
Quantitative Evaluation of Passage Retrieval Algorithms
for Question Answering

Stefanie Tellex, Boris Katz, Jimmy Lin, Aaron Fernandes, and Gregory Marton
MIT Artificial Intelligence Laboratory

Cambridge, Massachusetts, USA

{stefie10,boris,jimmylin,adfernan,gremio}@ai.mit.edu

ABSTRACT
Passage retrieval is an important component common to
many question answering systems. Because most evalu-
ations of question answering systems focus on end-to-end
performance, comparison of common components becomes
difficult. To address this shortcoming, we present a quan-
titative evaluation of various passage retrieval algorithms
for question answering, implemented in a framework called
Pauchok. We present three important findings: Boolean
querying schemes perform well in the question answering
task. The performance differences between various passage
retrieval algorithms vary with the choice of document re-
triever, which suggests significant interactions between doc-
ument retrieval and passage retrieval. The best algorithms
in our evaluation employ density-based measures for scoring
query terms. Our results reveal future directions for passage
retrieval and question answering.

Categories and Subject Descriptors
H.3.4 [Information Systems]: Information Storage and
Retrieval, Systems and Software

General Terms
Measurement, performance, standardization, design

Keywords
Question answering, passage retrieval

1. INTRODUCTION
Factoid question answering systems seek to provide con-

cise, succinct answers to natural language questions such as
“When did Hawaii become a state?” The aim is to per-
form fine-grained, targeted information retrieval: instead of
retrieving a list of potentially relevant documents, question
answering systems attempt to extract only the information
requested by the user.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’03, July 28–August 1, 2003, Toronto, Canada.
Copyright 2003 ACM 1-58113-646-3/03/0007 ...$5.00.

Over the past few years, the question answering tracks at
the Text Retrieval Conferences (TREC) [25, 23, 24] have
brought formal and rigorous evaluation methodologies to
bear on the question answering task. Although the impor-
tance of these evaluations cannot be denied, they measure
only the end-to-end performance of complex systems that
typically involve a combination of information retrieval, in-
formation extraction, and natural language processing tech-
nologies. Without further ablation studies (e.g., [16, 13]), it
is difficult to untangle the performance contributions of the
various components. In this study, we present a quantita-
tive evaluation of various passage retrieval algorithms and
explore their relationship to document retrieval.

Functionally, most current question answering systems
can be decomposed into four components: question analysis,
document retrieval, passage retrieval, and answer extraction
(cf. [7, 23]). The question analysis component classifies nat-
ural language questions by the expected type of the answer,
e.g., the expected answer type of “Where was Kennedy as-
sassinated?” is location. Typically, queries generated by this
component are used by the document retriever to find a set
of potentially relevant documents from the corpus. From
these documents, the passage retrieval component usually
selects a handful of paragraph-sized fragments. Most of-
ten, passage retrieval algorithms perform a density-based
weighting of query terms, i.e., they favor query terms that
appear close together. Finally, the answer extraction com-
ponent searches the passages for the final answers. A variety
of answer extraction techniques ranging in linguistic sophis-
tication have been implemented, from simple answer-type
matching with named-entity extractors [21] to complex ab-
ductive inferencing [6].

For this study, we focused on passage retrieval algorithms
for question answering because, compared to document re-
trieval, they have not been studied in as much detail. Many
passage retrieval techniques have been described in the con-
text of improving document retrieval performance (e.g., [19,
1]), but we are not aware of any attempts to systematically
study the performance of passage retrieval for question an-
swering. Passages are an important intermediary between
full documents and exact answers, and almost all question
answering systems implement some technique for extracting
paragraph-sized chunks of text from a large corpus. Fur-
thermore, passages themselves form a very natural unit of re-
sponse for question answering systems; Lin et al. [14] showed
that users prefer passages over exact phrase answers in a
real-world setting because paragraph-sized chunks provide
context.

Jimmy Lin
In Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2003), July 2003, Toronto, Canada (Best Student Paper) 



Document Retriever

Passage Retriever

Answer Extractor

Question AnalyzerQuestion

Query

Documents

Passages

Answers

Figure 1: Data Flow in Pauchok.

This work quantitatively studies the effects of different
passage retrieval algorithms on a question answering task.
However, since the quality of the passage retriever depends
in part on the quality of the document retriever, our study
also seeks to untangle the interactions between document
retrieval and passage retrieval.

2. EXPERIMENTAL DESIGN
In order to quantitatively compare the performance of

different passage retrieval algorithms, we have developed a
modular testbed called Pauchok. Our infrastructure con-
sists of four main types of modules, along the lines of typical
question answering systems (see Figure 1):

• Question analysis modules convert natural language
questions into queries for the document retriever. This
process can range in sophistication from simply re-
turning the user’s question as the query to employing
sophisticated question analysis to generate complex,
structured queries. Often, this module also detects the
expected answer type of a question, e.g., the expected
answer type of “When was Albert Einstein born?” is
date. This information helps guide the answer extrac-
tion process.

• Document retrieval modules return ranked lists of po-
tentially relevant documents from the corpus. This
process reduces the corpus to a manageable set of doc-
uments for additional processing.

• Passage retrieval modules process sets of documents
and return ranked lists of passages scored with respect
to query terms.

• Answer extraction modules search passages for the fi-
nal answer to the user’s natural language question.
Typically, named-entity recognition technology is used
to find candidate answers that match the question’s
expected answer type.

Our study is essentially a matrix experiment for a question
answering task that involves three document retrievers and
eight passage retrievers.

2.1 Document Retrievers
Currently, we have implemented two document retrievers

and an oracle in the Pauchok framework. One is a wrapper
around documents that NIST retrieved using the PRISE
system. 1 These documents were provided for TREC par-
ticipants who did not wish to perform document retrieval
themselves. The second document retriever is a wrapper
around Lucene, a freely available open-source IR engine.2

Lucene supports a boolean query language, although it per-
forms ranked retrieval using a standard tf.idf model. The
oracle is guaranteed to return relevant documents, i.e., ev-
ery document returned has the answer somewhere within it.
In Pauchok, the oracle is treated like any other document
retriever; it is hardwired to return the NIST-supplied list of
known relevant documents.

These document retrievers are good exemplars of the spec-
trum of document retrieval. PRISE is representative of
the state of the art in information retrieval, incorporating
many modern advances in query and term weighting, i.e.,
bm25 [18, 17]. Lucene is a good example of boolean keyword
search engines used by many TREC systems. Its ranked-
retrieval functionality is only invoked to sort documents that
satisfy the boolean query. As a result, Lucene suffers from
well-known problems that plague boolean systems, e.g., very
little control over the size of the hit list [4]. We implemented
the oracle document retriever to study passage retrieval al-
gorithms in isolation and to assess their performance with
perfect document retrieval.

2.2 Passage Retrieval Algorithms
For our study, we implemented eight different passage re-

trieval algorithms in the Pauchok framework. Most of the
algorithms were chosen from top-performing TREC-10 sys-
tems that had well-described passage retrieval algorithms.

We did not include passage retrieval algorithms from two
notable TREC-10 systems. The top performing TREC-10
system, InsightSoft [20], cuts the retrieved documents into
passages around query terms, returning all passages from all
retrieved documents. The use of human-generated indica-
tive patterns makes answer extraction on such large amounts
of text viable. The second best system, LCC [5], retrieves
passages that contain keywords from the question based on
the results of question analysis. Their passage retrieval al-
gorithm requires the expected answer type of the question
or a bridging inference between the expected answer type
and the question. However, neither the answer type ontol-
ogy nor the bridging inference mechanisms were described
well enough for us to implement.

The following subsections provide an overview of the sur-
veyed algorithms.

2.2.1 MITRE
The word overlap algorithm presented by Light et al. [13]

simply counts the number of terms a passage has in common
with the query, where each sentence is treated as a separate
passage. This algorithm represents the simplest reasonable
passage retrieval technique and serves as a good baseline for
comparison. Although the version described by Light et al.
makes use of stemming, we implemented both a stemming
and non-stemming version of the algorithm.

1
www.itl.nist.gov/iad/894.02/works/papers/zp2/zp2.html

2
jakarta.apache.org/lucene/docs/index.html



2.2.2 bm25
The well-known Okapi bm25 weighting scheme [18, 17]

represents the state of the art in document retrieval. We
implemented a simple passage retrieval algorithm based on a
sliding window scored with bm25 to serve as another baseline
for comparison.

2.2.3 MultiText
The MultiText algorithm [2, 3] is a density-based pas-

sage retrieval algorithm that favors short passages contain-
ing many terms with high idf values. Each passage window
in the algorithm starts and ends with a query term, and its
score is based on the number of query terms in the passage
as well as the window size. Once the highest scoring passage
has been identified, our implementation creates a new win-
dow of the required length around the center point of the
original passage.

Due to the structure of their index, Waterloo’s implemen-
tation of the MultiText algorithm uses a variant of idf for
the term weights. However, our implementation uses the
standard definition of idf.

2.2.4 IBM
IBM’s passage retrieval algorithm [10, 9] computes a se-

ries of distance measures for the passage. The “matching
words measure” sums the idf values of words that appear
in both the query and the passage. The “thesaurus match
measure” sums the idf values of words in the query whose
WordNet synonyms appear in the passage. The “mis-match
words measure” sums the idf values of words that appear in
the query and not in the passage. The “dispersion measure”
counts the number of words in the passage between match-
ing query terms, and the “cluster words measure” counts the
number of words that occur adjacently in both the question
and the passage. These various measures are linearly com-
bined to give the final score for a passage.

2.2.5 SiteQ
SiteQ’s passage retrieval algorithm [12] computes the score

of an n-sentence passage by summing the weights of the in-
dividual sentences. Sentences are weighted based on query
term density. This algorithm weights query terms based on
their part of speech; however the version implemented in
Pauchok uses the idf weight instead. Our experiments show
an optimal passage length of three sentences.

2.2.6 Alicante
Alicante’s passage retrieval algorithm [22, 15] computes

the non-length normalized cosine similarity between query
terms and the passage. It takes into account the number of
appearances of a term in the passage and in the query, along
with their idf values. The Alicante system reported an op-
timal passage size of twenty sentences, but our experiments
show highest performance using a six sentence window.

2.2.7 ISI
ISI’s passage retrieval algorithm [8] ranks sentences based

on their similarity to the question by weighing various fea-
tures: exact match of proper names, match of query terms,
and match of stemmed words. Their passage scoring func-
tion includes a term whose sole purpose is to offset scoring
performed by the answer extractor; we did not implement
this part of the algorithm.

2.2.8 Voting
We designed a new passage retrieval algorithm by com-

bining the results from our implemented collection of algo-
rithms. We implemented a simple voting scheme that scored
each passage based on its initial rank and also based on the
number of answers the other algorithms returned from the
same document. More precisely, given the results from var-
ious passage retrieval algorithms, the score for each passage
is calculated as follows:

A = number of algorithms

R = number of passages returned

docids = A × R matrix of document ids

returned by each algorithm

docscore(doc) =

A∑
a=1

R∑
r=1

{
1/r if docids[a, r] = doc
0 otherwise

score(a, r) =
1

r
+

1

2
docscore(docids[a, r])

We ran this voting algorithm using IBM, ISI, and SiteQ,
the best performing algorithms under the PRISE IR engine.

2.3 Procedure
Our study was a matrix experiment involving the docu-

ment retrievers and passage retrievers described above. The
TREC-9 data was used for training purposes, and the data
from TREC-10 was used in our evaluation.

For passage retrieval algorithms that required parameter
tuning (Alicante, IBM, ISI, and SiteQ), we used the TREC-9
test set on Lucene to explore the parameter space. Start-
ing with parameters reported by the authors of the passage
retrieval algorithms, we automatically refined each parame-
ter in a hill-climbing fashion. The step size was chosen by
initial ad-hoc experimentation. We informally verified that
passage ranking performance remained relatively constant
with respect to perturbations in parameters. Overall, the
performance of the tuned algorithms was comparable to the
results reported by the original authors.

As mentioned previously, our experiments involved three
different document retrieval modules. For the PRISE docu-
ment retriever, NIST presented the entire question verbatim
as the query. For Lucene, Pauchok composed a conjunctive
boolean query after removing stopwords from the question.
The oracle document retriever ignored the input query terms
(taking into account only the question number) because it
only returned known relevant documents.

Pauchok ran each passage retrieval algorithm on the first
two hundred documents returned by the document retriever,
although the document retriever sometimes returned fewer
documents. Each algorithm extracted the best passage from
every document, and returned up to twenty passages. Our
implementations ignored the original document rank and
document score. For each question, algorithms returned up
to twenty passages of 1000 bytes each. In an end-to-end
question answering system, an answer extraction algorithm
would then select the final answers from the passages; in
TREC-10, systems returned up to five 50 byte answers.

Due to the differences in each algorithm, passage lengths
varied dramatically. To normalize for these variations, Pau-
chok expanded or contracted the initial passage returned by
the algorithm to fit within the space allotted. If a passage re-



Strict Lenient
Lucene PRISE TREC Lucene PRISE TREC

Algorithm MRR % Inc. MRR % Inc. % Inc. MRR % Inc. MRR % Inc. % Inc.
IBM 0.326 49.20% 0.331 39.60% 44.3% 0.426 39.60% 0.421 30.80% 43.1%
ISI 0.329 48.80% 0.287 41.80% 41.7% 0.413 40.20% 0.396 32.20% 39.8%

SiteQ 0.323 48.00% 0.358 40.40% 56.1% 0.421 40.20% 0.435 32.60% 52.8%
MultiText 0.354 46.40% 0.325 41.60% 43.1% 0.428 38.60% 0.398 34.80% 40.7%
Alicante 0.296 50.00% 0.321 42.60% 60.4% 0.380 41.80% 0.391 35.20% 59.6%
bm25 0.312 48.80% 0.252 46.00% n/a 0.410 40.80% 0.345 38.00% n/a

stemmed MITRE 0.250 52.60% 0.242 58.60% n/a 0.338 44.20% 0.312 39.20% n/a
MITRE 0.271 49.40% 0.189 52.00% n/a 0.372 42.20% 0.265 42.00% n/a
Averages 0.309 49.15% 0.297 45.33% n/a 0.399 40.95% 0.370 35.60% n/a

Voting with IBM, ISI, SiteQ 0.350 39.80% 0.352 39.00% n/a 0.410 31.00% 0.430 30.00% n/a

Table 1: Performance on TREC-10 using both Lucene and PRISE, ordered by the lenient percentage incorrect
under PRISE. Mean reciprocal rank (MRR) and percentage incorrect (% Inc.) are shown for both the strict
and lenient scoring conditions. The performance of the associated TREC-10 systems is also provided.

1 2 3 4 5
Rank

0.0

0.1

0.2

0.3

0.4

0.5

IBM - Lucene
IBM - PRISE

Percentage of
questions answered

1 2 3 4 5
Rank

0.0

0.1

0.2

0.3

0.4

0.5

MITRE - Lucene
MITRE - PRISE

Percentage of

questions answered

Figure 2: Graphs of performance IBM and MITRE (using both Lucene and PRISE).

trieval algorithm returned an answer shorter than the limit,
Pauchok expanded the passage by adding words surrounding
the passage from the document on both ends. Similarly, if
an algorithm returned a passage that was too long, Pauchok
trimmed words from both ends accordingly.

All results, in the form of [question, docid] pairs were au-
tomatically scored using NIST-supplied scripts designed to
simulate human judgments with regular expression patterns.
We modified the scoring scripts to provide both strict and
lenient scores. For strict scoring, an answer was correct if it
matched one of the answer patterns and its associated doc-
ument was listed as one of the known relevant documents
(also supplied by NIST). A correct answer only needed to
match the pattern for lenient scoring, regardless of the sup-
porting document. We collected two standard performance
metrics: mean reciprocal rank (MRR) and percentage of
questions with no correct answers. MRR was measured over
all twenty response passages, as opposed to the usual five in
formal TREC evaluations.

3. RESULTS
Table 1 shows the overall performance of the passage re-

trieval algorithms with Lucene and PRISE, under strict and
lenient conditions. ANOVA (over all runs except for voting)

revealed that the performance differences for the PRISE set
of results were statistically significant under both strict and
lenient scoring (lenient: F (7, 3992) = 3.25, p = 0.001; strict:
F (7, 3992) = 3.71, p = 0.0005). Intuitively, this means that
chance alone could not account for the performance differ-
ences among the algorithms. However, the differences in
the performance of passage retrieval algorithms with Lucene
were not significant under both strict and lenient scoring, as
demonstrated by ANOVA (over all runs except for voting):
(lenient: F (7, 3696) = 0.71, ns; strict F (7, 3696) = 0.68,
ns).3 Intuitively, this means that we could not rule out
that chance alone accounted for the differences in passage
retrieval performance.

For reference, Table 1 also shows the percentage of incor-
rect questions for the end-to-end TREC-10 system associ-
ated with the passage retrieval algorithms we studied (data
taken from Voorhees [23]). The complete end-to-end sys-
tems included answer extraction modules, and returned up
to five 50 byte answers.

Overall, the passage retrieval algorithms achieved a higher

3The ANOVA excluded questions for which Lucene returned no
documents (although we included those questions in Table 1).
Excluding these values makes the ANOVA more sensitive; yet,
the results were still not significant.



Algorithm # Incorrect % Incorrect MRR
IBM 31 7.18% 0.851
SiteQ 32 7.41% 0.859
ISI 37 8.56% 0.852

Alicante 39 9.03% 0.816
MultiText 44 10.19% 0.845

bm25 45 10.42% 0.810
MITRE 45 10.42% 0.800

stemmed MITRE 63 14.58% 0.762

Table 2: Performance of different passage retrieval algorithms using the oracle document retriever.

t-test results
Algorithm PRISE Lucene Oracle

ISI t(499) = 0.94, p = 0.35 t(462) = 0.44, p = 0.66 t(431) = 1.23, p = 0.22
SiteQ t(499) = 1.15, p = 0.25 t(462) = 0.45, p = 0.66 t(431) = 0.19, p = 0.85

Table 3: T-test results comparing both ISI and SiteQ with IBM. The results for lenient scoring shown here
are not statistically significant; the t-tests for strict scoring were also not significant.

MRR with Lucene as the document retriever, while passage
retrievers using PRISE had fewer questions with incorrect
answers. Intuitively, passage retrievers using PRISE an-
swer more questions correctly, analogous to higher recall,
but passage retrievers using Lucene tend to rank correct an-
swers higher, analogous to higher precision. Figure 2 shows
the percentage of questions answered correctly as a function
of rank for IBM’s and MITRE’s passage retrievers. The
top-performing IBM algorithm is relatively invariant to the
choice of document retriever, whereas the baseline MITRE
algorithm shows two distinctly different behaviors depend-
ing on the choice of document retrievers. Regardless, the
algorithms exhibit the same precision vs. recall tradeoff in
both PRISE and Lucene.

Manual examination of the results revealed that neither
strict nor lenient scoring was perfect. Strict scoring dis-
played many false negatives, i.e., valid answers scored as
incorrect, because the list of known relevant documents sup-
plied by NIST was not exhaustive. Conversely, lenient scor-
ing displayed many false positives, i.e., wrong answers scored
as correct, because some of the answer patterns were not
discriminating enough. However, we believe that both scor-
ing conditions establish realistic upper and lower bounds on
performance.

Although our voting algorithm resulted in a slight perfor-
mance increase, the improvement was not statistically sig-
nificant. For Lucene, ANOVA over all runs including voting
was not significant (lenient: F (8, 4158) = 0.79, ns; strict:
F (8, 4158) = 0.69, ns). For the PRISE results, although the
ANOVA over all runs was significant (lenient: F (8, 4990) =
3.27, p = 0.0006; strict: F (8, 4991) = 3.64, p = 0.0003), a
t-test between IBM and the voting algorithm was not. (le-
nient: t(499) = −0.67, ns; strict: t(499) = −0.54, ns)

Table 2 shows the results using the oracle document re-
triever: every document returned is guaranteed to have at
least one instance of the correct answer.4 This condition
tests the performance of passage retrieval algorithms un-
der optimal document retrieval. ANOVA revealed that the

4Note that the strict and lenient measures are identical under the
oracle document retriever.

difference in performance between the algorithms is statis-
tically significant (F (7, 3448) = 2.71, p = 0.008).

Focusing on the three passage retrievers that correctly an-
swered the most questions (IBM, ISI, and SiteQ), we found
that their performance was not significantly different. The
results of our pairwise t-tests under lenient scoring are shown
in Table 3.

4. DISCUSSION
In this section, we discuss our three important findings:

Boolean querying schemes perform well in the question an-
swering task. The performance differences between various
passage retrieval algorithms vary with the choice of docu-
ment retriever, which suggests significant interactions be-
tween document retrieval and passage retrieval. The best
algorithms in our evaluation employ density-based measures
for scoring query terms.

4.1 Boolean Querying
An immediate conclusion from our study is that in terms

of passage retrieval, the performance obtained using the
Lucene document retriever is comparable to the performance
obtained using the PRISE document retriever. In fact, pas-
sage retrieval algorithms using Lucene actually achieve a
higher MRR on average. We found this result surprising
because in terms of pure document retrieval, boolean query
models have been consistently outperformed by more mod-
ern approaches. Yet, for the passage retrieval task, the ef-
fectiveness of these different document retrievers is quite
similar. This result confirms the intuition of many in the
question answering community: boolean queries can supply
a reasonable set of documents for down-stream components
in a question answering system. Many of the top-performing
systems in the TREC competitions (e.g., [8, 16]) employ sim-
ple boolean queries for this reason, and because a boolean
model allows for finer-grained control over query expansion.

4.2 Passage Retrieval Differences
A striking result of our study was the answer to the ques-

tion “Are the performance differences between passage re-



trieval algorithms significant?” The answer to this question
depends on the document retriever and has important im-
plications for question answering:

PRISE significant
Lucene not significant
oracle significant

Our results with Lucene show that the performance dif-
ferences between passage retrieval algorithms were not sta-
tistically significant. It may be possible to attribute the
differences in performance to pure chance. Based on our
experience, we recommend that question answering systems
utilizing boolean keyword querying schemes focus more on
improving document retrieval. Compared to PRISE results,
Lucene appears to have lower recall (consistent with conven-
tional wisdom); as such, methods for boosting recall (e.g.,
query expansion techniques) should be a priority in the de-
velopment of question answering systems built on boolean
keyword search engines. In fact, at least one system [16]
has implemented “feedback loops” which expand or contract
boolean queries to improve the quality of a hit list.

In contrast, our results with the PRISE document re-
triever show that the performance differences attributed to
the passage retrieval algorithms are statistically significant;
here the passage retriever does make a difference. However,
passage retrieval algorithms using PRISE tend to place rel-
evant passages at lower ranks compared to Lucene. Gen-
eralizing from this result, we believe that different passage
retrieval techniques are still worth exploring, with a focus
on better confidence ranking in the context of an IR engine
like PRISE.

Finally, our results with the oracle document retriever re-
veal that performance differences among the various algo-
rithms were still statistically significant even when docu-
ment retrieval was perfect. This observation suggests that
document and passage retrieval technology can be developed
independently and still be combined for better end-to-end
performance.

4.3 Density-Based Scoring
Examining specific passage retrieval algorithms, we dis-

covered that IBM, ISI, and SiteQ are statistically indistin-
guishable in terms of performance. Common to all three
algorithms is a non-linear boost to query terms that occur
very close together in a candidate passage. For example,
IBM’s use of the cluster word score has a comparable effect
to ISI’s boost for exact proper names matching. In general,
a scoring function based on how close keywords appear to
each other is common among passage retrieval algorithms.
In contrast, the baseline MITRE algorithm, which performs
worse than the others, does not employ any measure of key-
word density. We believe that density-based scoring is a
critical aspect of passage retrieval.

5. FUTURE DIRECTIONS
For some questions, our implemented passage retrieval al-

gorithms do not return any correct answers in the top twenty
passages; as a result, any subsequent processing by an an-
swer extraction module is useless. Error analysis of these
“hard” questions suggests that improvements in precision
could come from a number of simple linguistic strategies: in-
corporating question type analysis and extracting relations
between question terms in the passage.

An example of a useful question type analysis is recog-
nizing definition questions. Many passage retrieval failures
can be attributed to the lack of query terms in questions
such as “What is an ulcer?”, where “ulcer” is the only rel-
evant query term in the question. By using specific query
expansion strategies to look for patterns commonly used in
definitions (e.g. apposition), performance could be signifi-
cantly improved.

Another source of error stems from the failure to recognize
that crucial syntactic relations are missing in the candidate
passages. In some cases, passages that contain all the correct
keywords may still not answer a question. Consider the
following examples taken from wrong answers returned by
actual TREC systems:

(Q1003) What is the highest dam in the U.S.?

(1) Extensive flooding was reported Sunday on the

Chattahoochee River in Georgia as it neared its crest

at Tailwater and George Dam, its highest level since

1929. (AP900319-0047)

(2) A swollen tributary the Ganges River in the capi-

tal today reached its highest level in 34 years, officials

said, as soldiers and volunteers worked to build dams

against the rising waters. (AP880902-0066)

(3) Two years ago, the numbers of steelhead return-

ing to the river was the highest since the dam was

built in 1959. (SJMN91-06144185)

Katz and Lin [11] identified this phenomenon as ambigu-
ous modification, where words in a query are found in the
candidate answers, but in the wrong modification relation-
ship (in this case, adjective-noun modification). In this spe-
cific example, “highest” is the ambiguous modifier, because
it could potentially modify many head nouns that co-occur
with dam, e.g., “highest level”. Katz and Lin’s solution ex-
tracted syntactic relations (using a parser) from both candi-
date answers and queries and ensured that the proper rela-
tions existed in both. We believe the integration of linguistic
processing techniques into passage retrieval algorithms could
increase their overall precision.

Overall, we believe that recall is more important than pre-
cision at the earlier stages of question answering; in the later
stages, however, precision becomes increasingly important.
The current paradigm of question answering is based on it-
erative extraction of shorter and fewer candidates, i.e., first
candidate documents, then candidate passages, then candi-
date answers. In the earlier stages, such as document re-
trieval, recall is crucial because a relevant document that is
not retrieved cannot be processed by subsequent modules.
In the later stages of question answering, i.e., answer ex-
traction, precision is paramount—after all, TREC questions
usually have a single correct answer, and only one instance
is necessary to answer a question. These tradeoffs should
be taken into account when designing passage retrieval al-
gorithms in conjunction with specific document retrievers.

6. CONCLUSIONS
Although passage retrieval is an important component

of question answering systems, end-to-end performance de-
pends on a variety of other factors. Measuring passage re-
trieval performance in isolation shows that density-based
measures of query terms are important in passage ranking.
In addition, our investigations of the effects of document



retrieval systems suggest that the interaction between doc-
ument retrieval and passage retrieval is just as important.

7. ACKNOWLEDGMENTS
This work was supported by DARPA under contract num-

ber F30602-00-1-0545. We would like to thank Michael
Ernst, Sue Felshin, Anant Saraswat, and Vineet Sinha for
their helpful comments on earlier drafts of this paper. All
other errors are, of course, our own.

8. REFERENCES
[1] J. P. Callan. Passage-level evidence in document

retrieval. In Proceedings of the 17th Annual
International ACM SIGIR Conference on Research
and Development in Information Retrieval
(SIGIR-1994), 1994.

[2] C. Clarke, G. Cormack, D. Kisman, and T. Lynam.
Question answering by passage selection (Multitext
experiments for TREC-9). In Proceedings of the Ninth
Text REtrieval Conference (TREC-9), 2000.

[3] C. Clarke, G. Cormack, and E. Tudhope. Relevance
ranking for one to three term queries. Information
Processing and Management, 36:291–311, 2000.

[4] W. S. Cooper. Getting beyond Boole. Information
Processing and Management, 24:243–248, 1988.

[5] S. Harabagiu, D. Moldovan, M. Paşca, M. Surdeanu,

R. Mihalcea, R. Gîrju, V. Rus, F. Lăcătuşu,
P. Morărescu, and R. Bunescu. Answering complex,
list, and context questions with LCC’s
Question-Answering Server. In Proceedings of the
Tenth Text REtrieval Conference (TREC 2001), 2001.

[6] S. Harabagiu, M. Paşca, and S. Maiorano.
Experiments with open-domain textual question
answering. In Proceedings of the 18th International
Conference on Computational Linguistics
(COLING-2000), 2000.

[7] L. Hirschman and R. Gaizauskas. Natural language
question answering: The view from here. Journal of
Natural Language Engineering, Special Issue on
Question Answering, Fall–Winter 2001.

[8] E. Hovy, U. Hermjakob, and C.-Y. Lin. The use of
external knowledge in factoid QA. In Proceedings of
the Tenth Text REtrieval Conference (TREC 2001),
2001.

[9] A. Ittycheriah, M. Franz, and S. Roukos. IBM’s
statistical question answering system—TREC-10. In
Proceedings of the Tenth Text REtrieval Conference
(TREC 2001), 2001.

[10] A. Ittycheriah, M. Franz, W.-J. Zhu, and
A. Ratnaparkhi. IBM’s statistical question answering
system. In Proceedings of the 9th Text REtrieval
Conference (TREC-9), 2000.

[11] B. Katz and J. Lin. Selectively using relations to
improve precision in question answering. In
Proceedings of the EACL-2003 Workshop on Natural
Language Processing for Question Answering, 2003.

[12] G. G. Lee, J. Seo, S. Lee, H. Jung, B.-H. Cho, C. Lee,
B.-K. Kwak, J. Cha, D. Kim, J. An, H. Kim, and
K. Kim. SiteQ: Engineering high performance QA
system using lexico-semantic pattern matching and
shallow NLP. In Proceedings of the Tenth Text
REtrieval Conference (TREC 2001), 2001.

[13] M. Light, G. S. Mann, E. Riloff, and E. Breck.
Analyses for elucidating current question answering
technology. Journal of Natural Language Engineering,
Special Issue on Question Answering, Fall–Winter
2001.

[14] J. Lin, D. Quan, V. Sinha, K. Bakshi, D. Huynh,
B. Katz, and D. R. Karger. What makes a good
answer? The role of context in question answering. In
Proceedings of the Ninth IFIP TC13 International
Conference on Human-Computer Interaction
(INTERACT-2003), 2003.

[15] F. Llopis and J. L.Vicedo. IR-n: A passage retrieval
system at CLEF-2001. In Proceedings of the Second
Workshop of the Cross-Language Evaluation Forum
(CLEF 2001), 2001.

[16] D. Moldovan, M. Paşca, S. Harabagiu, and
M. Surdeanu. Performance issues and error analysis in
an open-domain question answering system. In
Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics
(ACL-2002), 2002.

[17] S. E. Robertson, S. Walker, M. Hancock-Beaulieu,
M. Gatford, and A. Payne. Okapi at TREC-4. In
Proceedings of the 4th Text REtrieval Conference
(TREC-4), 1995.

[18] S. E. Robertson, S. Walker, S. Jones,
M. Hancock-Beaulieu, and M. Gatford. Okapi at
TREC-3. In Proceedings of the 3rd Text REtrieval
Conference (TREC-3), 1994.

[19] G. Salton, J. Allan, and C. Buckley. Approaches to
passage retrieval in full text information systems. In
Proceedings of the 16th Annual International ACM
SIGIR Conference on Research and Development in
Information Retrieval (SIGIR-1993), 1993.

[20] M. M. Soubbotin and S. M. Soubbotin. Patterns of
potential answer expressions as clues to the right
answers. In Proceedings of the Tenth Text REtrieval
Conference (TREC 2001), 2001.

[21] R. Srihari and W. Li. Information extraction
supported question answering. In Proceedings of the
Eighth Text REtrieval Conference (TREC-8), 1999.

[22] J. L. Vicedo and A. Ferrández. University of Alicante
at TREC-10. In Proceedings of the Tenth Text
REtrieval Conference (TREC 2001), 2001.

[23] E. M. Voorhees. Overview of the TREC 2001 question
answering track. In Proceedings of the Tenth Text
REtrieval Conference (TREC 2001), 2001.

[24] E. M. Voorhees. Overview of the TREC 2002 question
answering track. In Proceedings of the Eleventh Text
REtrieval Conference (TREC 2002), 2002.

[25] E. M. Voorhees and D. M. Tice. Overview of the
TREC-9 question answering track. In Proceedings of
the Ninth Text REtrieval Conference (TREC-9), 2000.


