3

29.4

±0.8

* 6.3

±0.1

20.1

±0.9

3.3

±0.1

3.1

±0.03

1.7

±0.1

* *

WR
6.0

±0.4

118.6

±2.3

* 17.6

±0.3

23.2

±1.1

14.6

±0.4

11.4

±0.1

10.1

±0.3

38.4

±0.5

*

S
2.8

±0.5

58.1

±1.0

74.6

±1.1

48.8

±0.5

20.8

±1.0

6.6

±0.2

1.2

±0.01

4.7

±0.2

183.7

±2.0

44.1

±0.9

H
9.8

±0.9

2066.6

±40.9

2441.3

±42.0

3408.4

±19.3

701.4

±29.2

54.9

±1.4

182.4

±2.0

46.4

±1.2

2942.3

±25.8

70.6

±15.3

N
5.0

±0.5

120.5

±3.1

142.3

±3.5

68.4

±0.7

12.5

±0.8

1.36

±0.4

8.4

±0.1

13.4

±0.3

501.1

±5.1

60.1

±5.7

SL
44.8

±1.5

253.4

±3.8

209.1

±3.1

253.5

±1.4

104.2

±2.7

138.2

±1.2

163.5

±0.6

139.2

±1.3

383.8

±3.5

59.2

±1.0

TABLE III. MRLS values. “*” denotes methods that are nearly insensitive to changes in the coupling degree and for which this criterion

is not applicable.

M1 M2�PR� M2�AR� M3

M4a

�S/N=inf�
M4a

�S/N=2�
M4b

�S/N=inf�
M4b

�S/N=2� M5�SPK� M5�BKG�

R2 57.6 3.94 0.41 1.38 6.99 2.93 21.31 16.85 1.3 1.2

CF 56.4 1.30 * 2.20 5.68 1.94 17.17 9.41 * *

h2 35.6 4.06 0.36 0.98 6.91 0.56 20.62 16.42 1.8 1.1

HE 40.9 6.58 * 15.5 7.16 3.98 20.54 15.58 1.2 *

HR 42.5 6.5 * 8.87 6.79 4.77 21.45 15.38 1.2 0.7

WE 47.0 6.69 * 13.8 11.18 5.07 19.20 11.75 * *

WR 46.6 6.76 * 8.83 10.27 4.68 20.05 14.80 1.2 *

S 31.1 2.23 0.84 6.91 19.40 10.26 31.51 18.03 0.9 0.05

H 30.3 2.84 0.77 3.53 25.07 15.28 24.56 16.59 0.7 0.9

N 29.0 3.02 0.60 3.46 25.42 15.70 12.32 17.04 0.4 0.9

SL 8.32 0.772 0.41 3.52 2.41 2.61 4.90 3.84 1.3 0.007
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Defining the phase difference modulo 2�, �=X mod 2�,

considering the parity of p�·� and denoting h�x�= p�x�1R+, the

continuous probability distribution of � can be written

p�x�=h�x�+h�2�−x�. After partitioning �0,2�� in M inter-

vals of length �=
2�
M

we consider the associated discrete

probability distribution pk=�
k�
�k+1��

p�x�dx, k=0, . . ,M −1

and its normalized entropy �=
Hmax−H

Hmax
where H

=−�i=1
M pi ln pi is the standard entropy. For large M we have:

H = − �
0

M−1

P��k�,�k + 1����log2 P��k�,�k + 1����

� − �
0

M−1

p�k��� log2„p�k���…

= − �
0

M−1

p�k��� log2„p�k��… − log2��� �
0

M−1

p�k���

� − �
0

M−1

p�k��� log2„p�k��… − log2���

� − �
0

2�

p�x�log2„p�x�…dx − log2��� ,

Hmax � − �
0

2� 1

2�
log2	 1

2�

dx − log2	2�

M



= log2�2�� − log2�2�� + log2�M� ⇒ Hmax = log2�M� .

APPENDIX B: IMPLEMENTATION DETAILS

To consider the nonstationary nature of EEG signals, es-

pecially in the epileptic situation, measures were estimated

over a sliding window on long duration signals �20 000

samples�. Window length was equal to 512 samples corre-

sponding to 2 sec of our real EEG data sampled at 256 Hz.

The sliding step was set to 10 samples. These parameters

were empirically chosen with respect to a compromise be-

tween the quality of estimates �the longer the window, the

better� and the dynamics of changes in the relationship

�when changes are abrupt, a short window is preferred�.
Implementation details for all methods are sum up as fol-

lows:

For R2 and h2, the time shift �in samples� between two

signals was allowed to vary in the range of −10���10. The

periodogram method �FFT blocks of 256 samples� was used

to estimate the power spectra and cross spectrum of analyzed

signals. The magnitude-squared coherence �CF� was com-

puted from these estimates and averaged over the whole fre-

quency band. For the phase synchronization methods �HR,

HE�, the Hilbert transform was implemented using the FFT:

the analytical signal is obtained from the inverse FFT per-

formed on the signal spectrum S restricted to positive fre-

quencies �i.e., by setting S�f�=0 for f �0�. Signals were not

prefiltered before application of the Hilbert transform. For

the wavelet transform, we implemented a continuous wavelet

method �the so-called “Morlet wavelet”�. Measures �WR,

WE� built from the wavelet transform were obtained from

averaging over frequency subbands. For the generalized syn-

chronization methods �S, N, H, SL�, state space reconstruc-

tion parameters details �i.e., time lag � and embedding di-

mension d� for all models are summarized in Table IV. In

addition, for these methods, the Theiler correction was cho-

sen equal to time lag � to prevent the information redun-

dancy in used data.

APPENDIX C: CONFIDENCE INTERVALS ON MEASURED

VALUES

Given ci value, we assume that the estimations Tk
i

= R̂L�xk
i ,yk

i �, k=1, . . ,N are random variables that obey the

FIG. 8. Mean values of �a� MSE, �b� MV, and �c� MRLS for the

three categories of methods �white: regression methods, gray: PS

methods, and black: GS methods�. Note that, inversely to MSE and

MV, higher MLRS values indicate better performances.
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same probability distribution as the random variable

ai
2�1

Kiuk
2=ai

2�Ki

2 , where ai is a scaling parameter and where

the uk are Ki mutually independent and identically distributed

�index i stipulate the dependence on parameter ci� Gaussian

random variables, with zero mean and unit variance. The �Ki

2

term corresponds to a �2 law with Ki degrees of freedom.

Indeed, the �2 approximation was found to approximate his-

tograms computed from simulated Tk
i better than Gaussian

distribution.

Classical derivations from Gaussian moments properties

give the following relationship: E�Tk
i �=Kiai

2 and VAR�Tk
i �

=2Kiai
4. Hence, the two parameters ai

2 and Ki can be esti-

mated by application of the moments estimation method

which leads to formulas âi
2=

Si

2�̂i

and K̂i=
�̂i

2

2Si
where Si

=
1

N−1
�k=1

N �Tk
i − �̂i�2 is the unbiased estimated variance of Tk

i

and �̂i=
1

N
�k=1

N Tk
i its estimated mean.

Considering furthermore the random variables Si

=
1

N−1
�k=1

N �Tk
i − �̂i�2, S=

1

M
�i=0

M−1Si, and MQ0=
1

N
�k=1

N �Tk
0�2, the

problem is to quantify roughly their statistical dispersions.

Although the pdf of Tk
i are not Gaussian, those of �̂i, Si, and

MQi can reasonably be modeled as Gaussian �central limit

effect�. Consequently, approximations of corresponding stan-

dard deviations allow characterization of dispersions.

�i� Variance of �̂i,

VAR��̂i� =
1

N
�
k=1

N

VAR�Tk
i � �

Si

N
.

�ii� Variances of Si and S,

VAR�Si� =
1

�N − 1�2�
k=1

N

VAR„�Tk
i − �̂i�

2…

�
1

�N − 1�2�
k=1

N

VAR„�Tk
i �2… ,

VAR�S� = VAR	 1

M
�
i=0

M−1

Si
 =
1

M2 �
i=0

M−1

VAR�Si� .

�iii� Variance of MQ0,

VAR�MQ0� = VAR	 1

N
�
k=1

N

�Tk
0�2
 =

1

N
�
k=1

N

VAR„�Tk
0�2… .

Finally, the variance VAR(�Tk
i �2)=E(�Tk

i �4)− �E(�Tk
i �2)�2 is

computed as follows:

Let �m� =E�Tm� and �m=E�(T−E�T�)m� be moments of or-

der m in the case where the mean of random variable T is

zero and none zero, respectively.

As Tk
i is assumed to be a �K

2 random variable, we can

write �Stuart et al. �41�� that �2=2Ki, �3=8Ki, and �4

=12Ki�Ki+4�. From formulas �Stuart et al. �41�, page 542�
�2�=�2+�1�

2, �4�=�4+4�3�1�+6�2�1�
2+�1�

4, we get the re-

sults:

�2� = 2Ki + Ki
2,

�4� = 48Ki + 44Ki
2 + 12Ki

3 + Ki
4

which lead to

VAR�T2� = �4� − �2�
2 = 48Ki + 40Ki

2 + 16Ki
3

and finally to

VAR„�Tk
i �2… = a8�48Ki + 40Ki

2 + 16Ki
3�

� �â2�4�48K̂ + 40K̂i
2 + 16K̂i

3� .
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