
 focus of social intercourse. This normal

 NOILOMGOษLLNI 0° I Analysis, Eigenface and Fisherface. Kevwords: Face Recognition, Principal Component Analysis, Fisher Discriminant
recognition system could be developed using both algorithms. created by the resources available, different results got showed that standard face
 and, 58% and 98% respectively

 sections - intage acquisition and standardisation, dimensionality reduction, training and

 - 6801 outupa

LJVULSGV
Ali correspondence should be communicated to \# above Email:omidiorasayo@ yahoo.co.uk
ภu!

Discriminant Analysis Techniques in Face Images
Quantitative Evaluation of Principal Component Analysis and Fisher
Journal of Computer Science \& Its Application, June 2008, Val. I5, No. 1 face images and; total number of images unidentified image; resolution of cropped known or unknown; total number of face database; time to identify an image as
 parameters, such as, percentage involve the use of the following 3]. In this paper, our main objective is to multimedia and Internet technology etc [1, search engine is fast growing in [9]; also, its deployment as an index for many searches through a database of faces purposes; to perform one-to-one or one-topaper. It is widely applied in surveillance intrusiveness, hence its main focus in the only method with high accuracy and low
 individual. authentication is always carried with the remember anything and ones mode of ol pəou ıou səop pəsןоли! uos.əә V their uniqueness and its difficulty to forge. are the metrics being used as a result of fingerprint, handwriting style, retina etc person [12]. Also, other biometric types: identification by the characteristics of a computer vision fields. Its use is based on psychology and image processing to interest of researchers from security,
used in testing, to evaluate the
performances of both PCA and FDA

 immediate relationship between individual

 Research into how human perceive and features such as eyes corners and mouths.
 on the detection and comparison of the He proposed a recognition system based began as early as 1888 by Francis Galton.

Techniques for face recognition development [4]. and everyday with every attempt to such
 precisely facial images has become a daily analyses, compares and stores images, Developing a system that recognizes,
 task for scientists, engineers and being. But this has become challenging continually performed in every human phenomenon and the easiest activity being

2.0 REVIEW OF RELATED WORKS $\rightarrow \quad$ write-up. discussion; and section 6 concludes the makes up the analysis of results and

 ε pur τ suo!̣วəs u! pəqụsəp ал кธојорочюи рие sжнм рәнгә јо мә!лал
:Smollof se pastuvą.ıo s! .roded əuL L

 the Bayesian framework. The results of

 using a database with only small number automatic face recognition system by Yan et al [19] developed an
video camera.
arise in this group can be acquired from a
and the person. Some of the images that resolution and distance between camera controlled illumination, background, uses image with typically reasonably picture. On the other hand, static matching often is more than one face present in the quality; the background is cluttered and The video images tend to be of low used when a Video sequence is available. matching [14, 6, 8]. Dynamic matching is groups: dynamic (video) and static
 and matching. Face Recognition problems features from face region, identification from cluttered scenes, extraction of recognition involves segmentation of face
 techniques to improve performance.
 І!! However, recognition techniques based on

 for each face image and a set of standard

 Sirovich [11] called Principal Component technique developed by Kirby and
 the "eigenface approach". eigenfaces, hence this technique is termed

 face with a certain deviation from the eigenvector is essentially an image of the formation of the eigenvectors. Thus, each pixel in the image would contribute to the variations among different faces. Every whole set of eigenvectors characterises the dimension and description of the face, the component representing a certain

 capturing the variations in a collection of eigenvector components, essentially analyses each facial image into a set of their relative importance. This method ио paseq samщеәу [е!эеј әц sәs!̣ришои different technique that scales and
e pasodord [LI] purpuar pue y.in ${ }_{\mathrm{L}}$ recognition
localization accuracy, robustness and face

 proposed as stated, and experimented with, algorithms. Actually, two algorithms are Discriminant Analysis (OFDA) based Component Analysis (OPCA) and Fisher black African faces using the Principal presents results of experiments based on of sizes $85 * 85$ pixels. This research partitioning a face into nine sub-matrices developing ${ }^{a}$ driver program by for faces having African features by knowledge-based face recognition system faces. Aliu [2] developed an automatic experiments or few numbers of black have made use of non-black faces in their been done on face recognition, majority
 estimated. within-class scatter matrix is poorly LDA classification performance when the indicate that their method improved the other LDA-based methods. The results recognition to compare their approach with matrix and performed experiments on face approach for the within-class scatter is based on a straightforward stabilisation
 e pasodord [C] ueound pur sofre]

of the eigenface technique, and has been idea of linear combination is the backbone according to their relative weights. This combining the entire standard faces

 successfully as a /statistical feature pasn uәәq SEч '(VGT) s!sאןpuV also called the Linear Discriminant
 ગq! retaining as much information as is
 minimum loss of data. PCA is to reduce these variables can be removed with variability. The uncorrelated variables in
 transformed into a set of uncorrelated Essentially, a set of correlated variables is variabilities are projected onto the axes. rotates the data such that maximum (PCA) is a multivariable procedure that 1. The Principal Component Analysis to be the original space of the image representation of the image is considered
 space, where N is the number of pixels image is said to sit in N -dimensional and treated as a vector of length 64 . The
 ($0-255$) of the corresponding pixel. For
 vector of pixels where the value of each $\stackrel{\omega}{i}$ 3.0 METHODOLOGY system.

eigenvectors/eigenvalues of the covariance
 4096*4096. This is a problem because of images) and a covariance matrix of size matrix of size $4096^{*} \mathrm{M}$ (M is the number
 covariance matrices. For example, images method can lead to extremely large outlined in flowchart (figure 1). This

3.2

PCA subspace.

best linear discriminant features on that Analysis (LDA) is applied next to find the (PCA) [17] and then Linear Diseriminant using Principal Component Analysis projected to a lower dimensional space from the original vector space are reduction technique. First the face images

 classes considered [10].

 that the true covariance matrices of each
 populations of the distinct groups are Although LDA does not assume that the minimising their within-class variability.

column is a single image. the number of training images and each

 pixels of the training images. entry is the mean of all corresponding

and flowchart in figure 1 show the PCA:
 $\mathrm{M}^{*} M$ matrix rather than an $N^{*} N$
 Using this theorem, the method can be matrix X and normalized [10, 15, and 18]. eigenvectors of $X^{T} X$ multiplied by the eigenvectors of $X X^{T}$ are the same as the and $X^{T} X$ are the same. Furthermore, the algebra states that the eigenvalues of $X X^{T}$
 be found are M-1. the most eigenvectors/eigenvalues that can usually less than the number of pixels (N), Since the number of training images (M) is matrix can have is minimum ($\mathrm{N}-1, \mathrm{M}-1$).

face images. Flowchart depicting the
The same procedure applies for testing as many values as eigenvectors. vector of the projected image will contain the first value in the new vector. The new the image and the first eigenvector will be calculated. Therefore, the dot product of eigenvectors (projection matríx) is image with each of the ordered the eigenspace, the dot product of the the eigenspace. To project an image into centred training images is projected into 7. Project training images: Each of the known as the projection matrix. eigenvectors is the eigenspace $P_{p c a}$ also 10w. Keep only the eigenvectors associated
with non-zero eigenvalues. This matrix of low. Keep only the eigenvectors associated corresponding eigenvalues from high to eigenvectors according to their 6. Order eigenvectors: Order the eigenvectors by their norm. Multiply the data matrix by the
eigenvectors. Then, divide the 5. Compute the eigenvectors of $A A^{T}$: $, \Lambda, V=, \Lambda, Z$
for Ω '. corresponding eigenvectors are computed eigenvectors of Ω^{\prime} : The eigenvalues and 4. Compute the eigenvalues and io
matrix to create a covariance matrix. matrix's transpose is multiplied by the data
3. Create covariance matrix: The data
to separate faces in the created
database from others that are not.
 is a known face or not using Determine whether the testing image Project a testing image onto the
"fisher face space" Form the "fisher face space"
Form the "fisher face space" eigenvectors of S_{B} and S_{W} Find the set of generalized S_{W} of the eigen projected faces. and within-class scatter matrix S_{B} and Find the between-class scatter matrix set to the Linear Discriminant stage. The projected faces form the training onto the "Eigen face space" Project the faces in the training set Form the "Eigen face space" distribution of faces Find the principal components of the training set). Acquire a set of face images (the shown in figure 2 : into the following steps and is easily The Fisherface Algorithm can be divided
 I 2 m ธิ processes involved in the training and
testing stage of the system is as shown in

pictures and to extract features like eyes,
order to remove the background of the centre of the image by the program in $90^{*} 90,100^{*} 100\left({ }^{*}{ }^{*} \mathrm{~N}\right)$ pixels from the 'SL*SL ' $09 * 09$ ' 0 S*OS jo sezI! ol peddo.ro

1. The grayscale images were

 because most of the present face Conversion to gray images was necessary
 converted into grayscale images with pixel (three-dimensional) in the database were
 individual (184 training and 92 testing testing class with two images, per containing four images per individual and grouped into two classes; training class

distances at which the images were taken. without distortion due to the different between $102 * 127$ and $104 * 167$ pixels јо suo!suәu!̣ әлвч оұ pәz!эə агэм
 image was originally $480 * 640$ pixels. The expressions and lighting. The size of each taken from different face views,

 4 below. Results got were stated below in Tables 1 -- Total number of images used in -
 - Total number of unidentified image

- Resolution of cropped face images (รәәs) имоияй 10
 Time involved to train a face database - The recognition rate (\%) consideration namely: the following parameters were taking into pixels resolutions. With both algorithms, order of between $50 * 50$ and $100 * 100$ with different facial expressions in the were experimented by implementing both

5.0 ANALYSIS OF RESULTS AND
graphically in figures 6 and 7 . as illustrated in Tables 3 and 4 and eigenvectors for both OPCA and OFDA images using different number of and the number of unidentified testing performed in determining the error rate
 and testing stages.

 sәz! whose appearance do not change easily

SINAMIIXAdXY

 were found not to be properly centred consideration. The unidentified images parameters considered are taken into zigorithm performs better when all VOdO ((κ [əぃ! close range with OFDA algorithms

 both OPCA and OFDA. These are further

Table 3: Error rate of a face recognition

twins.

correctly distinguish a set of very identical
 system was able to correctly identify an
 is, to some extent, invariant to facial
 images, the better the recognition
 show that the more the facial features that cropping of the original image. The results be identified for different levels of
 recognition rate, time to train a face Tables 1 and 2 show the disposal. face alignment used were the ones at our
 consideration was developed entirely from face. The face database under

 digital camera, different environmental computer system used, resolution of the limited by the medium level state of the 80%. The results got were basically have recognition accuracies of more than as face recognition systems since they all
 literatures consulted strongly emphasized

Fig 3: Comparison of Percentage Recognition Rate for different resolutions of Cropped face
images

 reduce with increase in the number of
eigenvectors employed in determining the

ω
cropping.
0.9

t.

37
aे
camera. The dimensionality reduction was
done by the Eigenface and the Fisher face
based Algorithms. by taking photos of people using a digital
camera. The dimensionality reduction was recognition. Static images were acquired reduction, training and testing for and standardisation, dimensionality three major sections - image acquisition Fisherfaces and has been separated into system is based upon Eigenfaces and
 have been achieved at different levels of and between $88-98 \%$ respectively. These recognition accuracies of between $89-97 \%$ rotation, OPCA, OFDA both give
 Under static mode, where recognition is African faces using the OPCA, OFDA, results of experiments based on black this research work. This work presents
 development of a real-time face
 NOISNTONOD Nigeria. Engineering, University of Ilorin, D. Thesis, Department of
 an automatic knowledge based face Aliu S.A. (1999) "Development of Ogbomoso.

University of Technology, Department of Computer acintola Unpublished B. Tech. Project,
 Recognition Using Optimized

using both algorithms.
face recognition system can be developed different results got showed that standard

 sizes of the images for the training and

characterization of human faces",
IEEE Transactions on Pattern Loève procedure for the
characterization of human faces", "Application of the KarhunenKirby M and Sirovich L. (1990), edition. New Jersey: Prentice Hall.
pp 41-836. Statistical Analysis", fourth
edition. New Jersey: Prentice Hall. Johnson R. A. and Wichern D. W.
(1998), "Applied Multivariate $\frac{\text { http://www.biometritech.com/featu }}{\text { res/roundup051502 }}$ Recognition Solutions Roundup"",
http://www.biometritech.com/featu Guevin, L. (2002) "Facial -
Recognition Solutions Roundup", Image Science and Vision; 14(8):
1724-1733. Society of America A: Optics
Image Science and Vision; 14(8): images", Journal of the Optical recognition of human face Etemad K and Chellappa R .
(1997), "Discriminant analysis for Recognition, 33 (10), pp. 1713-
1726. size problem", Pattern
Recognition, 33 (10), pp. 1713based face recognition system
which can solve the small sample
size problem", Pattern Chen L., Liao H., Ko M., Lin J.,
and Mu G. (2000), "A new LDAIEEE, Vol 83, No 5, pp 705-740. Survey", Proceeding of the Machine recognition of faces: A Sirohey, S. (1995), "Human and London, London, UK. Computing, Imperial College
London, London, UK. Recognition", Department of with application to Face

 Carlos E. Thomaz and Duncan F. representation of faces", Science,
Vol. 195, pp 312-313. "From piecemeal to configuration Carey S. and Diamond R. (1977), Networks",
http://neuroface.narod.ru. (2000), "Access Control by Face
Recognition Using Neural Bryliuk D. and Starovoitov V.
(2000), "Access Control by Face
$\stackrel{\rightharpoonup}{\infty}$

d

ar
$\stackrel{\Im}{-}$ "Analysis of PCA-Based and
Fisher Discriminant-Based Image Wendy S. Yambor (2000), Journal of Cognitive Neuroscience: "Eigenfaces for recognition", Turk M and Pentland A. (1991), 1585-1593 System, Vol E84-D, No 12, pp transaction in Information and

 "Introductory Techniques for 3-D
Computer Vision", New Jersey: Trucco E. and Verri A. (1998), Pattern Recognition, 25 (1), pp. 65-
77.
 "Automatic Recognition and Samal A. and Iyengar P. (1992),
 ":8unnduoว loIs! database and evaluation procedure Rus P J. (1998), "The FERET
 Informing Technologies, Vol. 3
 Technology", Informing Science: 12(1): 103-108.
Lin Shang-Hung (2000), "An
Introduction to Face Recognition Analysis and Machine Intelligence;

 วH s.nnouoh ssell 1SI!

 оморомУ !யәјечо мои)
 Electronics Engineering etc.

 ؛ Member, Computer Professionals

 pup sansprue кихวәduoว ио!pınduoว applications to security issues in Systems, and. Biometric-based algorithms and its include: The study of Biometric Systems has published in reputable journals and
learned conferences. His research interests has published in reputable journals and (2006) from Ladoke Akintola University
of Technology, Ogbomoso, Nigeria. He Nigeria and Ph. D. Computer Science Science (1998) from University of Lagos, Nigeria. He obtained M. Sc. Computer Obafemi Awolowo University, Ile-Ife, Sc. Computer Engineering (1991) from Ogbomoso, Nigeria. He graduated with B, Akintola University of Technology,

 s! O 'T bloppiuo

BIOGRAPHY OF AUTHORS

 '99¢-દ9s dd ' 9ε ' $10 \wedge$ 'uо!̣! $\forall)_{d}$ u! pruuofiod oq VQT un

