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1 ENS de Lyon, 69342 Lyon Cedex 07, France
alessandro.chiappori@ens-lyon.fr

2 Univ de Lyon, CNRS, Université Lyon 1, LIRIS, UMR5205,
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Abstract. One of the most common approaches to the analysis of dy-
namic networks is through time-window aggregation. The resulting rep-
resentation is a sequence of static networks, i.e. the snapshot graph.
Despite this representation being widely used in the literature, a general
framework to evaluate the soundness of snapshot graphs is still missing.
In this article, we propose two scores to quantify conflicting objectives:
Stability measures how much stable the sequence of snapshots is, while
Fidelity measures the loss of information compared to the original data.
We also develop a technique of targeted filtering of the links, to simplify
the original temporal network. Our framework is tested on datasets of
proximity and face-to-face interactions.

Keywords: temporal networks, dynamic networks, time-window aggre-
gation, snapshot graphs, choice of the window size

1 Introduction

As it usually happens when studying complex systems, the analysis of temporal
networks starts with the choice of the representation to work with [22]. One
of the most diffused in the literature is the snapshot representation, where the
original contact sequence — a data table with rows on the form (i, j, t), that
we call contacts, where i and j are nodes and t is the associated timestep — is
converted into a sequence of static networks, that we call the snapshot graph. The
entire time period is segmented into time windows, which can be either disjoint or
partially overlapped, either with a constant or varying size [11]. For each window
[t1, t2], all the pairs of nodes with at least one contact (i, j, t), t ∈ [t1, t2] are
“projected” as links in the corresponding snapshot, i.e., a link (i, j) is added in
the snapshot representing the period [t1, t2]. Every detail on the time ordering of
the contacts inside a same snapshot is lost, although we can store as a link weight
the number of instantaneous contacts (NC) that occurred over this period.

In most cases, time-window aggregation is used to create stable graphs from
noisy temporal data. For instance, in a dataset of instant messages, emails,
phone calls, physical proximity, etc., a static network composed of interactions
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occurring during a particular second, minute or hour would be composed of a
very small fraction of all interactions occurring between those actors on a longer
period, and would in general be completely different from the network created
over the same duration during another period, even an adjacent one. On the
contrary, an aggregation over several months or years would yield a very dense
network that would well capture important relations, but at the cost of losing all
information about the evolution of those relations over the aggregated period.
The purpose of the aggregation is thus to have windows that are large enough to
ensure the dynamic stability of the contact sequence, but small enough to track
an evolution in time.

It is usually taken for granted that large windows yield stable network se-
quences, i.e. with smooth transitions between subsequent snapshots, and thus
ensure a more reliable description of the temporal network. To test these proper-
ties quantitatively, we define two scores and perform experiments on real datasets
(see Section 5.1). The results are rather different from those expectations: in-
creasing the window size can actually bring to instability, so that many analysis
in the literature are based on highly unstable time sequences.

To improve our scores, we propose to filter a sub-population of the links by
applying a weight threshold. We show that this method can work efficiently,
but only if the timescale of the filtering is longer than the timescale of the
aggregation. Finally, we conclude that the aggregation is a complex procedure
that should be taken with care: all the subsequent analysis depends on the choice
of the temporal network representation, despite papers in the literature often pay
low attention to this very first step.

2 Related Works

For networks of human dynamics, a common choice in the literature is to use
non-overlapping windows, with fixed size corresponding to the intrinsic time
scale of the dynamics — as 24 h in the case of circadian periodicity. However,
the choice of the time intervals for the aggregation is often non-trivial and a same
temporal network can be aggregated in different ways; this ambiguity can thus
introduce biases in the analysis. That is why researchers highlighted the influence
of the choice of the window size [10,15] and developed methods to discover
automatically the best parameters for time-window aggregation, focusing mainly
on reducing biases and limiting the number of free parameters of their algorithms.

Usually, non-overlapping windows are considered, all with the same size
[20,11,7,23] or with time-varying sizes [17,5,6,21]. An advantage of the snap-
shot representation is that single snapshots are good old static networks, so that
ready-made tools can be leveraged for their analysis and visualization. There-
fore, static network measures can be used to guide the aggregation process it-
self [10,17,23,20]. This approach necessarily introduces biases in the resulting
snapshot graph, starting from the choice of the network measure. Supplemen-
tary biases can come from free parameters in the codes used to implement the
methods. Some of the methods make use of compression algorithms [20,21,6] or
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machine learning [7] to perform the aggregation. We believe that these two ap-
proaches have the disadvantage of reducing the interpretability of the procedure
and results.

Despite many methods having been proposed for performing automatic ag-
gregation, a widely-accepted method for the evaluation of the resulting snapshot
graphs is still missing. We only found three studies that outline the development
of evaluation frameworks to compare different aggregating algorithms quanti-
tatively. In [7], the authors train a certain prediction task — link prediction,
attribute prediction or change-point detection — on the snapshot graphs, split-
ting the entire time period into few large segments and using in turn the older
segment as the training set and the newer segment as the test set. They do not
provide an absolute ranking of the methods, but different prediction tasks bring
to different rankings.

An alternative framework [11] focuses on the effect of the aggregation on tem-
poral paths. Looking at the distribution of occupancy — a property of temporal
paths defined by them — across all the links, authors suggest a threshold for the
window size above which it becomes risky to trust results coming from the anal-
ysis of the snapshot graph. Finally, [2] uses an information theoretic approach
to choose the best dynamic graph representation according to the window size,
thus allowing to evaluate their relevance.

All those studies consider non-overlapping windows and warn against too
large window sizes. We believe that all those frameworks are interesting but
also have drawbacks, lacking interpretability. Moreover, none of them seems to
have established itself has a wide-spread reference for the following studies. For
these reasons, we found valuable to propose new properties for the quantitative
evaluation of snapshot graphs.

3 Proposed Evaluation Framework

In this section we give a formal definition of our two evaluation scores, that can
be applied to any temporal network. The first is Stability, which refers to the
smoothness of transitions between subsequent snapshots. The second is Fidelity,
which measures similarity between the snapshot graph and the original temporal
network. While some forms of smoothness measures have already been proposed,
to the best of our knowledge, we could not find an equivalent to Fidelity in
the literature. We chose these two measures because they propose two often
conflicting objectives: we want the aggregated network to retain as much as
possible of the original information — Fidelity — but in the same time, we
want the aggregated graph to be as stable as possible — Stability.

Stability is often an implicit objective of the aggregation: the original graph
is highly unstable, if observed at the finer scale available, and aggregation allows
to obtain snapshots that are more alike from one to the next. This problem arises
from the difference between the frequency of observation and the timescale of
network evolution; the second timescale is usually unknown a priori. With too
short observation windows, we fail to capture the regularities of the observed
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phenomenon — e.g., one snapshot per hour in an e-mail dataset will fail to
capture the meaningful social network of interactions between people. With too
large windows, the network changes so much between successive snapshots that
it is not possible to meaningfully relate one to the next — e.g., 1 snapshot every
10 years in an e-mail dataset: the social relations of people have changed so
much between any two successive snapshots that we do not observe an evolving
network, but rather a collection of unrelated static networks.

A parallel can be made with photography: a video recorded for a human eye
requires to take approximately 24 images per seconds (24 fps). But to observe
the development of a plant or the evolution of the face of someone, we should
take one picture every day or month (time-lapse): for any given new picture, the
subject can still be recognized easily by looking at the previous image, but there
will also be some observable changes.

Furthermore, we can note than various methods for analyzing network evolu-
tion, such as methods for community detection [3], make the implicit assumption
that the evolution of the network is smooth.

3.1 Stability

To define Stability, we first chose a measure of how much a given snapshot is
akin to another one, that we call similarity. The one we mostly worked with
is Jaccard coefficient [10,5]. Given the two static networks G1 = (V1, E1) and
G2 = (V2, E2) — we use the standard graph theory formalism where G is the
graph, V the set of vertices and E the set of edges — the Jaccard similarity
between the two is:

J(G1, G2) =
|E1 ∩ E2|
|E1 ∪ E2|

(1)

where | · | computes the cardinality of a set, i.e., the number of elements in it.
We easily observe that J is normalized: it equals 1 if the two sets of links are
identical; 0 if none of the links is in common between the two.

Other choices are possible for the similarity score, but the Jaccard coefficient
is among the most diffused and we believe that it intuitively represents the idea
of a smooth transition between adjacent snapshots. A recent review of network
similarity scores can be found in [13], including more sophisticated — and thus
less intuitive — alternatives to the Jaccard score (based on entropy measures or
graph spectral analysis, for instance).

Then, Stability S(A) of the aggregated network A is defined as a weighted
average of snapshot-to-snapshot similarity:

S(A) =

∑
G1,G2

J(G1, G2) ·min(|E1|, |E2|)∑
G1,G2

min(|E1|, |E2|)
(2)

where the summations are over all the consecutive snapshots G1 and G2 in
A. We weight similarity via the cardinality of the smallest snapshot between
the two. This allows to normalize with respect to the size and also to cut out
degenerate situations where one of the two snapshots has very few links, like at
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the beginning or at the end of a school day in the High School (HS) dataset or at
the transition between weekdays and the weekend in the Copenaghen Network
Study (CNS) dataset (see Section 5.1).

3.2 Fidelity

We quantify Fidelity by defining the Distance between the snapshot graph and
the original dataset. We use a generalized graph edit distance, counting how
many contacts differ between the two networks. In terms of generalized adja-
cency matrices — tensors with time as the third component — we compute the
Distance D(A) between the time-window aggregated network A and the original
network O through the entry-wise L1,1,1 norm:

D(A) = ‖A−O‖1,1,1 =
∑
i,j,t

|ai,j,t − oi,j,t| (3)

where entry ai,j,t equals 1 if the link (i, j) exists in the time window that includes
t; oi,j,t equals 1 if a contact was detected at the timestamp t. The sum is over all
possible values of i ,j and t in the original network. D(A) counts the number of
disagreements –added or removed edges– between the original and the snapshot
graph. Indeed, for each contact with duration (i, j, [t1, t2]) — [t1, t2] is a given
window — some of the timestamps t ∈ [t1, t2] correspond to contacts in O,
while the others correspond to false positives (FPs), i.e., to the introduction of
instantaneous contacts (i, j, t) that were not measured.

4 Filtering Procedure

The idea of the filtering procedure is to cut out the links for which the real
contacts cover only a small portion of the time window, i.e., those for which
replacement by a contact with duration introduces too many FPs. Leaving those
links out of the snapshot graph allows to improve Fidelity by reducing D(A),
as long as the number of false negatives (FNs) introduced — coming from the
removal of the real contacts — is lower than the number of saved FPs. The
purpose is similar to backbone extraction for the reduction of static networks’
density and noisiness [4]. In analogy with this process, we also consider temporal
networks as made of a core structure of the most important links, surrounded by
a cloud of less meaningful links — the noise. In this view, the score of Stability
that we defined is expected to increase, when the noisy contacts are removed.

For the implementation, we fix a threshold value θ and only keep the links
with weight greater than θ, which are expected to be the most important in
determining the contact structure. We simply took the number of instantaneous
contacts (NC) in the snapshot for the link weight, but other choices are possible
— as the average duration of the contacts or the number of disjoint time intervals
of interaction. Instead of taking a constant θ for all the snapshots, we fix a
percentage N and we accordingly compute a corresponding θ in each window, so
as to filter out the N% of the links with the lowest weight.
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The usual approach consists in filtering on each snapshot while aggregating,
but we propose to consider a more general case were the two processes are
independent and the filtering occurs before the aggregation. The idea behind this
generalization is to leverage two time scales at the same time: a larger filtering
window wf , ensuring that link weight distributions are not ill-defined — i.e., to
avoid limit cases where wf is only few times the measurement resolution dt —
and a smaller aggregation window wa, to have a better resolution of the dynamics.
We chose to always have an integer value for the ratio wf/wa, to have a finite
number of windows of the smaller size inside of the window with greater size.
We show in the next section that this configuration allows to increase stability.

5 Results

5.1 Datasets

We considered datasets of proximity and face-to-face interactions between per-
sons, which fall into the field of human dynamics [1].

The main datasets that we used for testing are the High School contact net-
work [12] (HS) of face-to-face interactions among students and teachers, from
SocioPatterns project, and the Bluetooth proximity network from the Copen-
hagen Network Study [16] (CNS). The resolution of the HS dataset is 20 s; it
does not correspond to the sampling frequency, but it comes from a time-window
aggregation at the source. Students and teachers from 9 classes (more then 300
persons in total) were recorded during 5 days in December 2013, using Radio
Frequency Identification Devices (RFIDs). The resolution of the CNS dataset is
5 min. About 700 students have been involved, for a whole month.

5.2 Stochastic Baseline

To allow a critical interpretation of the behavior of Stability of our filtered and
aggregated networks, we first present a baseline of stochastic filtering of the
contacts: for every snapshot, a portion of the links with at least one contact is
selected and removed from the snapshot. As a parameter, we fix the percentage
value for the number of links to be removed. We point out that stochastic sub-
sampling is sometimes performed to simplify temporal networks, as in [19].

The qualitative behavior is similar between the datasets of High School (HS)
and the Copenhagen Network Study (CNS) (see Section 5.1), so we only show
results for the HS dataset (Figure 1). In the case wf = wa stability drops while
increasing the number of links removed. Our interpretation is that, filtering
stochastically, the network structure gets broken and consecutive snapshots be-
come less similar to each other. In the case wf > wa — we used wf = 1 h and
wf = 2 h with HS and CNS, respectively — the stability score remains constant
or decreases only slightly with the filtering threshold.

We believe that this different behavior is a consequence of the particular
distribution of contacts in proximity networks (see Section 5.1): very few links

http://www.sociopatterns.org/datasets/
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Fig. 1: Stochastic filtering baseline. Heatmaps of Stability score for the case
wf = wa (above) and wf = 1 h, wf > wa (below) for the HS dataset. At the
value −N%, for each snapshot, N% of the links are chosen stochastically and
removed

account for most of the contacts, i.e., the distribution of link weights is scale-free.
Hence, the stochastic filtering already illustrate the advantage of taking a larger
window for the filtering than for the aggregation.

5.3 Stability of Filtered and Aggregated Networks

Results for the case wf = wa and for the case wf = 1 h, wa < wf with the HS
dataset can be observed in Figure 2 (a). Looking at the first row — aggregation
without filtering — we see that the highest stability is at the smallest size,
and the lowest is at intermediate sizes. The behavior is thus non trivial, with a
non-monotonic dependence with respect to the window size.

A crucial aspect to notice is that absolute values in the first row are relatively
low. The average Jaccard similarity is always lower than 50% — also at the reso-
lution size of dt = 20 s, not displayed — which means that more than half of the
contacts change from one snapshot to the other, in average. We are thus quite
far from the idea of a motion picture with smooth transitions between frames, as
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(a) HS dataset (b) CNS dataset

Fig. 2: Stability vs filtering threshold. Heatmaps of Stability score for the
case wf = wa (above) and wf > wa (below). At the value −N%, all links with
the N% lowest weight (the NC) are removed. Links with the same weight as the
first non-filtered link are also non-filtered, for consistency

we would expect from a snapshot representation. The situation gets even worse
if we consider that at the smallest time scales the snapshots are very unconven-
tional from a network science point of view (many connected components with
small size), while at higher time scales, where networks are better structured,
the score drops to around 25%. Many investigations in the literature make use
of window sizes with such low values of Stability [18,14,13,8]. Results with the
CNS dataset (Figure 2, b) are qualitatively akin. We remark that window sizes
of 24 h are rather common in literature [10,13], despite the low Stability.

Moving to other rows than the first one, we observe in both datasets that
Stability remains more or less constant within a same column in the case wf =
wa, instead of dropping with the filtering threshold as it did in the baseline. A
rather different result is found for wf > wa, where the stability score increases
monotonically. High absolute values are reached in the last row, as compared
to the corresponding value of aggregation without filtering reported in the first
row. Values around 70% for HS and 80-90% for CNS are reached when only
the first decile of the most frequent links is kept (the percentage of contacts is
much bigger than 10%, around 80% for HS and 70% for CNS, see Section 5.1).
Several observations can be made: first, at higher scales and especially for the
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HS dataset, Stability still remains low in absolute terms, far from the image one
could have of a “movie-like”, progressive evolution of the network. Second, a
rather heavy filtering is necessary to reach high values: how much the obtained
network remains faithful to the original when only 10% (or even less) of the
links are kept? In the next section we show what Fidelity score can tell us on
this issue.

5.4 Fidelity: FPs vs FNs

The total Distance between the filtered-aggregated network A and the original
network O is computed through Equation 3. Here, we divide the total Distance
into false positives (FPs, contacts in A but not in O) and false negatives (FNs,
contacts in O but not in A). We display here two selected graphs for Distance,
computed for HS dataset (Figure 3), while interactive 3D plots for both datasets
are available online3.

(a) Fixed threshold (b) Fixed window size

Fig. 3: FPs, FNs and Distance between original network and filtered time-
window aggregated network. Data is for the configuration wf = 1 h, wa < wf ,
for HS dataset

In this configuration with fixed wf , wa < wf , FNs are constant at fixed
threshold — having a same filtering window for all aggregation windows — and
FPs increase monotonically with wa (Figure 3, a). With HS dataset, the first
type of error prevails until the threshold goes beyond 90%, then the number
of FNs exceeds that of FPs, starting from the smallest sizes. This means that
performing a time-window aggregation without filtering, as it is usually done
in literature, plenty of FPs are introduced; but removing some of the links it

3 https://doi.org/10.6084/m9.figshare.16538940.v1

https://doi.org/10.6084/m9.figshare.16538940.v1
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is possible to reduce them to a quarter, at the cost of introducing a relatively
small number of FNs. The same results are found with the CNS datasets, but
the minimumin Distance occurs at smaller values of the percentage threshold
(around 67% with wa on the order of few minutes). We think that this difference
comes from the link weights distribution: for the CNS dataset it is broader, with
the subset of the most frequent links being relatively less dominant.

The most interesting feature of the curves is perhaps that at high threshold
the Distance between original and aggregated network presents a minimum, or
a plateau (Figure 3, b). This behavior comes from the opposite monotonicity of
FPs and FNs. The behavior of the stochastic filtering baseline is much different
in this high filtering limit: there is no saturation — plateau or minimum — but
a steep decrease towards zero.

There are mainly two possible interpretations: one is that for datasets of
social interaction as the ones we worked with, the system behavior can truly
be well characterized by only looking at the most frequent links, neglecting
most of the others. In this case, temporal networks could be simplified following
our rather straightforward manner. The second possibility is to think that the
snapshot graphs obtained at high filtering actually describe only that specific
subset of more frequent links, but rarer links are also crucial to characterize the
network on the whole.

6 Conclusions

6.1 Discussion

We found that simple — without filtering — aggregation with non-overlapping
windows returns small values of Stability; even smaller if the aggregation window
increases. But this is precisely the most common configuration for time-window
aggregation that is used in the literature, where the resulting snapshot network
is next used for the analysis of temporal network’s evolution. We stress that,
proceeding in this way, authors can end up working with time series that are
substantially unstable, with most of the links changing from one snapshot to the
next one.

Based on our observations, we propose a list of recommendations to practi-
tioners and researchers who wish to aggregate a temporal network in snapshot
graphs:

1. Try several window lengths; do not choose one based on apriori, as it could
lead to particularly unstable networks;

2. Clearly state if the method/analysis presented requires or not adjacent snap-
shots to be stable. If it is the case, provide the Stability score;

3. Use a threshold to filter out edges appearing a few times only in each snap-
shot, to limit noise influence;

4. If the chosen aggregating window is only few time the resolution scale, try
to use a larger scale for the filtering;
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5. If the contribution requires to interpret the network, also provide an analysis
in terms of Fidelity of the network to the original data.

As far as we know, we are the first to consider and prove the advantage of filtering
with a larger window than the aggregation window.

6.2 Alternatives and Future Perspectives

We only presented results with non-overlapping windows, but overlapping ones
(sliding windows) can also be considered. They trivially increase stability, but
there are at least two drawbacks: the snapshots are not independent anymore and
the computational cost increases (especially if distance between two subsequent
snapshots is only the resolution scale dt).

While we were able to validate an increase in Stability with sliding windows,
reaching values only a few percentage points below 100% even without filtering,
we were not able to prove any remarkable improvement in Fidelity. We believe
that this could be due to the data structure: having a well defined timetable
(lectures, breaks) for both datasets, non-overlapping windowing already give a
faithful representation of the original graph.

As it is done in [7], some of the methods for automatic aggregation mentioned
throughout Section 2 could be chosen to test the aggregated networks that they
produce, on the basis of our two scores. Then, results with our framework can
be compared with alternative approaches [7,11].

Our scores or link weights could be modified to include time dependence of
the single contacts more explicitly. For instance, the latter could decay in time,
as the weights defined in [9].
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11. Yannick Léo, Christophe Crespelle, and Eric Fleury. Non-altering time scales
for aggregation of dynamic networks into series of graphs. Computer Networks,
148:108–119, 2019.

12. Rossana Mastrandrea, Julie Fournet, and Alain Barrat. Contact patterns in a high
school: a comparison between data collected using wearable sensors, contact diaries
and friendship surveys. PloS one, 10(9):e0136497, 2015.

13. Naoki Masuda and Petter Holme. Detecting sequences of system states in temporal
networks. Scientific reports, 9(1):1–11, 2019.

14. Giovanni Petri and Paul Expert. Temporal stability of network partitions. Physical
Review E, 90(2):022813, 2014.

15. Bruno Ribeiro, Nicola Perra, and Andrea Baronchelli. Quantifying the effect of
temporal resolution on time-varying networks. Scientific reports, 3(1):1–5, 2013.

16. Piotr Sapiezynski, Arkadiusz Stopczynski, David Dreyer Lassen, and Sune
Lehmann. Interaction data from the copenhagen networks study. Scientific Data,
6(1):1–10, 2019.

17. Sucheta Soundarajan, Acar Tamersoy, Elias B Khalil, Tina Eliassi-Rad,
Duen Horng Chau, Brian Gallagher, and Kevin Roundy. Generating graph snap-
shots from streaming edge data. In Proceedings of the 25th International Confer-
ence Companion on World Wide Web, pages 109–110, 2016.

18. Michele Starnini, Bruno Lepri, Andrea Baronchelli, Alain Barrat, Ciro Cattuto,
and Romualdo Pastor-Satorras. Robust modeling of human contact networks
across different scales and proximity-sensing techniques. In International Con-
ference on Social Informatics, pages 536–551. Springer, 2017.

19. Arkadiusz Stopczynski, Piotr Sapiezynski, Sune Lehmann, et al. Temporal fidelity
in dynamic social networks. The European Physical Journal B, 88(10):1–6, 2015.

20. Rajmonda Sulo, Tanya Berger-Wolf, and Robert Grossman. Meaningful selection of
temporal resolution for dynamic networks. In Proceedings of the Eighth Workshop
on Mining and Learning with Graphs, pages 127–136, 2010.

21. Jimeng Sun, Christos Faloutsos, Spiros Papadimitriou, and Philip S Yu. Graph-
scope: parameter-free mining of large time-evolving graphs. In Proceedings of the
13th ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 687–696, 2007.

22. Leo Torres, Ann S Blevins, Danielle Bassett, and Tina Eliassi-Rad. The why, how,
and when of representations for complex systems. SIAM Review, 63(3):435–485,
2021.

23. Shahadat Uddin, Nazim Choudhury, Sardar M Farhad, and Md Towfiqur Rahman.
The optimal window size for analysing longitudinal networks. Scientific reports,
7(1):1–15, 2017.

http://arxiv.org/abs/1702.07752

	Quantitative Evaluation of Snapshot Graphs for the Analysis of Temporal Networks

