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Abstract
Background Validation of models using full-field experimental techniques traditionally rely on local data comparisons. At 
present, typically selected data fields are used such as local maxima or selected line plots. Here a new approach is proposed 
called full-field data fusion (FFDF) that utilises the entire image, ensuring the fidelity of the techniques are fully exploited. 
FFDF has the potential to provide a direct means of assessing design modifications and material choices.
Objective A FFDF methodology is defined that has the ability to combine data from a variety of experimental and numeri-
cal sources to enable quantitative comparisons and validations as well as create new parameters to assess material and 
structural performance. A section of a wind turbine blade (WTB) substructure of complex composite construction is used 
as a demonstrator for the methodology.
Methods The experimental data are obtained using the full-field experimental techniques of Digital Image Correlation (DIC) 
and Thermoelastic Stress Analysis (TSA), which are then fused with each other, and with predictions made using Finite 
Element Analysis (FEA). In addition, the FFDF method enables a new high-fidelity validation technique for FEA utilising a 
precise full-field point by point similarity assessment with the experimental data, based on the fused data sets and metrics.
Results It is shown that inaccuracies introduced because of estimation of comparable locations in the data sets are eliminated, 
The FFDF also enables inaccuracies in the experimental data to be mutually assessed at the same scale regardless of differ-
ences in camera sensors. For example, the effect of processing parameters in DIC such as subset size and strain window can 
be assessed through similarity assessment with the TSA.
Conclusions The FFDF methodology offers a means for comparing different design configurations and material choices 
for complex composite substructures, as well as quantitative validation of numerical models, which may ultimately reduce 
dependence on expensive and time-consuming full-scale tests.

Keywords Full-field data fusion (FFDF) · Thermoelastic stress analysis (TSA) · Digital image correlation (DIC) · 
Substructural testing · Quantitative FEA validation

Nomenclature

Symbols
�  Stress tensor
�  Stress component
�  Strain tensor
�  Strain component
�0  Mean strain component

U  Displacement vector
u  Displacement component
�  Coefficient of thermal expansion
T   Temperature
T0  Absolute temperature
�  Density
Cp  Specific heat at constant pressure
f0  Frequency
t  Time
�  Phase
x, y  Full-field data set coordinates
f   Full-field data set
n  Number of data points
μ  Mean value
SD  Standard deviation
CoV   Coefficient of variation
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SM  Model shape descriptors
SE  Experimental shape descriptors
u(SE)  Experimental uncertainty
E  Young’s modulus
G  Shear modulus
�  Poisson’s ratio

Subscripts
i, j, ij  Arbitrary coordinate system
xx, yy, xy  Tensorial stress/strain coordinate system
x, y  Principal stress coordinate system
1, 2  Material coordinate system

Operators
Δ…  Peak-to-peak amplitude difference (change of 

value)
|… |    Absolute value

Abbreviations
WTB  Wind turbine blade
TSA  Thermoelastic stress analysis
DIC  Digital image corelation
LIDIC  Lock-in digital image corelation
FEA  Finite stress analysis
NDT  Non-destructive testing
DOE  Design of experiments
FFDF  Full-field data fusion
UD  Uni-directional
GFRP  Glass fibre reinforced polymer
CS  Coordinate system
GA  Gridded array
CV  Coordinate-based vector
GUI  Graphical user interface

Introduction

Large composite structures are often certified using the so-
called “building block” approach or “testing pyramid” [1] 
to determine design allowables for components at various 

length scales, starting at the coupon level for material char-
acterisation to full-scale for complete structural evaluation. 
The building block approach was developed for validation 
and certification of composite aerostructures, but other 
structures including composite wind turbine blades (WTBs) 
are tested and certified according to this approach (see 
Fig. 1). Currently the only standardised means of evaluat-
ing design allowables is at the coupon scale, as tests between 
coupon and full-scale may be defined by the manufacturer 
[1]. Irrespective of the type of structure considered, full-
scale testing is becoming ever more time and cost intensive. 
Therefore, high-fidelity substructure testing methodologies 
would help to provide structural behaviour based allowables 
that can be used to inform and validate full-scale design on 
the basis of performance.

Although sub-structural testing may not fully replace full-
scale testing, it will reduce the number of tests required for 
design developments; in particular cases where the design 
of a detail or part of a large structure is changed. Examples 
of substructure testing include detailed examination of sec-
tions that involve in-plane and out-of-plane joints, the latter 
being investigated in the present paper. The concept could 
be scaled-up to include sections of structures, e.g. across 
the web and spar-caps of a wind turbine blade or an entire 
wing box of an aircraft. For such cases, the loads on the 
section must be defined from a low fidelity global model 
of the entire structure and fixtures/rigs designed to impart 
realistic loading scenarios that mimic those experienced in 
service. Substructural testing enables validation of model 
predictions at appropriate length scales to capture features 
in e.g. composite components, which cannot be included at 
the coupon scale.

To reduce the reliance on physical testing, the concept 
of “virtual testing” [5] has been introduced. For this to be 
feasible, high-fidelity simulations must be validated using 
approaches that provide high levels of confidence in their 
accuracy and reliability. Such validations can be achieved 
through quantitative benchmarking using full-field imag-
ing techniques. Thermoelastic Stress Analysis (TSA) [6] 

Fig. 1  DNV GL Test pyramid 
for wind turbine rotor blades 
and typical representative simu-
lation models ([1] adapted), 
*[2], **[3], ***[4]
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and Digital Image Correlation (DIC) [7] are spatially and 
temporally rich and can be applied to complex compo-
nent geometries over multiple points to produce full-field 
representations that are comparable to that generated by 
models. The spatial resolution of the techniques depend 
on the camera sensor and lens system, with their temporal 
resolution dependent on the camera frame rate. Both DIC 
and TSA rely on image processing approaches that influ-
ence the accuracy and precision of the results. In DIC an 
essential feature of the image processing controls the spa-
tial resolution of the displacements and strains, with the 
correlation and interpolation dictating the uncertainties in 
the results associated with data processing. In TSA the raw 
images retain their spatial resolution but are temporally 
resolved to reduce uncertainties. Hence, for a quantitative 
benchmarking based on full-field imaging, the model must 
be integrated to the same scale and processed using the 
same algorithms as the experimental data.

The aim of the present paper is to describe the devel-
opment of a new approach for comparing full-field data 
quantitively by converting data sets to a common spatial 
resolution. This means that every individual data point of 
one data set can be compared with those of another, which 
allows various full-field comparison and fusion metrics 
to be applied to discern differences between the data sets, 
as well as generate valuable performance parameters that 
cannot be extracted by any single technique, i.e., a com-
bination of strain, stress, and material orientation, may be 
used to evaluate a metric of stiffness. A further advantage 
of the data fusion is that the experimental data sets can be 
mutually assessed to identify regions where the reliability 
of the measurement is in question. In the paper, examples 
of fusing TSA, DIC and FEA are provided but the method 
could be used with any imaging approach, e.g., X-ray com-
puted tomography or computationally derived data sets. 
The approach is demonstrated on a complex composite 
hybrid substructure representative of that used in a wind 
turbine blade. A test rig is designed for the experimen-
tal work that provides different loading scenarios. An 
FEA model of the structure is also developed, and the 
data fused to provide a series of parameters that can be 
used for model validation, interpreting the efficacy of the 
experimental data, and assessing performance parameters. 
It is demonstrated that full-field data fusion (FFDF) has 
the potential to provide a direct means of assessing design 
modifications and material choices.

The paper is based on the 2020 Society for Experimen-
tal Mechanics (SEM) Murray Lecture of Professor Janice 
Dulieu-Barton, entitled “Adventures in thermomechanics: 
from slow to fast, from expensive to low cost and across 
length scales”. Hence, it starts with a review of the state of the 
art on fusing experimental data, citing key publications in the 
area, including several steps towards the goal of the present 

paper published by Dulieu-Barton and her co-workers. The 
following sections cover recent research in more detail than 
was briefly presented in the Murray Lecture, focusing on the 
studies of Dr Jack Callaghan, who was awarded a PhD from 
University of Southampton in May 2022.

Full‑Field Imaging Techniques: Background 
and Progress on Data Fusion

TSA is based on the thermoelastic effect, where the small 
temperature change that occurs as a result of loading a mate-
rial in its elastic region is proportional to the change in the 
sum of the principal stresses [6]. In TSA an infra-red camera 
is used to obtain the surface temperature change, which in 
turn is assumed to be related only to stresses on the surface 
of the component. For orthotropic materials, such as the 
composite components considered in the present work the 
following equation relates the surface stresses to the ther-
moelastic response, ΔT  , as follows [8]:

where T0 is the absolute temperature of the test specimen, � 
is coefficient of thermal expansion, � is the stress, � is the 
mass density, and Cp is the specific heat at constant pressure. 
Here, the subscripts ( i, j ) represent arbitrary coordinates, 
( x, y ) are the principal stress directions and ( 1, 2 ) are the 
principal material directions.

A detailed derivation of equation (1) is available in [8], 
but as ΔT  is a scalar, the bracketed terms must be equal to 
each other and are invariant. In the case of the principal 
stress directions the shear stress is zero, and in the principal 
material directions �6 = 0 . The material properties of the 
plies that comprise a laminated orthotropic composite struc-
ture are usually derived in the principal material directions 
(e.g., elastic moduli, strength, coefficient of thermal expan-
sion, etc.). Hence, it is usual to adopt the principal material 
directions as the reference axes in TSA of orthotropic com-
posite materials and structures. In deriving equation (1) it is 
assumed that ΔT  occurs isentropically. Hence, it is usual to 
apply a cyclic load in the materials elastic range to achieve 
reversibility and at a frequency large enough to minimise 
heat transfer so that the adiabatic assumption satisfied. 
Recently it has been shown for glass fibre epoxy systems 
[10], such as those used in the present work, that thermal 
diffusion is minimised at loading frequencies as low as 2 Hz.

(1)

ΔT = −
T0

�Cp

(
�iΔ�i + �jΔ�j +

�ij

2
Δ�ij

)

= −
T0

�Cp

(
�xΔ�x + �yΔ�y

)

= −
T0

�Cp

(
�1Δ�1 + �2Δ�2

)
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ΔT  can be extracted from a series of thermal images cap-
tured traditionally by either photon detector based thermal 
cameras [8] or more recently by low-cost microbolometers, 
e.g. [9]. Typically, in TSA the test specimen is subjected to 
sinusoidal cyclic loading at a given frequency, f0 , which a 
measured temperature, T  , can be obtained for each pixel ( x, 
y ), and each frame in the thermal image series over the data 
capture time ( t ) as follows:

where � is the phase of ΔT  with respect to a reference sig-
nal usually obtained from the test machine. Equation (2) 
allows an inverse notch filter or ‘lock-in’ image processing 
approach based to be applied to extract T0 , ΔT  , and � from 
the image series. Hence, only the thermal data generated at 
the loading frequency is used, which allows accurate iden-
tification of ΔT .

In contrast to TSA, Digital Image Correlation (DIC) [7, 
11] is a kinematic approach that uses visible light images 
to evaluate surface displacements from which the com-
ponent strains are calculated. Images are captured from a 
test specimen coated with a pattern of randomly positioned 
greyscale variations (speckles). Typically, images are cap-
tured in a reference and deformed state, and the movement 
of the pattern is tracked in the images through the applica-
tion of a correlation algorithm. The correlation is facilitated 
by dividing the images into small subsets of n x n pixels 
so that the displacement of the central point in each subset 
can be identified and the deformation between the reference 
and the deformed state established. DIC is performed using 
a single camera to obtain in-plane displacements or more 
usually two cameras in a stereoscopic set-up to accounts 
for out of plane displacements. Stereo DIC uses approaches 
founded in photogrammetry, which is essential for assess-
ments of structures with complex geometries, such as the 
work described in the present paper. Stereo DIC requires 
camera calibration for triangulation of the relative positions 
of the cameras [12]. A clear benefit of stereo DIC is that it 
permits a 3D measure of overall shape changes, i.e. deforma-
tions. However it is vital to transform the global co-ordinates 
into a frame that corresponds to that of the model. Likewise 
the derived strains will correspond to the projected image 
plane co-ordinates, which for surfaces that are at an angle 
to the stereo camera axis, or are not planar, a transformation 
will be required. DIC is generally applied to test specimens 
that are quasi statically loaded between two fixed points or 
over a load ramp. These single correlations often result in 
very noisy data, which can be spatially smoothed provided 
the strain is uniform in the region of interest. In the case 
of complex composite structures containing features and 
geometry changes, stress concentrations occur that result in 
heterogeneous strain fields. To capture the strains at features 

(2)T(x, y, t) = T0 + 0.5ΔT(x, y) ���
(
2�f0t + �

)

and stress concentrators with any fidelity, small subsets, step 
size and strain windows are required, all of which reduce 
precision. The precision can be improved if multiple frames 
are captured at each load step by introducing pixel by pixel 
temporal averaging. However, it is often not convenient or 
even possible to pause tests to capture multiple identical 
images. To exploit the potential temporal richness of DIC 
it is possible to apply a cyclic load and to capture multiple 
images. Then the same image processing procedure used for 
the TSA, given by equation (2), can be applied by calculat-
ing the strains for each image frame using DIC against a 
single reference image:

where �0 is the mean of the cyclic strain of the specimen, Δ� 
is the strain change and � is the phase of Δ� relative to the 
load signal and identifies if the strains are positive or nega-
tive (i.e., tension or compression) with respect to each other.

The application of DIC to cyclic loading using the lock-
in approach is known as Lock-in DIC (LIDIC), which is 
described in detail in [13]. LIDIC allows TSA and DIC to 
be combined seamlessly without any need to synchronise 
image capture. Hence, the infra-red cameras and the visible 
light cameras can have different frame rates. The approach 
of combining LIDIC and TSA has been demonstrated in 
[10] where the stereo LIDIC strain measurements were used 
to help identify the source of the thermoelastic response 
in laminated coupon specimens. A simple data fusion was 
carried out whereby the average Δ� and ΔT  were obtained 
across an area of uniform stress in a strip loaded in uniaxial 
tension. The identification required a detailed knowledge of 
the material thermal and mechanical properties so that the 
strains from the DIC could be converted to ΔT  , to model the 
response from a laminated orthotropic specimen. A more 
sophisticated fusion of TSA and DIC data for the same pur-
pose as that of [10] is given in [14], where the thermal data, 
generated by both DIC and TSA, is interpolated to a com-
mon mesh. DIC displacement data were processed using 
Smoothing Element Analysis (SEA), to create a continuous 
strain field.

For complex structures, the material coordinate system 
is not always aligned with the directions of principal stress. 
Crammond et al. [15] identified this, and used a DIC strain 
field to determine the stress field by a constitutive relation-
ship with experimentally derived material properties, and 
then locate the principal stress axes angles which were used 
to transform the material coefficients of thermal expansion 
on a point-wise basis for TSA. In [16] LIDIC and TSA were 
combined to evaluate cracks emanating from a welded struc-
ture. The approach used single camera DIC, because the 
specimens were thin and planar, so that the infra-red camera 
viewed one side of the specimen and the visible light camera 

(3)�(x, y, t) = �0 + 0.5Δ�(x, y) ���
(
2�f0t + �

)
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the other. However, the data were not fused, but simply com-
pared using curve fitting. Moreover, full-field images are 
most often used to validate FEA using colour map/line plot 
comparisons or by assessing and comparing single values 
within the field (e.g. local maxima/minima) [9, 15–22]. The 
approach, although quantitative in the sense that values are 
compared, may overlook regions where defects are evolv-
ing during a test and changes in the strain field are gener-
ated away from the points and lines selected for comparison. 
Hence, comparing single points or lines can only be consid-
ered qualitative as spatial quantitative or full-field statistical 
validations cannot be obtained, justifying the requirement 
for improved data fusion approaches.

There are multiple data fusion techniques available  
that combine data from a variety of sensors, numerical 
modelling, and information from databases in an attempt 
to improve the accuracy that could be achieved from a 
single source [23, 24]. Data fusion has been used in non-
destructive testing (NDT) applications for materials and 
structures, whereby pixel-level fusion algorithms have been 
applied to the detection of a cracks using eddy current, 
giant magnetoresistance and active thermography testing 
[25]. The CEN Workshop Agreement CWA 16799 [26] 
details an approach that incorporates image decomposition 
methods to validate numerical models from experimental 
data. Polynomial shape descriptors are used to define the 
displacement/strain fields across a digital image to ascertain 
if model predictions fall within experimental uncertainty 
bounds, hence negating the requirement to determine 
model uncertainty. It should be noted that a single model 
output cannot address parametric sensitivity in the 
prediction. However, the recommendation [26] is that for a 
model to be deemed a good representation of the reality of 
the experiment, the model shape descriptors ( SM ) must be  
within the range

where SE is the experimental shape descriptors, and u
(
SE
)
 

is the experimental uncertainty. Examples of the use of this 
method to validate numerical data from an experiment using 
full-field imaging can be found in [27–30]. Dvurecenska 
et al. [27] used image decomposition approach for three dif-
ferent structural test scenarios with a ‘validation metric’. 
Although the approach may seem quantitative in nature, 
it should be considered that the scale of the pixels in the 
images from the techniques are different, and further that the 
shape and scale of the elements in the model are different. 
Importantly, model shape functions are often higher order 
than those used in DIC, which allow linear variation for dis-
placement and give constant strain across subsets and in TSA 
the temperature is reported as constant across each pixel. 
This means point comparisons can only be approximate, and 

(4)SM = SE ± 2u(SE)

the efficacy of line comparisons are highly dependent on 
how the data is extracted from the FEA. Hence, for a more 
comprehensive quantitative validation of numerical models 
for complex structural components, an approach is required 
that integrates the data sets at the same scale.

A basic example of scale matching model and experimen-
tal data fusion is given by Howell [31], who developed a 
“synthetic reference bitmap” using Finite Element Analysis 
(FEA) to replicate the thermoelastic response and converted 
the predicted stress sum to ΔT

T0
 using a known values of the 

thermoelastic parameters. Importantly, instead of comparing 
data at approximate points, it was converted to the same 
resolution as experimental TSA data using bi-directional 
linear interpolation, so that a full-field comparison could be 
made. Hence, it was possible to subtract the numerical data 
from the experimental TSA data set to give a residual, which 
revealed regions of plasticity local to the welds.

Integrated approaches such as that described in [31] ena-
ble the variability of material and geometric parameters, as 
well as any manufacturing inconsistencies, to be assessed in 
a statistical manner and holistically across the entire field. 
Thus the effect of discrepancies in material and/or produc-
tion on the structural response can be obtained. Robust tools 
are therefore required that can perform quantitative analyses 
of multi-modal experimental and numerical data, which can 
provide the basis for further statistically based Design of 
Experiments (DOE) approaches and other means in which 
complex structural behaviour can be more comprehensively 
scrutinised.

Experimental Arrangements

A T-joint substructure was chosen for analysis from an 
evaluation of cross-sectional strains from the global shell 
FEA model of a 59 m WTB at 19 m radial distance from 
the hub, where the strain values were at their maximum 
(conducted in close collaboration with the project spon-
sor, Siemens Gamesa Renewable Energy). The location 
of the T-joint is shown in context to a full WTB in Fig. 2, 
where the cross-section was defined by radial location, the 
T-joint specimen was extracted from the cross-section, and 
the numerical FEA model was built with reference to the 
specimen, using material properties from the global model. 
The constituent parts of the T-joint are shown in Fig. 3, 
along with the composite material coordinate systems. The 
spar cap (GFRP 1,2,3) and web sheets (GFRP4) are made 
of a combination of unidirectional (UD) and biaxial glass 
fibre reinforced polymer (GFRP) composite. Wood 2 is a 
core region that provides a mould curve for the web face 
sheets that adhere to the spar cap inner face sheets to form 
the T-joint. Wood 1 is used as the core material for the 
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web, forming a sandwich panel. Resin pockets are found 
around the edges of wood 2 and in the centre void.

For the purposes of validating the data fusion process a 
test case for the T-joint was devised, so that axial compres-
sion/tension loading could be combined with bending. The 

test rig is shown in Fig. 4 and was designed so that it could 
be clamped to the hydraulic actuator end of a uniaxial servo-
hydraulic test machine, and the web of the T-joint specimen 
clamped to the test machine crosshead via a load cell. The 
rig is adjustable so that the roller fixtures can be moved 

Fig. 2  T-joint in full size WTB 
and isolated T-joint substructure

Fig. 3  T-joint material con-
stituents and orientations (not 
to scale)
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horizontally and vertically to accommodate for the complex 
shape of the specimens, and such that the T-joint specimens 
can be loaded in both tension and compression. The T-joint 
substructural samples were cut from actual WTB sections 
by the manufacturer, and during this process the specimens 
sustained unexpected damage in the form of cracks in the 
central core region. To avoid any risk of specimen failure 
during the cyclic loading tests, a load regime of 5 ± 4 kN 
was selected at 1 Hz load frequency to generate a thermal 
response (as is required for TSA [6] and LIDIC) and with a 
positive stress ratio, R, due to the constraints of the rig (i.e. 
stress reversals are not feasible with the pin contact loading). 
Due to the geometry and dimension of the test specimens it 
was necessary to use a servo hydraulic test machine which 
has a static load capacity of 630 kN. It would normally be 
preferrable to apply cyclic tests in load control while obtain-
ing full-field data, however due to the low loads and rela-
tively compliant specimens it was not possible to adequately 
tune the PID control settings. To mitigate this, the cyclic 
loading tests were executed in displacement control, which 
meant that the tests had to be manually configured in-situ 
to ensure that the mean load and load amplitude were main-
tained throughout by adjusting the displacement amplitude 
regularly.

The full experimental setup is shown in Fig. 5, with the 
imaging parameters shown in Table 1. The monochromatic 
images for DIC (used for LIDIC) were collected using two 
LaVision Imager E-lite 5 M cameras set up in a stereo con-
figuration using LaVisions’s DaVis StrainMaster software 
[32]. The DIC measurements yielded 40,632 data points, 
with a spatial resolution of 0.662 mm/data point. Strains 
were extracted using a least squares fit to equation (3), i.e., 

the LIDIC processing [13]. The strain data became consist-
ent (no change in values with increased number of frames 
used) after 50 frames of capture, and therefore 100 frames 
in total were used in the analysis for certainty. Thermal 
images were captured using a FLIR A655sc microbolometer 
[33] using the camera manufacturer’s proprietary software 
ResearchIR. A least square curve fitting routine, developed 
in MATLAB, was used to extract the parameters T0 , ΔT  and 
� given in equation (2) from the thermal image series of 
8000 frames captured by the microbolometer. A the micro-
bolometer acts as a low pass filter when viewing transient 
signals [34], such as those obtained for TSA from an object 
undergoing cyclic loading. Many microbolometer systems 
have a user selectable inbuilt, software based ‘noise reduc-
tion (NR)’ feature. In [34] it was shown that when the NR 
feature was enabled a pixel-by-pixel rolling temporal average 
of the number of frames was used to produce the images. In 
TSA it is usually necessary to have the NR feature enabled 
[34] as ΔT is small and difficult to resolve even with the help 
of lock-in processing. Hence, in [34] a detailed account of a 
calibration procedure is provided that is required to account 
for the attenuation in ΔT  resulting from the low-pass filter 
and the NR feature. In the present work the NR feature was 
activated and even though the loading frequency was low it 
was necessary to multiply  ΔT  by a calibration parameter 
for 1 Hz loading frequency given in [34]. This was possible 
as the microbolometer system used in [34] was the same as 
that used in present work.

The initial processed data for LIDIC (x-direction strain 
�xx ) and TSA (temperature change ΔT  ) is shown in Fig. 6. 
Bending is observed across the spar in both datasets, char-
acterised by the valley-like gradients. High strains are seen 

Fig. 4  Experimental load rig: 
(a) cross-section, (b) in-situ test 
machine, (c) configurations
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within the core material (Fig. 6(a)), highlighting the relative 
compliance of the material. The fiducial markers can be seen 
in both data sets as five circles, which will be removed by 
masking when analysed further using FFDF. It is important 
to note that the ΔT  values given in Fig. 6(b) cannot be used 
to compare the stresses in each of the component materials 
of the T-joint. Previous work, e.g., [22], has shown that it 
is necessary to obtain the thermoelastic constants for each 
material to make a fully quantitative comparison. As the 
materials for each of the constituent parts were not available 
to carry out a similar exercise as in [22], the data were nor-
malised appropriately to demonstrate the FFDF. The stria-
tions within the ΔT  data in Fig. 6(b) signifies the bundles 
of reinforcement glass fibre within the laminates and are not 
present in the FEA data where the material properties are 
homogenised across the material regions outlined in Fig. 3.

Numerical Model

To perform the data fusion it is necessary to produce a 
numerical simulation using 3D FEA; this was developed 
using the commercial software package ANSYS 17.1 . The 
FE model was generated by first taking a photographic scan 
of the cross-section of the T-joint sample, which was used 
as the basis for the model geometry in SolidWorks [36]. The 
FE model was meshed in ANSYS with 20-node quadratic 
brick and 15-node wedge elements (SOLID186 ), shown 
in Fig. 7(a). The mesh density was chosen so that every 
material layer region had at-least two elements through the 
thickness, with further refinement around multiple body 
boundary interfaces and expected regions of stress con-
centrations. The material properties are proprietary and  
cannot be disclosed. To provide the reader with an indication 

Fig. 5  Experiment setup: (a) 
photo without blackout cover, 
(b) schematic from plan view
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of the different material types these are labelled generi-
cally in Fig. 3. The loads were applied by rigidly tying the 
boundary edges to a fixed remote node that was loaded so 
that the point of application was in the same location as 
in the experiment (Fig. 7(b)). The analysis was geometri-
cally nonlinear with eight load steps (one step per every 
one kN load applied) in a quasi-static regime. This was to 
simulate the peak-to-peak amplitude of the experimental 
setup of 8 kN ( ±4 kN), as the experiments were conducted 
within the elastic limits of the specimen and measure only 
the change of state (not absolute values) and a small amount 
of deformation.

The results from the FEA simulation tension load case are 
displayed in Fig. 8. It can be seen that the total deformation 
is quite symmetric about the web, and the greatest contrib-
uting component is uy (the direction of the actuator). The 
first and third (maximum and minimum) principal stresses 
show the regions with the most tension and compression. 
The curved part of the web sheets are under the highest ten-
sion, as they are resisting being opened up, and shows that 
the inner core materials do not carry much load. The spar is 
in bending, with tension at the top and compression at the 
bottom, which is the region of highest stress in the whole 
T-joint. High compressive stress concentrations are observed 

Table 1  Cameras, settings and parameters used in imaging

Stereo DIC

Camera
Sensor and digitization CCD 2456 × 2058 pixels, 8-bit
Exposure time and recording rate 3900 sμ , 0.975 Hz
Camera noise (% of dynamic range) 0.42%, 0.43%
Lens and imaging distance Nikkor 50 mm, 1.25 m
Number of images averaged for resolution calculation 2
Pixel size 3.45 μ m
Region of interest and field of view 200 × 170 mm, 250 × 200 mm
Processing
Subset, step 33, 11 pixels
Matching criterion, interpolation, shape function ZNSSD,  6th order spline, affine
Pre-smoothing None
Displacement resolution 0.15 pixels (0.53 μ m)
Strain
Smoothing technique None
Strain window, virtual strain gauge 1 data point, 11 pixels (37.95 μ m)
Strain resolution 244 με

TSA

Camera Setup
Sensor and digitization IR 640 × 480 pixels, 16-bit
Noise Equivalent Temperature Difference < 30 mK
Lens and imaging distance 25 mm, 0.75 m

Fig. 6  Initial experimental 
results – (a) LIDIC strain Δ�xx 
(%� ), (b) TSA temperature 
change ΔT  (K)
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around the boundary constraints, just under the fixed nodes 
of the web and at the pinned nodes on the spar, which are 
expected due to the singular nature of the constraints.

Full‑Field Data Fusion

Full-field data is usually processed in one of two formats: 
Gridded Array (GA) and Coordinate-based Vector (CV). 
GA are matrices of field data with units of data point (e.g., 
pixels)/mm defining the regular spacing between the data 
points, i.e., the spatial discretisation, which in the case of 
oblique viewing angles might not be known. The GA is 
represented by 

[
fi,j
]
1
,… ,

[
fi,j
]
n
 for a two-dimensional (pla-

nar) data set containing n fields with resolution x ⋅ y data 
points. CV data is in tabular form, where one, two, or three 

columns indicate the data point spatial location (relative to 
an origin), and the other columns indicate field values. The 
data point locations can be regular or scattered represented 
by 

[{
xi
}{

yi
}{

fi
}
1
,… ,

{
fi
}
n

]
 for a two-dimensional (planar) 

data set containing n fields with i data points. For both GA 
and CV field data that varies in the time domain, an addi-
tional temporal descriptor can be included, thus increasing 
the dimension of the matrices by one. The two data types 
are visualised in Fig. 9 for a randomised data set containing 
4 fields, with 180 data points in each field, which may be 
synonymous to DIC (GA) and FEA (CV) data fields (e.g., [
ux, uy, �xx, �yy

]
 ) in (a) and (b) respectively.

The types of numerical and experimental data sets con-
sidered are indicated in Table 2. The experimental data 
sets for LIDIC and TSA are all classified as GA. The data 
considered are the change of displacement vector ( ΔU ) and 

Fig. 7  Finite element analysis 
model: (a) geometry and mesh, 
(b) boundary constraints

Fig. 8  Simulation results for 
tension case – (a) total 
deformation 
utot =

√
u2
x
+ u2

y
+ u2

z
 (mm), 

(b) first (maximum) principal 
stress �1 (MPa), (c) third 
(minimum) principal stress �3 
(MPa)
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plane strain tensor ( �� ) for LIDIC, and the change of tem-
perature ( ΔT  ) for TSA.

For the FEA, the data set is classified as CV due to the 
irregular mesh (Fig. 7a). The data considered are the dis-
placement vector ( U ), plane stress tensor ( � ) and plane 
strain tensor ( � ) fields and were exported as the nodal values 
for the face that represents the imaged surface of the T-joint 
specimen (Fig. 7(a) ‘Export surface’). The exporting coor-
dinate system (see Fig. 7a) was aligned to the experimental 
image plane, with x moving horizontally across the image 
toward the left, and y moving vertically across the image 
toward the top. The FEA data were exported in a coordinate 
system aligned to the experimental data set plane to ensure 
there was no disparity between the three different data sets. 
It should be noted that the FEA model predictions can be 
used to generate a simulated ΔT  field using equation (1) if 
the material properties are known.

The first step in the application of the FFDF method-
ology is spatial alignment to a common datum. To align 
GA data sets with unknown discretisation distances, known 
geometrical feature dimensions are also required. Physi-
cal fiducial markers are placed on the specimen inside the 
imaging field of view, but outside the region of interest, at 
known locations. As they are positioned outside the region 
of interest the markers are removed from the data analysis 
using a spatial mask. For the T-joint specimen considered 
here, the markers are constructed of reflective tape, which 
is visible in both the white light and thermal images. The 
spatial discretisation distance is obtained from the marker 
dimensions divided by the number of data points it covers 
and is used to map the GA data to spatial coordinates rela-
tive to the datum.

Once the datum and relative spatial coordinates are 
determined for each data set, they can then be aligned. Fig-
ure 10(a) shows the relative positions of the aligned data 
sets, with a small window (2 mm square) identified for the 
purpose of visualisation. Figure 9(b) shows the relative 
positions and number of data points for the LIDIC, TSA 
and FEA in the window; a common reference grid (0.1 mm 
square) is shown in the visualisation (NB this is not a rep-
resentation of the pixels in the GA). For the GA data, each 
data point represents an average value for each measurement 
cell, i.e., a square region of each of one spatial discretised 
distance length. In the case of the TSA the cell is the pro-
jected area of a sensor in the infrared detector array, for the 
DIC the cell is spatial resolution set by the subset and step 
size used in the analysis. The coordinate location of each 
data point is the centre of each cell as shown in Fig. 10(b). 
For the FEA CV data, the data points are the coordinates of 
the nodal locations, with the connecting lines indicating the 
element boundaries. When all the data points from the three 
data sets are shown together it is observed that they are not 
coincident with each other, due to the differences in resolu-
tion and regularity.

An overview of FFDF approach is shown in Fig. 11. 
For meaningful point-wise comparison and fusion of the 
data sets they are mapped to a common resolution, so that 
all data points are aligned spatially and are representa-
tive of the same region. The mapping to the target grid 
requires triangulation-based interpolation for CV data sets, 
and grid-based interpolation for GA data sets. The target 
grid is determined by the user and can be defined by a 
GA data set or manually. Manual grid definition requires 
selecting a data set, grid increment size, and seed location 
(plus shrink factor and edge search radius for CV data 
set). It should be noted that the data can be interpolated to 
any dimension greater than the lowest resolution data set. 
Using one of the data sets for the interpolation grid has the 
advantage that that one original data set is retained result-
ing in less processing. After interpolation, the fiducial 
markers used for alignment of the data sets can be removed 
using a custom mask. Likewise additional masks can be 

Fig. 9  FFDF data types: (a) 
Gridded Array, (b) Coordinate-
based Vector

Table 2  Data set types

Numerical Experimental

Data Source FEA LIDIC TSA
Data Type CV GA GA
Fields U,�, � ΔU,�� ΔT
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introduced to remove any areas of poor-quality data, e.g., 
across holes.

Once the data sets are spatially aligned and mapped to 
a common resolution, they can be fused into two types of 
metric, named “similarity” and “union” metrics, which are 
defined in Table 3. Similarity metrics are used to distinguish 
the difference between data fields, and union metrics describe 
the combination of data fields into a new parameter field that 
could be used to evaluate e.g., damage progression or stiffness 
degradation. For the purposes of comparison, similar data sets 
with different dimensionality, can be normalised by select-
ing a normalising point value and dividing the data set by 
this quantity to provide values between 0 and 1 over the data 
field. It is critical that the location selected for the normalis-
ing value is the same in all data sets so that the field values 
are scaled identically. Then any differences between the data 
sets can be attributed to model error, difference in experimen-
tal and model boundary conditions and/or departures from 
linearity. In the present work, normalisation is required to 
compare the absolute stress sum from FEA with the change 

in temperature ΔT obtained from for TSA. This is permissible 
as the stress sum and ΔT  are linearly related and necessary 
as the thermoelastic properties of the constituent materials of 
the T-joint were not available. However, it is known that the 
materials that comprise the T-joint have different thermoelas-
tic properties, and by normalising by a value in one material 
region, the other regions will become non-comparable. Hence 
it is necessary to carry out the normalisation within the fields 
for the different materials. The similarity metric can then be 
evaluated in a statistical manner and holistically across the 
entire field, which is necessary for quantitative validation of 
complex numerical models and in turn for verifying experi-
mental conditions such as the boundary conditions.

A graphical user interface application (GUI app) has been 
developed using MATLAB [35] that supports the full meth-
odology of FFDF in a user-friendly format to improve book-
keeping and speed of analysis. The processing steps within 
the GUI app are shown in Fig. 11. All data sets are imported 
as comma-separated variable (.csv) files for standardisation, 
where GA data is packaged as one file per field, and CV  

Fig. 10  FFDF: (a) aligned data 
sets, (b) data point window

Fig. 11  FFDF processing steps 
(arrows indicate dependencies)
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data can have multiple fields per file. The GUI and the  
source code are available at (https:// doi. org/ 10. 5523/ bris.  
1mj8h 85asp 70n29 097gv z7d155).

Application of FFDF to the WTB Section

The data sets were interpolated to a target grid that was equiva-
lent to the LIDIC data set resolution, i.e., the step size, as was the 
lowest resolution. A mask was introduced to remove the fiducial 
markers. The result is 34,389 discrete points with 0.665 mm 
grid spacing over the imaged surface. The predicted stress and 
strain field amplitudes for the tension and compression load 
cases (Fig. 8) gave similar results, hence only the compression 
case is considered here for the purposes of demonstration. Only 
the quotient union metric is adopted (see Table 3), as fusing the 
stress metric from the TSA and the strains from the LIDIC pro-
vides an indicator of stiffness or compliance. For individual and 
residual similarity metric fields the mean ( � ), standard deviation 
( SD ), and coefficient of variation ( CoV ) are shown, for a full-
field data set, f ,with n data points:

(5)� =
1

n

n∑

i= 1

fi

(6)SD =

√√√√ 1

n − 1

n∑

i= 1

||fi − �||
2

Figure 12(a) shows the data generated from the FEA 
model in the form of the peak-to-peak x-direction normal 
strain, Δ�xx , so that is could be qualitatively compared with 
experimental data from the LIDIC shown in Fig. 12(b). 
Both data sets capture the bending in the lower flange of 
the T-joint sample showing a similar magnitude and the 
large strains in the triangular wood fillet regions (see wood 
2, Fig. 3). However, there is a significant difference in the 
wood 1 core above the fillet, where the FEA predicts a much 
higher strain concentration than the LIDIC. To make a quan-
titative comparison the residual similarity metric (Res) is 
obtained by subtracting the FEA strain from the LIDIC 
strain and then the percentage error (PE) calculated (see 
Table 3) to create two new data sets shown in Fig. 13. In 
both cases the full-field plots should return a value of zero, 
clearly this is not the case and there are significant depar-
tures from the zero condition in both plots. A positive Res is 
reported that indicates the FEA is under predicting relative 
to the DIC. Frequency of occurrence histograms of the two 
plots are provided below the full-field plots in Fig. 13. In 
the Res histogram of Fig. 13(a) the mean of the difference is 
determined alongside the standard deviation, which provides 
the magnitude of the differences. As expected, the greatest 
difference is observed in the wood 2 region just above the 
fillet and is the major contributor to the offset of the mean 

(7)CoV =
SD

�

Table 3  Comparison and data 
fusion metrics

Metric type Metric Formula Explanation

Similarity Residual (Res) f1 − f2 Difference between fields
Res > 0, f1 > f2
Res < 0, f1 < f2

Percentage error (PE) ( |f2−f1|
|f1|

)
⋅ 100

  
Relative difference between 

similar fields
The difference between f1 and 
f2 as a percentage amount 
of f1

Union Quotient (Quo) f1

f2

Division of fields

Fig. 12  Mapped directional 
strain Δ�XX fields % � ): 
(a) numerical FEA, (b) experi-
mental LIDIC

https://doi.org/10.5523/bris.1mj8h85asp70n29097gvz7d155
https://doi.org/10.5523/bris.1mj8h85asp70n29097gvz7d155
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value from zero. Not as apparent in the qualitative com-
parison of Fig. 12 is that significant differences occur at the 
boundary of the wood 2 area in the fillet. These differences 
illustrate the effect of the spatial filtering of the strain cal-
culation in DIC, which is dependent on the number of points 
used in the strain calculation. To completely remove errors 
of this nature it is necessary to process the FEA data with 
the same methods as DIC, e.g., by synthetically deforming 
experimental images with the FEA displacement field and 
utilising the DIC algorithm on the synthetic images [38].

The PE similarity metric in Fig. 13(b) demonstrates that 
the spread of the relative difference between the data sets 
is large, and as a result of most of the core material in the 
web (wood 2) displays a percentage difference of greater 
than 100%, indicating that the material properties for wood 
2 assumed in the FEA are incorrect. Another area of high 
percentage error is around the midplane of the spar where 
the strain is very small and at the noise floor of the meas-
urements, hence it is expected that this region would yield 
a high percentage difference. Further, the junction between 
different materials, e.g. between wood 1 and GRRP 4 (see 
Fig. 3), indicates that the DIC cannot capture this transi-
tion well because of the limitation of the subset size and 
strain window used. Two other regions of large PE are also 
noticeable in GFRP 4 in the overlaminate of the fillet and 
at the junction of wood 2, GFRP 3 and GFRP 4 (see Fig. 3) 
where there should be adhesive. These regions of large PE 
are potential indicators of damage. It should be noted that 
judicious rescaling of the image in Fig. 13(b) may reveal 
other features that are masked by the presentation.

The FFDF method can also be used to assess the similarity 
between the FEA with the ΔT values extracted from the TSA. 

Figure 14 shows that in a qualitative sense the distributions 
match very well even though the scales shown are different 
demonstrating that equation (1) relates ( �xx + �yy ) to  ΔT by 
the material thermoelastic properties ( �, �,Cp ). As the TSA 
processing delivers only the magnitude of ΔT  (see equa-
tion (2)), the FEA data has been plotted as Δ|||�xx + �yy

||| . To 
make a quantitative assessment of the FEA and TSA data sets 
it is necessary to calibrate the FEA with values of  
�1, �2, �, andCp for each of the component materials in the 
joint. In [15] and [22] the thermoelastic constant for each of 
the constituent material was determined experimentally. This 
required numerous test specimens to be manufactured and 
tested for each material. It is not usually the case that materials 
in real components are freely available to manufacture such 
test specimens, so an alternative procedure was devised to 
enable comparison. A normalisation routine was adopted by 
selecting a point at the bottom of the spar cap in the middle 
of the specimen at location x = 0 mm, y = 2 mm located in 
the GFRP 1 material (see Fig. 3). The Res and PE similarity 
metric fields are shown in Fig. 15, where the agreement is 
excellent in the spar cap and good in the resin rich regions. As 
with the LIDIC-FEA fusion, the high PE in the middle of the 
spar cap is caused by the nominally zero values. However, in 
the other materials in the joint, i.e., the wood in the fillet the 
flange, and the fibre bundles in the web sheets, the agreement 
is poor. The result is expected as the normalisation point in 
the GFRP is not valid for these regions. Hence, each region 
with different material requires its own normalisation point.

The normalisation conducted to produce Fig. 15 implies 
that the thermoelastic equation parameters are homogenised 
across the structure. Therefore, in regions made of different 
material to the spar cap, the comparative absolute percentage 

Fig. 13  Comparison metric 
fields and field histograms for 
FEA and LIDIC: (a) Residual 
(Res) (%� ), (b) Percentage error 
(PE) (%)
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difference should be proportional to the thermoelastic con-
stant for the spar cap and the fillet. The effect of this is 
demonstrated by comparing the values along the midline 
at different material regions. Figure 16(a) shows a line plot 
through the spar cap and into the web using the same nor-
malisation point in the spar cap used for Fig. 15. Quantita-
tively, there is good agreement between the FEA and TSA 
data within the material region where the normalisation is 
valid, while the other regions are different by a factor of 
the relative difference between the material thermoelastic 
constant. In Fig. 16(b) the normalisation point is changed to 
a position at the base of the web in the fillet resin material. 
Here the agreement between the data sets is only in the fillet 
resin material.

The next stage is to make a quantitative similarity assess-
ment between the ΔT  field (shown in Fig. 14(b)) and the 
Δ
|||�xx + �yy

||| fields. As mentioned above the lock-in approach 
outputs only the magnitude ΔT  (see equation (2)) and the 
strains (see equation (3)), so it is not possible to differentiate 
between positive and negative values of stress and strain 
without recourse to the phase value, which can be obtained 

from equations (2) and (3). Figure 17(a, b) shows the phase 
maps generated for the imaged surface relative to the refer-
ence signal (load data) [6], clearly showing the regions in 
tension and compression, and qualitatively an excellent 
agreement in the phase derived from the two techniques. 
Figure 17(c) shows the PE between the two data sets, where, 
as previously, the greatest differences occur at the neutral 
axis in the spar cap. Here there is little bias in the mean, 
indicating that as expected the phase value is independent of 
the material properties required for the quantitative assess-
ment of the ΔT  and the stress fields obtained from the FEA.

In Fig. 18, the quotient fusion metric (see Table 2) is 
applied to the two experimental data sets, dividing the 
TSA change of temperature ΔT  by the LIDIC change in 
sum of strains Δ|||�xx + �yy

|||; this metric is related to the 
material stiffness. Figure 18 clearly shows the two main 
materials that comprise the joint: the GFRP in the spar 
cap, the overlaminated fillet and the web face sheets and 
the wood in the fillet and web core. There is significant 
noise in the Quo metric in the spar cap. This is because of 
the inhomogeneous nature of the material and motion 

Fig. 14  Mapped “stress” fields: 
(a) numerical FEA change of 
absolute sum of principal 
stresses Δ|||�xx + �yy

||| (MPa), 
(b) experimental TSA 
temperature change ΔT  (K)

Fig. 15  Comparison metric 
fields and field histograms for 
FEA and TSA mapped “stress” 
fields: (a) Residual (Res) (nor-
malised), (b) Percentage error 
(PE) (%)
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correlated in the data. Figure 18 also shows a frequency 
histogram of the fused union data set, with the two distinct 
peaks identifying the different materials. Notwithstanding 
the noise, it would be possible to monitor the changes in 
the quotient metric using the frequency histogram to 

identify changes in material performance and progression 
of damage. Clearly, further investigations are required to 
ascertain the level of precision required for the quotient 
metric to be successful in identifying damage progression, 
which is the object of further work.

Fig. 16  Effect of normalisation 
point location (norm. loc.) on 
the comparison between 
simulated (FEA) Δ|||�xx + �yy

||| 
and experimental (TSA) ΔT  
normalised fields – (a) x = 0 
mm, y = 2 mm, (b) x = 0 mm, 
y = 82 mm

Fig. 17  Experimental Phase 
field � ( ◦ ): (a) LIDIC, (b) TSA, 
(c) PE (%) and histogram
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An alternative means of full-field data analysis using the 
CEN methodology is proposed in [26]. In this approach, 
when one data set value is equal to the other data set value, 
it is determined how many data points fall within a known 
error band. In Fig. 19(a) the Δ�xx values obtained from the 
FEA and LIDIC given in Fig. 12 are plotted against each 
other; the Res metric given by Fig. 13(a) is used as a com-
parator. The comparison metric appears in linear bands, with 
a colour map equivalent to the scale given in Fig. 13(a). 
The solid red line represents unity ( x = y ), and the dashed 
red lines are the experimental error, which for this case is 
double the strain resolution (equation (4), [26]), equal to 
±0.0488 %ε . All the points from the Res data set were then 
grouped into bins in both the x and y axes (kernels), which 
are displayed by colour depending on the number of points 
within each kernel using the scale to the right of Fig. 19(a); 
for clarity the kernels that contain only one data point are 
shown in grey. It is clear that the vast majority of data 
points are located to the bottom left of the plot in Fig. 19(a) 

indicating a residual of close to zero. In fact, 10.61% of data 
points (3648 out of 34389 data points) fall outside the error 
bounds. The spatial location of the data points is lost in this 
analysis, but it should be noted that the cluster of points that 
form vertical branches is from the wood regions of the joint 
with low LIDIC values compared to the FEA. To retain the 
spatial meaning of the data in the plot in Fig. 19(a), rather 
than decomposing the images as in [26], an “error bound 
overlap” map showing the regions where the data sets fall 
out of range of the error bounds is shown in Fig. 19(b).

Verification of Model Input Parameters

If the boundary conditions of the model and the experiment are 
well-matched, as is the case here, the FFDF method can also be 
used for model validation and in particular assessing the sensi-
tivity of the predictions to model input parameter uncertainties. 
As the received data regarding the material properties of the 

Fig. 18  Experimental data 
fusion: TSA change of 
temperature ΔT  divided by 
LIDIC change in sum of strains 
Δ
|||�xx + �yy

||| (Quotient metric) 
full field spectrum and 
histogram

Fig. 19  (a) Numerical (FEA) 
and experimental (LIDIC) data 
set comparison – (a) kernel 
density chart, (b) error bound 
overlap map
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wooden material in the fillet and the web core were not reliable, 
FFDF provides an opportunity to carry out a parametric study 
to fit the data and identify better properties for this material. 
Accordingly, the wood elastic properties were adjusted in the 
FEA model, the FFDF plots of the raw and Res Δ�xx fields are 
shown in Fig. 20; v1 uses wood elastic properties taken from 
[39], and v2 is the average of the original values of the assumed 
wood elastic properties used to create the FEA in Fig. 12 and 
those taken from [39] to create the v1 FEA. Comparing the 
new histograms (which should have a zero mean if there is no 
bias error) to that in Fig. 13, it is clear that the adjustment of the 
material properties improves the agreement between the data 
sets, with � reducing from 0.021 ( SD = 0.071) to –0.002 ( SD = 
0.31) and 0.007 ( SD = 0.028) respectively.

From the kernel density plots in Fig. 21 it is clear that the 
spread of data is much less than for the initial FEA model 

(see Fig. 19(a)). For material v1 in the central core region, 
the stiffness has been reduced too much, shown by the clus-
ter of points that drops below the lower error bound. This 
is corrected for material v2; however, the vertical cluster 
of erroneous points remains for the core material for the 
web, which indicates that further investigation is required 
for full validation of the FEA model. However, the percent-
age of points outside the error bounds, which was 10.6% 
for the original material model, has improved to 7.38% and 
6.14% for V1 and V2 respectively. This analysis highlights 
the importance of quantitative full-field analysis for com-
plex structures, as v1 has a mean closer to zero, and v2 has 
a smaller standard deviation. Moreover, it demonstrates a 
simple qualitative comparison of the two strain fields is 
completely insufficient, as none of the original full field 
data sets appear to match well.

Fig. 20  Comparison of FEA 
model predictions against 
LIDIC data for change in direc-
tional strain Δ�xx – rows (top) 
FFDF FEA data, (middle) FFDF 
comparison Res(LIDIC,FEA) 
strain field, (bottom) histogram 
of Res(LIDIC,FEA) – columns 
(a) material v1 (b) material v2
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Conclusions

A new approach to full-field data fusion (FFDF) has been 
proposed and demonstrated by assessing the similarity and 
discerning differences between experimental full-field data 
sets and computationally-predicted FEA data sets. FFDF 
spatially matches the data points of every data set, so that 
full-field metrics may be applied to assess data sets quan-
titatively. This approach proposed enables a rigorous com-
prehensive fusion of the different data fields, which can be 
utilised aiming to achieve various data analytics tasks, for 
instance the identification of zones where improvement/
refinement of the numerical modelling, as well as the experi-
mental set-up, can be conducted on a statistical basis. Care 
must be taken when using FEA data in FFDF, as the model 
zones and elements share nodes, so an unaveraged solution 
will contain geometrically duplicated values. This is ignored 
for the current study, but other options will be explored in 
future work to eliminate this, e.g., exporting results at ele-
ment centroids. Likewise, misalignments between the data 
sets will exacerbate errors and methods to improve align-
ments should be investigated.

In the research presented in the paper the FFDF method 
was applied to numerical and experimental analyses con-
ducted to evaluate the load response of an industrially rel-
evant load carrying substructure (a composite wind turbine 
blade internal T-joint) subjected to a simplified uniaxial 
bend load case. For this example, the validity of the com-
plex FEA model was assessed, where model zones where 
incorrect material properties were specified were identi-
fied in the FFDF analysis process, and the information 
was subsequently fed back into the model for refinement. 
Residual and percentage error similarity metrics evaluated 
the closeness of the data sets. Furthermore, to demonstrate 
the capabilities of FFDF, material regions were identified 
from purely experimental data, and load state phase data 
was evaluated to show significant closeness across multi-
modal dissimilar measurements. The presented similarity 
and union metric data sets have shown that the proposed 
FFDF methodology can be used as a powerful tool to con-
duct numerical parametric analyses to assist with the vali-
dation of material properties and failure behaviour on the 
substructural scale. Further, the FFDF procedure presented 
can used for efficient assessment and quantification of the 

Fig. 21  Comparison of FEA 
model predictions against 
LIDIC data for change in 
directional strain Δ�xx – rows 
(top) kernel density plot for 
Res(LIDIC,FEA), (bottom) 
error bound overlap map – 
columns (a) material v1 (b) 
material v2
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inherent uncertainties associated with both the experimental 
and simulation data.

The work described in the paper has formed the basis for 
the techniques used in the Programme Grant “Certification 
for Design: Reshaping the testing pyramid” funded by the UK 
Engineering and Physical Sciences Research Council (www. 
compo sites- certe st. com). The concepts are being developed so 
they can be applied to complex 3D geometries used in aero-
structures, supported by a wide range of industrial partners 
seeking to adopt techniques that aid in reducing time to market 
for new design concepts whilst maintaining safe operations.
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