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We recently developed a sensitive and flexible gene
expression profiling system that is not dependent on
an intact poly-A tail and showed that it could be used
to analyze degraded RNA samples. We hypothesized
that the DASL (cDNA-mediated annealing, selection,
extension and ligation) assay might be suitable for the
analysis of formalin-fixed, paraffin-embedded tis-
sues, an important source of archival tissue material.
We now show that, using the DASL assay system,
highly reproducible tissue- and cancer-specific gene
expression profiles can be obtained with as little as 50
ng of total RNA isolated from formalin-fixed tissues
that had been stored from 1 to over 10 years. Further,
tissue- and cancer-specific markers derived from previ-
ous genome-wide expression profiling studies of fresh-
frozen samples were validated in the formalin-fixed
samples. The DASL assay system should prove useful for
high-throughput expression profiling of archived clin-
ical samples. (Am J Pathol 2004, 165:1799-1807)

The recent development of high-throughput microarray
technologies provides a powerful tool for genome-wide
gene expression analysis.” For example, microarray-
based tumor classification,®* as well as treatment re-
sponse and clinical outcome prediction,*~" have been
demonstrated in many cancer types. However, these
technologies typically require substantial quantities of
fresh or frozen tissue. Although many institutions are now
maintaining frozen tissue banks, which should facilitate
gene expression analysis in the future, few of these now
have sufficient clinical follow-up data. On the other hand,
there is a vast supply of formalin-fixed, paraffin-embed-

ded (FFPE) tissues for which the clinical outcome is al-
ready known.® The ability to analyze gene expression
patterns in these archived tissues would greatly facilitate
retrospective studies to correlate gene expression pat-
terns with given disease states, or histological and clinical
phenotypes. This approach could be used to discover bi-
omarkers for therapeutic decision making and also to de-
velop clinical tests, as FFPE sample collection and storage
is a routine practice in pathology laboratories.

A barrier to the analysis of FFPE samples is that RNA
extracted from FFPE tissues is often significantly de-
graded. Previous studies show that only about 3% or less
of the RNA isolated from paraffin samples is accessible to
cDNA synthesis, compared to fresh-frozen samples.® In
particular, this has impeded progress in microarray-
based gene expression quantitation from FFPE speci-
mens.'® As a result, most gene expression analysis of
FFPE tissues has so far been done using immunohisto-
chemical staining (IHC) and quantitative RT-PCR (gqPCR),
which allow only a few genes to be analyzed at a
time.®'"='® Although sufficient RNA can be isolated from
a few 10-um slide-mounted paraffin sections to quanti-
tate up to 30 genes by gPCR,"” there is clearly a bottle-
neck in scaling up the number of genes that can be
measured by this approach. Also, gPCR does not reliably
measure RNA fragments shorter than 100 bp."”

We have recently developed a flexible, sensitive, and
reproducible gene expression profiling assay, DASL
(cDNA-mediated annealing, selection, extension and li-
gation), for parallel analysis of hundreds of genes with as
little as 25 ng of total RNA.'® We hypothesized that the
DASL assay might be able to overcome the technical
limitations to microarray-based analysis of FFPE sam-
ples. While most array technologies use an in vitro tran-
scription (IVT)-mediated sample labeling procedure,’®
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DASL uses random priming in the cDNA synthesis, and
therefore does not depend on an intact poly-A tail for
oligo-d(T) priming. In addition, the assay requires a rela-
tively short target sequence of about 50 nucleotides for
query oligonucleotide annealing. In this study, we char-
acterized the sensitivity and quantitative performance of
the assay system on FFPE tissues and demonstrated its
utility for marker validation as well as new marker identi-
fication. The results show that the DASL assay is effective
for an important and extensive source of archival clinical
material that was hitherto largely inaccessible to microar-
ray technology. This opens up new avenues to the large-
scale discovery, validation, and clinical application of
mRNA biomarkers of disease.

Materials and Methods

Tissue Specimens

Sample set consisted of 11 matched pairs of FFPE colon
cancer and adjacent normal tissues, and 11 matched
pairs of FFPE breast cancer and adjacent normal tissues.
Colon cancer tissue specimens included 2 Dukes B1
(both well differentiated adenocarcinomas), 5 Dukes B2
(4 moderately and 1 well differentiated adenocarcinoma)
and 4 Dukes C2 (2 well, 1 moderately differentiated, and
1 mucinous adenocarcinoma). Breast cancer tissue
specimens included one Stage 0, two Stage |, six Stage
IIA, one Stage 1IB, and one Stage IlIIC. There were nine
infiltrative ductal carcinomas, one mucinous carcinoma
and one ductal carcinoma in situ. Colon cancer was
staged according to Modified Aston-Coller classification
and breast cancer was staged according to AJCC Can-
cer Staging Manual (Sixth Edition, Springer, 2003). All
samples were obtained from Asterand, Inc. (Detroit, Ml)
according to an Institutional Review Board approved pro-
tocol. Patient demographic and pathology information
was also collected. Among the eleven sample pairs of
each tissue type, four pairs were collected in a period
within 1 year, four pairs in a period of 2 years, and three
pairs in a period of 9 to 11 years before the current study
(Table 1). Along with the FFPE samples, two matched
pairs of fresh-frozen colon cancer and adjacent normal
tissue and two matched pairs of fresh-frozen breast can-
cer and adjacent normal tissue were collected from the
patients included in the FFPE sample set. The histopatho-
logical features of each sample were reviewed to confirm
diagnosis and tumor content.

RNA [solation

For total RNA isolation from FFPE tissues, three 20-um-
thick sections were cut from each tissue block. The High
Pure RNA Paraffin Kit (Roche) was used. Proteinase K
digestion time was 12 hours for each sample. All purifi-
cation, DNase treatment, and other steps were performed
according to the manufacturer’s protocol. After total RNA
isolation, samples were stored at —80°C until use.

Total RNA from fresh-frozen tissue samples was iso-
lated by a standard Trizol/chloroform method. Tissue was

homogenized in Trizol reagent (Invitrogen). Total RNA
was isolated from Trizol and precipitated at —20°C with
isopropyl alcohol. RNA pellets were washed with 75%
ethanol, dissolved in water, and stored at —80°C until use.
RNA integrity was examined with the Agilent 2100 Bioana-
lyzer RNA 6000 Nano Assay (Agilent Technologies).

Real-Time Qantitative RT-PCR (QPCR)

gPCR analyses were performed on the ABI Prism 7900HT
sequence detection system (Applied Biosystems) as de-
scribed previously.'® Most PCR primers were designed
to amplify approximately 90-bp fragments. Primers for the
RPL13A transcript were designed to amplify 90-bp and
155-bp fragments.

BeadArray Manufacture

Microarrays were assembled by loading pools of glass
beads (3 um in diameter) derivatized with oligonucleo-
tides onto the etched ends of fiber-optic bundles.?®
About 50,000 optical fibers are hexagonally packed to
form a ~1.4 mm diameter bundle. The fiber optic bundles
are assembled into an array matrix (Sentrix array), com-
prising 96 bundles arranged in an 8 X 12 matrix that
matches the dimensions of standard microtiter plates.?’
This arrangement allows simultaneous processing of 96
samples using standard robotics. Because the beads are
positioned randomly, a decoding process is carried out
to determine the location and identity of each bead in
every array location.?? Decoding is an automated part of
array manufacture.

Assay Probe Design

For array analysis, two probe oligonucleotides were de-
signed to interrogate each target site on the cDNA as
described previously,'® with 2 to 10 target sites per gene
(average 6 sites). The first oligo consists of two parts: the
gene-specific sequence and a universal PCR primer se-
quence (P1, 5’-ACTTCGTCAGTAACGGAC-3’) at the 5'-
end. The second oligo consists of three parts: the gene-
specific sequence, a unique address sequence which is
complementary to one of 1520 capture sequences on the
array, and a universal PCR primer sequence (P2, 5'-
GTCTGCCTATAGTGAGTC-3") at the 3'-end. A single
address sequence is uniquely associated with a single
target site. This address sequence allows the PCR-
amplified products (see below) to hybridize to a universal
microarray bearing the complementary probe sequenc-
es.?! The gene-specific sequence is designed with Tm
ranging from 57°C to 62°C.

Array Analysis

cDNA synthesis, DASL process, array image processing,
and signal extraction were as described previously.'®
First, a 20-ul reverse transcription reaction containing a
reaction mix (MMC; lllumina, San Diego, CA), biotinylated
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Sample ID* Surgery year Sample type Diagnosis Clinical stage TNMT
FS1_CC2 2002 Frozen Mucinous adenocarcinoma Dukes C2 T4N1MO
FS1_CN2 Normal

FS1_CC4 2002 Frozen Moderately differentiated adenocarcinoma Dukes C2 T3N1MO
FS1_CN4 Normal

FS1_BC2 2002 Frozen Infiltrating ductal carcinoma Stage | T1NOMO
FS1_BN2 Normal

FS1_BC3 2002 Frozen Infiltrating ductal carcinoma Stage IIA T2NOMO
FS1_BN3 Normal

FS1_CCH1 2002 FFPE Well differentiated adenocarcinoma Dukes B2 T3NOMXx
FS1_CN1 Normal

FS1_CC2 2002 FFPE Mucinous adenocarcinoma Dukes C2 T4N1MO
FS1_CN2 Normal

FS1_CC3 2002 FFPE Well differentiated adenocarcinoma Dukes B1 T2NOMO
FS1_CN83 Normal

FS1_CC4 2002 FFPE Moderately differentiated adenocarcinoma Dukes C2 T3N1MO
FS1_CN4 Normal

FS2_CCH1 2001 FFPE Well differentiated adenocarcinoma Dukes B1 T2NOMO
FS2_CN1 Normal

FS2_CC2 2001 FFPE Well differentiated adenocarcinoma Dukes C2 T3N1MO
FS2_CN2 Normal

FS2_CC3 2001 FFPE Moderately differentiated adenocarcinoma Dukes B2 T4NOMO
FS2_CN83 Normal

FS2_CC4 2001 FFPE Well differentiated adenocarcinoma Dukes C2 T3N1MO
FS2_CN4 Normal

FS3_CCH1 1994 FFPE Moderately differentiated adenocarcinoma Dukes B2 T3NOMO
FS3_CN1 Normal

FS3_CC2 1992 FFPE Moderately differentiated adenocarcinoma Dukes B2 T3NOMO
FS3_CN2 Normal

FS3_CC3 1994 FFPE Moderately differentiated adenocarcinoma Dukes B2 T3NOMXx
FS3_CNS3 Normal

FS1_BCH1 2002 FFPE Mucinous adenocarcinoma Stage IIA T2NOMO
FS1_BN1 Normal

FS1_BC2 2002 FFPE Infiltrating ductal carcinoma Stage | T1NOMO
FS1_BN2 Normal

FS1_BC3 2002 FFPE Infiltrating ductal carcinoma Stage IIA T2NOMO
FS1_BN3 Normal

FS1_BC4 2002 FFPE Infiltrating ductal carcinoma Stage 11B T2N1MO
FS1_BN4 Normal

FS2_BCH1 2001 FFPE Infiltrating ductal carcinoma Stage IIA T2NOMO
FS2_BN1 Normal

FS2_BC2 2001 FFPE Infiltrating ductal carcinoma Stage | T1NOMO
FS2_BN2 Normal

FS2_BC3 2001 FFPE Infiltrating ductal carcinoma Stage IIIC T2N3MO
FS2_BN3 Normal

FS2_BC4 2001 FFPE Infiltrating ductal carcinoma Stage IIIA T2N2MO
FS2_BN4 Normal

FS3_BCH1 1993 FFPE Infiltrating ductal carcinoma Stage IIA T2NOMO
FS3_BN1 Normal

FS3_BC2 1993 FFPE Infiltrating ductal carcinoma Stage IIA T2NOMO
FS3_BN2 Normal

FS3_BC3 1993 FFPE Ductal carcinoma in situ Stage 0 TisNOMO
FS3_BN3 Normal

*CC, colon cancer; CN, colon normal; BC, breast cancer; BN, breast normal.

TTumor classification scale.

random hexamers and oligo-d(T),g, and total RNA (up to
1 ng), was incubated at room temperature for 10 minutes
and then at 42°C for 1 hour. The oligo-d(T) priming helps
improve assay sensitivity for fresh-frozen samples with
intact RNA. Pooled assay oligos were annealed to their
sequence-specific targets on the cDNA under a con-
trolled hybridization program.?' The cDNA was immobi-
lized on paramagnetic beads and washed to remove any
excess or mis-hybridized oligos. Hybridized oligos were
then extended and ligated to generate amplifiable tem-
plates, using lllumina-supplied reagents and conditions

(BeadStation User’'s Manual, Illumina). A PCR reaction
was performed with Cy3 labeled universal PCR primers.
Single-stranded PCR products were prepared by dena-
turation, and were then hybridized to Sentrix arrays under
a temperature gradient program.?! The arrays were im-
aged using a BeadArray Reader scanner (lllumina).?®
Image processing and intensity data extraction software
were as describe previously.?® The DASL assay was
performed three times independently, and samples were
hybridized to three different array matrices. The sample
and array coordinate information is shown in Table 2. All
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Table 2. Sample and Array Coordinates
Array matrix 1 Array matrix 2 Array matrix 3
Sample ID* Samples’ R? correlation® Samples R? correlation Samples R? correlation
FS1_CC2_FF + 0.989 + 0.991
FS1_CN2_FF + 0.989 + 0.982
FS1_CC4_FF + 0.997 + 0.985
FS1_CN4_FF + 0.994 + 0.976
FS1_BC2_FF + 0.991 + 0.996
FS1_BN2_FF + 0.979 + 0.978
FS1_BC3_FF + 0.994 + 0.990
FS1_BN3_FF + 0.992 + 0.962
FS1_CCH1 + 0.990 + 0.978
FS1_CN1 + 0.984 + 0.987
FS1_CC2 + 0.991 + 0.993 + 0.993
FS1_CN2 + 0.972 + 0.985 + 0.985
FS1_CC3 + 0.984 + 0.898
FS1_CNS3 + 0.994 + 0.983
FS1_CC4 + 0.970 + 0.965
FS1_CN4 + 0.991 + 0.985
FS2_CCH1 + 0.975 + 0.944
FS2_CN1 + 0.913 0.923 + 0.851
FS2_CC2 + 0.989 + 0.974
FS2_CN2 + 0.988 + 0.974
FS2_CC3 + 0.984 + 0.975
FS2_CNS3 + 0.980 + 0.970
FS2_CC4 + 0.977 + 0.979
FS2_CN4 + 0.994 + 0.987
FS3_CCH1 + 0.965 + 0.951 + 0.931
FS3_CN1 + 0.974 + 0.963 + 0.929
FS3_CC2 + 0.983 + 0.971
FS3_CN2 - —
FS3_CC3 + 0.974 + 0.972
FS3_CNS3 + 0.983 + 0.971
FS1_BCH1 + 0.989 + 0.984
FS1_BN1 + 0.978 + 0.945
FS1_BC2 + 0.992 + 0.982
FS1_BN2 + 0.817 + 0.732
FS1_BC3 + 0.994 + 0.994
FS1_BN3 + 0.978 + 0.974
FS1_BC4 + 0.994 + 0.994
FS1_BN4 + 0.930 + 0.900
FS2_BCH1 + 0.993 + 0.981
FS2_BN1 + 0.971 + 0.832
FS2_BC2 + 0.987 + 0.968
FS2_BN2 + 0.983 + 0.957
FS2_BC3 + 0.994 + 0.991
FS2_BN3 + 0.990 + 0.982
FS2_BC4 + 0.993
FS2_BN4 + 0.966
FS3_BCH1 + 0.979 + 0.957
FS3_BN1 + 0.985 + 0.952
FS3_BC2 + 0.987 + 0.981
FS3_BN2 + 0.983 + 0.931
FS3_BC3 + 0.977 + 0.968
FS3_BN3 + 0.969 + 0.912

*CC, colon cancer; CN, colon normal; BC, breast cancer; BN, breast normal; FF, fresh-frozen.
t+ Successfully assayed samples. —, Samples with which assay was attempted but failed.
*R2, correlation between expression profiles of technical replicates at the gene level.

of the array data are represented in Supplementary Ta-
bles 1-3 at http://ajp.amjpathol.org.

Array Data Normalization

Our method normalizes given array data with respect to
reference data such as an average of multiple replicate
arrays. We used cubic spline normalization that makes
distributions of gene intensities on a given array and

reference array similar. The normalization uses quantiles
of sequence type signals to fit smoothing B-splines sim-
ilar to what was proposed by Workman et al.>*

Expression Data Analysis and Clustering Algorithm

To identify disease- and tissue-specific markers, we per-
formed two separate analyses. 1) FFPE samples on Array
Matrix 2 were distributed into the following group pairs:
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Figure 1. Real-time PCR analysis of RNAs isolated from FFPE tissues with
different duration of storage. The Ct values (y axis) for two amplicons of
different sizes that monitor a highly expressed gene, RPL13A, were plotted
for each sample group (x axis): FF, fresh-frozen; FS1, 1 year; FS2, 2 years;
FS3, 9-11 years. The average difference in the Ct values (ACt) of the two
amplicons was derived from each sample group as —0.3 £ 0.1, 2.7 = 1.1,
4.2 * 1.1, and 5.8 = 1.0, respectively. The error bars represent the SD from
the mean.

colon normal versus colon cancer, breast normal versus
breast cancer, and normal breast versus normal colon.
We applied Mann-Whitney test with a P value cutoff of
0.01 and a twofold change requirement to identify marker
genes using FFPE samples. 2) We divided fresh-frozen
samples from Array Matrix 3 into colon cancer versus
colon normal and breast cancer versus breast normal
(two samples per group) and ran the algorithm using
negative controls in combination with rank invariant set of
probes for construction of an error model, as described
by Fan et al.'® Based on the array signals of selected
genes, we computed the correlation coefficient matrix for
the FFPE samples and clustered them using Agnes func-
tion in the R package with Ward’s method. The markers
identified from Array Matrix 2 were used to cluster FFPE
samples on Array Matrix 1 while markers identified on
Array Matrix 3 were applied to clustering FFPE samples
from the same matrix.

Results

Quality of RNAs Isolated from FFPE Tissues
with Different Durations of Storage

We used 8 fresh-frozen and 44 FFPE tissues (Table 1)
with time of storage ranging from 1 year to over 10 years
for this study. Total RNA was extracted from fresh-frozen
and FFPE tissues and converted to cDNA (see Materials
and Methods). Aliquots of the cDNA reactions were taken
for real-time PCR analysis. To assess the integrity of RNA
isolated from these FFPE tissues, we measured the am-
plification efficiency of two fragments (90 bp and 155 bp)
from a highly expressed gene (RPL13A). As shown in
Figure 1, the absolute Ct values increased with the stor-
age time, correlating well with previous observations that
RNA fragmentation increases with storage time."” In ad-
dition, a difference in threshold cycle (Ct) values was
calculated by taking the average Ct value of duplicate
samples for the amplification of the 90-bp fragment and
subtracting the average Ct value for the amplification of
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the 155-bp fragment. The difference reflects the level of
RNA degradation in the sample (ie, a bigger difference
means more degraded). No difference in amplification
efficiency was found in fresh-frozen samples, but the
difference increased with the age of the archival sam-
ples from which the RNA was extracted, and was up to
6 cycle numbers in FFPE samples older than 10 years
(Figure 1), indicating a high level of RNA degradation
in these samples.

To obtain reproducible gene expression results, we
used an RT-PCR test to pre-qualify the RNA samples
before array analysis. RT-PCR primers were designed to
target ~90-bp fragments in each of three housekeeping
genes: UBC, HPRT, and PBDG. Of the 44 samples
tested, only one sample (FS3-CN2) showed no amplifi-
cation in RT-PCR even for the highly expressed ubiquitin
C (UBC) gene. This sample also failed to produce any
gene expression data on the array.

DASL Assay Performance and Reproducibility

We examined the impact of input RNA quantity on assay
performance. Various amounts of total RNA (1000, 500,
250, and 100 ng) isolated from FFPE tissues were con-
verted into cDNA. Each cDNA sample was split to per-
form two independent DASL assays. Highly reproducible
results were obtained with as little as 50 ng of total RNA
(R? = 0.97). More importantly, as shown in Figure 2, gene
expression profiles generated with 50 ng (as well as 125
ng and 250 ng, data not shown) input RNA were quite
comparable with those generated with 500 ng of RNA (R?
= 0.95, on average). In standard clinical practice, it is
always difficult to get exactly the same amount of RNA
from different diseased tissues for study. Therefore, the
relative insensitivity of the DASL assay to the amount of
input RNA makes it readily adaptable to clinical settings.

We also compared the number of genes detectable by
the DASL assay in 16 RNA samples extracted from
paired fresh-frozen and FFPE colon and breast tissues,
both cancerous and normal. More than 90% of the genes
that were detected in the fresh-frozen samples were also
detected in their matching FFPE samples, when 200 ng of
total RNA was assayed. However, we observed that the
gene expression profile of the paraffin-embedded sam-
ples had weaker correlation with the profile generated
from the corresponding frozen samples (R = 0.69), pos-
sibly due to sequence-dependent differences in mRNA
degradation during tissue fixation and storage.

Lists of differentially expressed genes generated from
fresh-frozen and FFPE samples had highly significant
overlap (with the FFPE list containing ~50% less genes).
For example, at a 0.01 confidence level, 64 of 231 genes
were identified as differentially expressed in matching
fresh-frozen samples (FS1_CC2: colon cancer versus
FS1_CN2: colon normal), and 38 were differentially ex-
pressed in the corresponding FFPE samples. Twenty-
eight of these genes were in common, which gives a
significance of overlap of 1.0e-09, according to the Fish-
er's exact test,?® applied to contingency tables formed
from differential expression calls. For another matching
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Figure 2. Reproducible expression profiling with various amounts of input RNA. The assay intensity for lower RNA input (50 ng, x axis) is plotted against the
assay intensity for the same genes in the higher RNA input (500 ng, y axis) for six individual tissue samples.

pair, FS1_BC3: breast cancer versus FS1_BN3: breast
normal, 61 genes were identified as differentially ex-
pressed using fresh-frozen and 33 using FFPE samples,
with an overlap of 20 genes. The significance of this
overlap is 3.8e-05. Together, these results suggest that
sets of differentially expressed genes identified in FFPE
samples resemble those identified from fresh-frozen
samples.

All of the assays were done at a 1212-plex level, cor-
responding to 231 genes with 2 to 10 targeted sites per
gene. This experimental design allowed assessment of
the effect of the probe number on assay quantitation. Our
subsampling analysis showed that three optimally de-
signed probes performed comparably to four or more
probes with regard to their ability to detect expressed
genes as well as differential expression in RNA samples
extracted from both fresh-frozen and FFPE tissues. Fur-
ther lowering the probe number negatively impacted as-
say reproducibility. Probes optimized for fresh-frozen
sample RNAs performed equally well with RNAs ex-
tracted from FFPE samples. Since DASL uses random
priming in the cDNA synthesis, the probes can be de-
signed to target any unique regions of the gene. There is
no need to limit the selection of optimal probes to the
3’-end of the transcripts.

Cluster Analysis of Gene Expression Patterns in
FFPE Samples

To further test the strategy of using archival tissues for
cancer marker discovery, we generated expression pro-
files with paired (ie, “cancer versus normal” of same
individual) fresh-frozen samples (N = 4 for each tissue
type), and identified a subset of genes that distinguished
cancer from normal tissues with a significant differential
expression score (P < 0.001). 40 and 37 of these differ-
entially expressed genes were identified from a set of 212

cancer-related genes for colon and breast tissue, re-
spectively. Since we had a limited number of fresh-frozen
samples (two for each class), our list could contain genes
which simply reflect individual differences unrelated to
cancer status. Expression profiles of these genes from
FFPE samples (N = 21 for each tissue type) were then
analyzed using an agglomerative nesting clustering
method. The cancer and normal samples were separated
into two distinct clusters in both of the tissue types; and
cancer samples with the same clinical stage were clus-
tered together (Figure 3). Only one breast cancer sam-
ple, FS3-BC3 (Table 1, ductal carcinoma in situ, Stage 0)
was mis-clustered together with normal samples (Figure
3B), presumably because the selected cancer markers
are specific for more advanced cancer stages, ie, not
enough samples of this disease stage are represented in
the sample set. As a matter of fact, FS3-BC3 was the only
Stage 0 sample analyzed. All of the RNAs extracted from
the FFPE samples were prequalified using a RT-PCR test
(see above) before array analysis.

We also performed an alternate cluster analysis, in
which genes selected by differential expression analysis
from a set of 24 FFPE samples were used to cluster
another set of 25 FFPE samples assayed independently
in another experiment. The cluster analysis was done in
two steps: first, genes distinguishing colon from breast
tissue were selected. Based on these genes, we were
able to separate samples from the second group into
colon and breast tissue types with 100% accuracy. Sec-
ond, genes specific for colon cancer and breast cancer
were selected (similar to the analysis of the fresh-frozen
samples). Based on these genes, colon cancer samples
were separated from colon normal samples without mis-
take, while breast cancer samples were separated from
breast normal samples with one mistake (FS3-BC3).

Based on cluster analyses of both fresh-frozen and
FFPE samples assayed on Array Matrix 1 and 2, we
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Figure 3. Cluster analysis of FFPE samples. Agglomerative clustering was
based on the differentially expressed genes identified from fresh-frozen
samples. The distance between subclusters () axis, Height) measures the
divergence of their expression profiles.

generated a list of differentially expressed genes that can
distinguish colon cancer from colon normal tissue (SIM2,
HAR, MMP7, FGFR2, TMEPAI, CLU, PLAB, and human
skin collagenase) and a list of genes that can distinguish
breast cancer from breast normal tissue (HAR, FGF2,
calmegin, IGF-1a, MET, EGFR, ITGA6, IGF2, and
BMPR1B), each at a P value <0.01. We plotted the array
data for some of these genes—four for each tissue type
(Figure 4). Some of them were previously reported as
differentially expressed in solid tumors. For example, cer-
tain FGFR2 isoforms were previously reported as down-
regulated in 60% of prostate tumors;?® PLAB (MIC-1) was
shown to be overexpressed in gastric tumor tissues;?’
loss of FGF2 expression was associated with malignant
progression in breast; 28 increased IGF-I level in breast
cancer epithelial cells was linked to lower degree of
malignancy;°® and EGFR (ERBB1) was underexpressed
in 82% of breast tumors compared to normal breast
tissue.®® One of the genes which we identified as differ-
entially expressed in the cancer and normal colon tissues
was SIM2, a gene previously characterized as a solid
tumor marker.®"3? Together, these results demonstrate
that it should be possible to identify robust gene expres-
sion signatures in FFPE samples using an array-based
approach and standard classification algorithms.
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Figure 4. Box plots of the array data for selected cancer-specific markers.
Array intensities (y axis) were calculated for the four colon cancer markers
(A) and the four breast cancer markers (B) from both fresh-frozen and FFPE
sample analysis. For the colon cancer markers (A), 12 cancer and 12 normal
tissues were used. For the breast cancer markers (B), 11 cancer and 11
normal tissues were used. 500 ng of total RNA isolated from the FFPE tissue
blocks were used in each assay. The black bar represents the mean intensity
value. The gray box defines quartiles (25% and 75%, respectively). The
error bars are upper and lower adjacent limits (median = 1.5*IQR). Dots
represent the outliers. The Pvalues for the colon cancer markers are 7.40E-07
(SIM2), 0.0005 (PLAB), 0.0014 (FGFR2), and 0.0015 (human skin collage-
nase). The Pvalues for the breast cancer markers are 0.0002 (EGFR), 0.0010
(IGF-1a), 0.0035 (FGF2), and 0.0063 (calmegin).

Furthermore, seven colon cancer and four breast can-
cer-specific markers identified from the array analysis
were tested by gPCR with 46 individual samples (4 fresh-
frozen and 20 FFPE colon tissues, and 4 fresh-frozen and
18 FFPE breast tissues). Good correlations between the
threshold cycle (Ct) number and the array intensity for the
11 markers was obtained with the fresh-frozen samples
(R? = 0.88). However, poor correlations were observed
with the FFPE samples (R® = 0.41), mainly because the
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gPCR assay was less reproducible and less sensitive in
these samples. Individual FFPE samples are known to
have different degrees of RNA degradation,’” which in
turn dramatically affect the gPCR results (Figure 1). It was
previously reported, that to obtain faithful gPCR results in
FFPE samples, normalization based on multiple house-
keeping genes has to be used to correct for differences
arising from variability in RNA quality and total quantity of
RNA in each assay.'” Despite the poor quality of gPCR
data from FFPE samples, a consistent general trend was
observed, where low Ct numbers correlate well with the
higher array intensity in these samples (data not shown).

Discussion

RNA from FFPE specimens can be difficult to extract,
since the RNA becomes cross-linked and degraded dur-
ing the fixation and storage process; in addition, the
amount of tumor tissue in the FFPE specimen is often very
small. Therefore, it is essential to have a robust method to
retrieve high quality RNA from FFPE tissue efficiently.
There are various commercially available RNA extraction
kits for this purpose, but their comparison was not a goal
of this study. With our current protocol, similar expression
profiles were obtained with RNAs extracted indepen-
dently from the same paraffin tissue blocks (R® = 0.93).
To prequalify the RNA samples before array analysis, we
used a real-time PCR-based method to assess the intact-
ness of the RNA samples (Figure 1). Of the 44 samples
used in this study, only one (FS3-CN2) failed the test. We
found this approach more effective than using a combi-
nation of RNA quantitation and a gel-based size analysis.

The DASL assay combines the advantages of array-
based gene expression analysis with those of multi-
plexed gPCR,'® thereby offering much higher multiplex-
ing capacity and huge throughput and cost-saving
advantages. It uses as little as 50 ng of total RNA to
analyze 300 to 400 genes in FFPE samples, ~100-fold
less than what is required by gPCR, which usually uses
20 to 50 ng per reaction (per gene). The assay is highly
reproducible (see Figure 2 and Supplementary Table 1 at
http://ajp.amjpathol.org). Since many genes are mea-
sured simultaneously in one DASL assay, it provides an
excellent internal data normalization, thus solving a major
problem encountered by gPCR. This becomes very im-
portant when cross-sample comparisons are needed,
especially when the samples under study have different
degrees of RNA degradation.

Our results show that we can obtain reproducible gene
expression profiles with FFPE samples older than 10
years. 90% of the genes detected in fresh-frozen sample
RNA were detected with RNA from matching FFPE sam-
ples. Gene expression profiles of the FFPE samples do
not exactly correlate with those from the fresh-frozen
samples (R? = 0.69), presumably because of different
rates of RNA degradation occurring during the fixation
and paraffin embedding process and during storage.®
However, gene expression analysis within FFPE samples
should provide a powerful approach to discover molec-
ular signatures associated with a given disease state, or

histological or clinical phenotypes. This technology is
especially useful for determining cancer prognosis or
therapy response, because it allows not only prospective
analysis but also retrospective analysis. Using DASL,
gene expression analysis can now be performed on rou-
tinely stored tumor specimens from patients with known
outcomes. Our results showed that characteristic gene
expression patterns can be identified in FFPE samples for
a particular cancer type (Figure 3). We are currently
working on a prostate cancer prognosis project that is to
search for specific molecular markers that correlate with
the following clinical parameters: cancer classification,
tumor grade or tumor stage, organ confined disease
versus locally advanced tumors, therapeutic response,
and overall prognosis. The main tissues for study are
archived prostate carcinomas (N = 240) and benign
hyperplastic prostates (N = 60) with at least 5 years of
clinical follow-up.

We also demonstrated the utility of this strategy by
validating eight tissue and cancer-specific markers iden-
tified previously from fresh-frozen samples using Af-
fymetrix GeneChip microarrays. The eight genes were
assayed along with other 212 cancer-related genes in 51
fresh-frozen and FFPE samples including 26 breast and
25 colon tissues (Table 1). All four tissue-specific markers
were able to correctly identify the tissue of origin with a
typical tissue-specific expression pattern, and the cancer
specific markers were highly expressed in the tumor
samples and had significantly lower levels of expression
in the matching normal tissues (data not shown). Further-
more, the marker sensitivity and specificity measured by
the array analysis were compared to those determined
for gPCR with a subset (N = 36) of the FFPE samples.
Overall, the array analysis outperformed gPCR.

The DASL assay is a powerful technology for high-
throughput expression profiling of hundreds of genes in
hundreds to thousands of samples.'® We have now
shown that the DASL assay can be applied to clinical
FFPE samples, an important source of material that has
not been amenable to conventional microarray-based
assays. This opens up the possibility of a new generation
of microarray-based gene expression assays being ap-
plicable not only to routine clinical care but also to the
retrospective analysis of paraffin-embedded sample col-
lections obtained during clinical trials or from large pop-
ulation-based cohorts.
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