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Abstract

Associating genetic variation with quantitative measures of gene regulation offers a way to bridge the gap between
genotype and complex phenotypes. In order to identify quantitative trait loci (QTLs) that influence the binding of a
transcription factor in humans, we measured binding of the multifunctional transcription and chromatin factor CTCF in 51
HapMap cell lines. We identified thousands of QTLs in which genotype differences were associated with differences in CTCF
binding strength, hundreds of them confirmed by directly observable allele-specific binding bias. The majority of QTLs were
either within 1 kb of the CTCF binding motif, or in linkage disequilibrium with a variant within 1 kb of the motif. On the X
chromosome we observed three classes of binding sites: a minority class bound only to the active copy of the X
chromosome, the majority class bound to both the active and inactive X, and a small set of female-specific CTCF sites
associated with two non-coding RNA genes. In sum, our data reveal extensive genetic effects on CTCF binding, both direct
and indirect, and identify a diversity of patterns of CTCF binding on the X chromosome.
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Introduction

A major challenge in human genetics is to understand the

mechanisms that link variation in genomic sequence to phenotypes

of interest, including disease. Since 2005, a growing number of

genome-wide association studies (GWAS) have associated both

disease and normal phenotypes with over 9,800 single nucleotide

polymorphisms (SNPs) [1]. Association studies can identify either

causative variants or SNPs in linkage disequilibrium (LD) with the

causative variant. Considerable effort has been invested in

identifying potential causative variants, because this is essential

to understanding the mechanistic route from the change in

genomic sequence to final phenotype. The majority of the loci that

have been found are not in strong linkage disequilibrium with a

protein coding variant, suggesting that a change in a non-protein

coding DNA sequence is often responsible for the phenotypic

effect [2].

One route to finding intermediates between genotype and

whole organism phenotype is to study the effect of genetic variants

on gene regulation. New technologies such as microarrays and

RNA sequencing (RNA-seq) have enabled quantification of

transcript levels for every gene in a genome. Similarly, genome

wide measurements of transcription factor occupancy and

chromatin structure via chromatin immunoprecipitation followed

by sequencing (ChIP-seq) [3] and DNase I hypersensitivity assays

[4–7] have made it possible to quantify the state of upstream

activities important for regulating transcription. Using DNase I

hypersensitivity and binding assays for the CTCF transcription

factor on two family trios with known genome sequences, we

showed that allele-specific binding patterns consistent with strong
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genetic effects could be readily measured at heterozygous sites [8].

Other studies have shown allele specific binding of RNA

polymerase and NF-kB binding measured across a small number

of individuals [9], or of a wider range of transcription factors in a

single cell line [10]. Similarly, differences between mouse strains in

binding of PU-1 and CEBP/a at enhancer regions correlate with

sequence differences and adjacent gene expression [11]. Intrigu-

ingly, some sites with prominent SNPs in the binding motifs of

CTCF did not show a genetic effect in a study of its binding across

an extended family [12]. Reciprocally, differences in transcriptor

factor binding were seen between closely related species even

where there was no sequence difference in the binding region [13].

In order to examine these phenomena further, and infer

potential causative connections to disease GWAS results, we need

to identify specific cases where a genetic variant affects a binding

site. To do this we can use a genetic association study, as in

GWAS, that searches for statistical association of genetic variants

to quantitative measurements taken across samples. The variants

with statistically significant association are known as quantitative

trait loci (QTLs). When applied to transcript expression levels as

the measurements on 60 or more samples, this approach has

identified thousands of expression quantitative trait loci (eQTLs)

[14–16]. A QTL study of human open chromatin [17] found

8,902 DNase I hypersensitivity sites that were correlated with

genetic variants. However, there are currently no systematic

association studies of how genetic variation in human populations

affects the binding pattern of a specific transcription factor. Here

we carry out such a study.

To identify transcription factor binding QTLs, we measured the

binding of CTCF across a panel of cell lines. CTCF is a highly

conserved multifunctional protein that serves as both a transcrip-

tion factor as well an insulator binding protein, preventing

interactions between enhancers and promoters and demarcating

chromatin domains. Working with cohesin, CTCF can also

mediate chromosomal looping interactions, and is involved in

imprinting as well as X-inactivation (see [18,19] for reviews).

There have been extensive locus specific studies [20–26] and

specific genome wide screens [27–30] demonstrating the different

roles of CTCF in different circumstances. Studies by ourselves and

others have shown the extent of genetic effects on CTCF binding

in families [8,12], although specific loci underlying these effects

have not been identified.

We used ChIP-seq to measure CTCF binding in 51 lympho-

blastoid cell lines (LCLs) from the HapMap CEU population, each

of which had already been sequenced as part of the 1000 Genomes

Project [2] and had been subjected to RNA-seq analysis [31]. Our

data and analysis identified thousands of CTCF binding QTLs

across the human genome. These data, together with the available

full genome sequence of the cell lines, allowed us to explore

parameters of genetic effects on protein-DNA binding. For

example, we defined the relationship of the QTL location to the

TF binding motif, estimated the relative impact of substitutions

and insertions/deletions (indels), and measured whether allele-

specific differences are indicative of population-wide variation.

Furthermore, our study revealed a previously uncharacterized

mode of CTCF binding on the X chromosome. In human females

(XX), one X chromosome is randomly inactivated and does not

express most protein coding RNAs (reviewed in [32]). Thus for

most X chromosome genes, both male and female cells have just

one active locus, resulting in dosage compensation between the

two sexes. The X-inactivation process requires expression of the

non-coding RNA Xist from the inactive X. When we looked at

CTCF binding on the X chromosome across our samples, we

observed three distinct classes of CTCF binding sites. One major

class was sensitive to X inactivation such that the active X showed

stronger binding. Another class showed similar binding by CTCF

on both X chromosomes, and the third, minor class of sites

exhibited female specific binding.

Results

Analysis of CTCF binding in 51 genotyped individuals
reveals thousands of binding QTLs
We performed ChIP-seq on extracted chromatin from geno-

typed LCLs as previously described [33] except that we sequenced

the DNA fragments from both ends (Figure 1) (Materials and

Methods). We quantified binding to binding regions similarly to

previous work [33] but pooled all the samples and identified a

composite set of binding regions with detectable CTCF binding at

low threshold. We then counted the sequence fragments that

overlap each binding region in each individual, and normalised

the signal to correct for systematic biases as in Degner et al [17].
We discarded binding regions that showed very little inter

individual variance or had only one or two individuals with

significant binding scores. Overall, our normalized data showed

good consistency across all 51 individuals, as well as variation in

signal sufficient to motivate QTL analysis (Figure 1B).

To measure the variance due to growth differences between the

cells, we grew two individual cell lines as four independent cultures

started on four consecutive days. There was higher correlation

between these biological replicates from the same individual than

between samples from different individuals, although all data sets

were modestly correlated as expected for CTCF ChIP-seq (Figure

S1). We next examined the data to see whether there were any

systematic biases between samples. A principal component analysis

identified some systematic variance, with a particularly strong first

component (24.1%, Figure S2) that on investigation was correlated

to known experimental batches. We therefore removed the first

principal component, significantly improving the recovery of

QTLs (Figure S3, Methods). We used the resulting normalised

adjusted binding intensity (NABI) for subsequent analyses.

To discover QTLs, we looked for correlations between the

NABI measures and SNPs and small biallelic insertion or deletion

(indel) variants within 50 kb of the relevant binding region, using a

linear model (Table 1, Example in Figure 2A; see Methods). As

expected, the majority of variants do not have a significant

association with variation in CTCF binding, with the linear model

P-value distribution following the expected distribution (.95% of

tests, fraction of the overlap between the black line and red line,

Author Summary

We have systematically measured the effect of normal
genetic variation present in a human population on the
binding of a specific chromatin protein (CTCF) to DNA by
measuring its binding in 51 human cell lines. We observed
a large number of changes in protein binding that we can
confidently attribute to genetic effects. The corresponding
genetic changes are often clustered around the binding
motif for CTCF, but only a minority are actually within the
motif. Unexpectedly, we also find that at most binding
sites on the X chromosome, CTCF binding occurs equally
on both the X chromosomes in females at the same level
as on the single X chromosome in males. This finding
suggests that in general, CTCF binding is not subject to
global dosage compensation, the process which equalizes
gene expression levels from the two female X chromo-
somes and the single male X.

Quantitative Genetics of CTCF Binding
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Figure 1. A. Flow chart indicating the overall design of the experiment. CTCF binding was identified and quantified using ChIP-seq data. Raw data
was normalised to adjust for variations introduced by the experimental steps. A consolidated genotype set was produced using genotype data from
three data sources. A linear regression approach was then used to identify associations between genotype dosages and CTCF binding intensities. The
result set was obtained at a 1% FDR level. B. Overview of the binding intensities of a binding site across samples in three genotype groups of the
associated SNP. ChIP-seq signal from the samples is aligned as tracks for this region of chromosome 3. The greyness is proportional to fragments

Quantitative Genetics of CTCF Binding
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Figure 2B). When samples are permuted, the distribution of the

test statistic falls on the expected line (see Figure S4). Using a non-

parametric statistic we saw similar P values (Figure S5). Using a

Bonferroni adjusted threshold of P,3.8E-9 (See details on

association testing in Methods) we find 509 binding regions with

significant QTLs. Using a more liberal False Discovery Rate

(FDR) [34] approach to take advantage of the smaller number of

effectively independent tests occurring in these limited cis-regions,

we discovered 1,837 binding regions (3% of total binding regions)

with at least one significant variant at the 1% FDR level; relaxing

the threshold to 10% FDR we discover 6,747 binding regions

(12% of the total) (Table 1).

We chose to focus further analysis on the 1% FDR threshold as

this provided ample QTLs from which to derive insights. We only

considered one association per binding region, because the small

number of samples meant that there was insufficient power for a

conditional analysis for secondary associations in almost all cases.

Within this set of associations, the genetic variant accounted for a

substantial fraction of the variation in CTCF binding (median R

square 0.38).

We summarised the collective set of variants which might be

involved in each binding region association as being the cluster of

SNPs within one order of magnitude of the P-value of the lead

variant. 24,534 variants were identified in at least one cluster at the

1% FDR level, 13.4 variants on average per binding region

(Table 1). As expected, these variants were mainly clustered

around the target binding region, and when a CTCF binding

motif could be identified (1341 of the 1837 cases) and a cluster

QTL variant was present in the motif, the frequency was

correlated with the information content of the motif (Figure 2C),

as seen previously [12]. However, only a minority of significant

binding regions had a QTL candidate within the motif (433/

1341), and in only a small majority of cases there was a QTL

within 1 kb (747/1341), of the binding region (Table 2).

We explored further the cases where there was no proximal

variant in the cluster. There was not a substantial difference in

genotype quality around the associated binding regions in these

cases compared to binding regions with proximal effects,

suggesting that there is not a large missing data problem. When

considering all 1000 Genomes Project variants including those

with allele frequency below 5%, in 95.5% of these cases, there was

a proximal variant within 1 kb of the binding region in linkage

disequilibrium (LD) with the distal lead variant, where LD was

defined as the absolute value of D9.0.5. In approximately half of

these cases the P-value of the proximal association either fell just

outside the one order of magnitude threshold to fall in the cluster,

or was just under the FDR threshold (Figure S6). In the 99 such

cases where such a proximal variant was within the CTCF binding

motif, the position of the variant was correlated with the

information content of the position in the motif (Figure S7).

Therefore a substantial fraction of the apparently distal cases

appear to be explained by proximal cases. However still only a

minority can be explained by variants in the binding motif.

We also conducted the analysis excluding short indels to

replicate the more commonplace association analysis using only

SNPs. In an indel-free analysis we would have missed QTLs in 67

binding regions entirely (,5% of significant binding regions), and

for 56 additional binding regions the closest observed explanatory

SNP would have been over 1 kb away from the motif inside the

peak. For these SNPs, there is usually a short indel with similar

direct P-value inside the binding region. We further explored

whether another cause for distal QTL effects could be due to the

distal variant affecting a second neighbouring binding region,

which in turn influenced the primary binding region, but there was

only one case where we could find any evidence for this model

(Figure S8). We additionally investigated the cases where there

exist binding interactions between the QTL binding region and

the neighboring region. We observed corresponding changes in

histone modifications depending on the direction of the interac-

tions between two binding regions (Figure S9, S10).

The effect size distribution with respect to allele frequency

shows increased effect sizes for lower frequency SNPs, with a clear

absence of large effects of common alleles (Figure S11). There is no

statistical difference in effect size distribution between SNP and

indel variants (Figure S11).

The dual-end sequencing of the ChIP-seq fragments provides

the resolution to discover specific binding modes that influence the

spatial distribution of the recovered fragments. To analyse this, we

characterised ChIP-seq binding regions by metrics that summa-

rised the extent of the peak and the position of the summit on a per

individual basis, and used these additional metrics as phenotypes

in a quantitative trait analysis using the methods described above.

We found 25 shifts in peak shape driven by a genetic locus at the

1% FDR. Ten cases were also associated with a change in peak

height. An example is shown in Figure 3, with the two

homozygous genotypes showing the creation of a new associated

peak, and merging of a double peak, and from visual inspection

the other cases also look as if they can be explained as two CTCF

mapped at the position, indicating binding intensity, with dark grey indicating high fragment count. Samples are grouped by their genotype at SNP
rs936266, C/C, C/T or T/T, respectively. Binding sites were identified, as shown in the binding region track along with the number of samples passing
the peak calling threshold. The colours of the binding regions represent the consistency of identifying the binding region across samples. Specifically,
red binding regions were identified in 10 or more cell lines, blue binding regions in 5–9 cell lines and green binding regions in 2–4 cell lines. Finally
the bottom track shows the corresponding CTCF motifs, with quality score attached to each site. The binding intensity decreases for T heterozygotes
and further for T homozygotes. The inset panel shows allele-specific binding for the C and T allele (blue and red, respectively) in the heterozygous
individuals (C/T) as percentage of the total count. Binding intensities consistently favour the C allele over the T allele.
doi:10.1371/journal.pgen.1004798.g001

Table 1. Summary statistics of the CTCF QTL scan.

Study Parameters

Traits (BRs) 57,428

Variants 4,687,317

SNPs 4,250,881

Indels 436,436

Study results

BRs 1,837

Variants 24,534

SNPs 22,954

Indels 1,580

GWAS overlaps 61

eQTL overlaps 366

doi:10.1371/journal.pgen.1004798.t001
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peaks in close proximity, one or both of which is under cis-genetic
control.

There are 61 CTCF QTL variants that overlap with disease

and trait associated variants from other studies (GWAS Catalog

[1]). In particular there is a disproportionate overlap with immune

system related diseases (20 variants; Chi-sq P-value 1.7E-9). This is

consistent with the lymphocyte origin of LCLs, and suggests a

causal pathway for CTCF binding in the molecular aetiology of

the disease phenotype in at least some cases. However many of

these variants fall within the MHC locus, and a full causal analysis

would need to take account of the complex LD structure there.

In summary, these results are consistent with previous studies

[9,10,12,13] that observed substantial variation in transcription

factor binding within and between species, only a minority of

which could be accounted for by genetic differences in the binding

site. We also found that only 25.7% of our QTLs could be

explained by a genetic variant in the motif. The majority of the

remainder can be explained by changes within 1 kb of the motif,

Figure 2. Overall properties of CTCF QTLs. A. All associations for all variants in the region of the binding region at chr3:108125397–108125829.
SNPs are shown as solid circles and INDELs are shown as triangles, coloured by r2. Inset is boxplot showing the normalised adjusted binding intensity
(NABI) for the different possible genotypes of SNP rs936266. Genotype is strongly associated with the binding intensity of the binding region at
chr3:108125397–108125829 (P = 1.69E-19), with the C allele favoring binding. B. A quantile-quantile plot showing the distribution of the observed (y-
axis) compared to the expected P values(x-axis). The red line is the distribution of the P values from the null model. The blue line on the y-axis shows
the 1% FDR level determined by the q value method [34]. C. The density of QTL variants with respect to distance from the motif of the associated
binding regions. Density plots are shown at kb (inset) and base pair resolution (main plot). SNPs and INDELs are shown as black and red bars
respectively. For these cases the QTL density correlates with the information content of the motif (Spearman rank rho = 0.63) shown at the bottom.
doi:10.1371/journal.pgen.1004798.g002
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consistent with observations that transcription factor binding

differences between mouse strains are more likely if there are

genetic differences within 200 bp of the binding site [11]. However

there remain some genetic associations for which we are not able

to identify any proximal candidate, suggesting that longer range

influences can make some contribution to CTCF binding.

Allele-specific bias analysis of CTCF binding provides
independent confirmation of QTLs
This data set represents an excellent resource to directly

examine allele-specific biases in TF binding at heterozygous sites

in a larger set of individuals than previous studies [8]. Allele-

specific binding refers to statistically significant biases in binding to

the two alleles in a diploid cell, at sites where a heterozygous

polymorphism allows the two alleles to be distinguished. Allele-

specific binding thus is an independent way of assessing how

genetic variants at binding sites might affect binding variation.

Although the two alleles at heterozygous SNPs are normally

referred to as the reference or alternate allele (referring to which

base is found in the reference genome sequence and which is the

alternate base), here we chose to categorize the two alleles as

ancestral (shared with chimp) or derived (human specific). This has

two advantages. First, any residual effect of biases in aligning

sequence reads to the reference allele will be minimized. Second,

measuring allele-specific binding in terms of the ancestral and

derived allele provides information about how evolutionary

changes might affect CTCF binding.

After processing the reads, we identified allele-specific statisti-

cally sites using a binomial null model of equal occupancy of both

alleles at heterozygous sites, using a 5% FDR corrected threshold

(see Methods). This process identified 589 SNPs that have

replicated in at least two individuals showing significant allele-

specific bias. We examined the allele counts of all heterozygous

individuals at these 589 SNPs. For most sites (91.5%) the allele-

specific biases were consistent between individuals, confirming the

predominantly genetic basis of allele-specific binding (Figure 4A).

At such sites, the same ancestral or derived allele was preferred for

binding across 2 or more individuals.

However, there were 50 (8.5%) sites which showed significant

but opposite allele-specific biases between two or more individuals.

Six of these 50 sites could potentially be explained by virtue of

being close to loci known to be subject to allelic exclusion (the

Immunoglobulin heavy chain), a process that affects one allele

randomly (see Discussion). One site lies in the KCNQ1 imprinted

locus, where the regulatory status depends on parent of origin

rather than genotype. The 46 other sites at which the allele-

specific binding bias switches between individuals (Table S1) could

represent new random allelic exclusion loci or imprinted sites, or

could arise because the site at which we see allele specificity is

incompletely linked with the causal variant [35]. We tested

whether there was a SNP which specifically explained the allele

specific switching site; for 28 cases this was the case. We are not

able to directly test whether any of these sites could be due to

imprinting because parent-of-origin information is not available

for the heterozygous alleles of these individuals.

Interestingly, a significant majority (68%, P,1E-16) of the

SNPs showed increased binding to the ancestral allele (Fig-

ure 4A). Alignment bias towards the reference allele has been

reported before [8] and because the ancestral allele is more likely

to be the reference allele, the increased binding to the ancestral

allele could be the result of the alignment bias. To rule out this

possibility, we analyzed the cases where the ancestral allele is the

alternate allele and found that the binding bias remained towards

the ancestral allele (Figure S12). Additionally, we repeated the

allele-specific analysis after using a variant-aware aligner (see

Methods). The results were largely identical to what we observed

as described above, indicating that the preference for the

ancestral allele is not a trivial outcome of any alignment bias

(Figure S13).

The allele-specific signal at binding regions (intra-individual

measurements) mostly correlated linearly with the QTL effect size

(inter-individual measurements) (Figure 4B). There were however

exceptions to this, and these were mainly cases in which there was

an allele-specific signal but not inter-individual QTL. We did not

observe QTLs with strong effect size in binding regions that did

not show strong allele-specificity (Figure S14).

Interactions between CTCF and the X chromosome
suggest novel binding modes
While exploring the correlation of between CTCF sites, we

observed an unexpected behaviour of CTCF signal on the X

chromosome. Strikingly, for 87% of CTCF sites on X (excluding

the pseudoautosomal regions) there was a strong gender effect (P-

value ,0.01, Mann Whitney on gender); in nearly every case

females have a significantly higher signal on average than males.

The higher peak amplitude observed in females indicates, in effect,

that the vast majority (87%) of CTCF sites on the X chromosome

are occupied on both chromosomes. This is in contrast to the

transcription of protein-coding mRNA (3% not compensated, i.e.

X-inactivation escape genes), ncRNA (9%) [35] or other

transcription factor occupancy as measured by DNase I (4%)

(data from Degner et al [17]). We created a simple metric of the

relative levels of activity, being the difference between the average

male and average female signal, in each case adjusted for library

depth as for the QTL analysis (Figure 5A and B). Protein coding

mRNA and the majority of DNase I sites are consistent with only

one active chromosome, leading to dosage compensated mRNAs(-

reviewed in [32]). As expected, there is a larger set of female

specific ncRNAs, in particular the three XIST transcripts

(Figure 5A). Using the Mann Whitney test of gender bias per site,

we classified sites first as having significant bias, and then split the

significant bias to cases consistent with balanced haploid

behaviour, which we call ‘‘both-active’’ sites, and a small number

of female-specific sites where there is a strong CTCF signal for

females but almost no signal in males (Figure 5B). The remaining

CTCF sites, which show similar levels between males and females

Table 2. CTCF QTLs with associated variants in different distance ranges.

Significance Binding region count Motifs in binding regions QTL in Motif #1 kb #10 kb #30 kb

10% FDR 6747 5260 550 1386 2583 4057

1% FDR 1837 1341 433 747 1023 1199

BONF 509 360 164 258 322 341

doi:10.1371/journal.pgen.1004798.t002

Quantitative Genetics of CTCF Binding
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we describe as single-active. The both-active sites and the single-

active sites are evenly distributed along the chromosome

(Figure 5A), and the XIST site and two clusters of female specific

sites are obviously distinct from the rest.

We first confirmed that the single-active and both-active sites

represent different modalities of CTCF binding, using intra-

individual allele-specific analysis and independent DNase I data.

LCLs are Epstein Barr Virus (EBV) transformed lines from a

mixed B-cell population, and can be clonal or polyclonal, so that

some female-derived LCLs show consistent or clonal X inactiva-

tion, whereas others have a mix of both X chromosomes being

inactivated. Because we cannot assume that our LCL lines were

clonal and therefore have consistent X inactivation, we first

assessed the 17 female cell lines for clonal X inactivation status

using heterozygous SNPs in genes known to be silenced on the

inactive X [36], and selected the 13 lines with consistently skewed

expression of these genes indicating consistent X inactivation

(Methods). In these 13 lines, heterozygous SNPs in CTCF binding

regions showed strikingly different behaviour between the single-

active and both-active sites. The single-active sites showed strong

allele-specific CTCF binding behaviour (similar to mRNA)

whereas the both-active sites showed balanced signal over the

two alleles from the very same samples (Figure 5C). In addition,

we projected the DNase I data from the independent Yoruban cell

lines onto the CTCF classification. For the 451 DNase I sites

overlapping the CTCF sites on the X chromosomes, there was a

strong concordance of this independent assay, performed on

independent cell lines, with the classification of CTCF sites

(Figure 5D). Both these analyses strongly support the finding that

there are two major distinct types of CTCF binding sites on the X

chromosome, with the both-active sites being bound on both the

active and inactive X chromosome and the single-active sites being

bound on only one chromosome (most likely the active X

chromosome).

We then explored differences between these two classes of

CTCF sites, using the ENCODE data from the GM12878 LCL

Figure 3. Example of CTCF peak shape QTL. Reads for samples in each homozygous genotype group at QTL rs11935835 were merged (AA and
CC, respectively), and the average CC genotype profile is plotted in blue and the average AA genotype in orange. The AA genotype has stronger
overall binding, with a second peak to the left, whereas the CC genotype has a double peak. The heterozygote has intermediate profile between
these two (not visualized in this figure). The binding region is marked as a black line with the SNP position marked by a red vertical dash.
doi:10.1371/journal.pgen.1004798.g003

Quantitative Genetics of CTCF Binding
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[37], derived from a female individual. The majority of histone

modifications associated with active chromatin (H3K4me4,

H3K27ac) showed strong enrichments in the single-active class

of CTCF sites but not in the both-active class, even when we

excluded promoters (Figure 6A). The repressive histone mark,

H3K27me3, implicated in X chromosome inactivation, is similar

between both classes of sites. Interestingly both classes showed

nucleosome phasing (Figure 6B) albeit stronger at the both-active

sites. There is not a striking change in Cohesin co-binding, as

shown by overlap with Rad21 and SMC3 (Figure S20). The

mammalian conservation of the two classes of CTCF sites is high

and approximately similar (62% for single-active sites overall with

GERP conserved elements, and 53% for both active sites),

showing that both classes have been under selection across

mammalian evolution. Overall there is strong evidence for a

dramatic distinction of these two classes of sites in terms of local

chromatin behaviour. When we considered histone marks from a

smaller set of cell lines, but with a broader set of marks we do not

observe the same set of gender-biased signals except for

H3K27me3, consistent with it’s role in X inactivation. (Figure

S21).

We then turned to the 23 female-specific sites. These sites were

concentrated in two loci overlapping non-coding RNAs (X56 and

X130), largely identical to sites previously identified as being

involved in a repeat-specific X chromosome behaviour [38].

Although there are far fewer sites to analyse than the other classes,

the female specific sites are all enriched for binding to YY1, which

is known to tether XIST to the inactive X nucleation centre [39].

Horakova et al [38] explored the RNA expression of these

ncRNAs in female cells; we performed fluorescence in situ
hybridization (FISH) for RNA in both male and female cells.

Consistent with the published results [38], we detected RNA from

the active X at these loci in female cells (Figure 7A). In male cells

we also detected RNA expression (despite the female specific

nature of the CTCF sites, Figure 7B), suggesting that these CTCF

sites are likely to be involved in a female-specific inactivation

process at these loci. Using the data from Kilpinen et al, we can

show that these sites are active in female lymphoblastoid cell lines,

but not male (Figure S23). It is notable how few of these sites there

are on the X chromosome, compared to the far more numerous

single-active and both-active categories.

We then turned to the 23 female-specific sites. These sites were

concentrated in two loci overlapping non-coding RNAs (X56 and

X130), largely identical to sites previously identified as being

involved in a repeat-specific X chromosome behaviour [38].

Although there are far fewer sites to analyse than the other classes,

the female specific sites are all enriched for binding to YY1, which

is known to tether XIST to the inactive X nucleation centre [39].

Horakova et al [38] explored the RNA expression of these

ncRNAs in female cells; we performed fluorescence in situ
hybridization (FISH) for RNA in both male and female cells.

Consistent with the published results [38], we detected RNA from

the active X at these loci in female cells (Figure 7A). In male cells

we also detected RNA expression (despite the female specific

nature of the CTCF sites, Figure 7B), suggesting that these CTCF

sites are likely to be involved in a female-specific inactivation

process at these loci. It is notable how few of these sites there are

on the X chromosome, compared to the far more numerous

single-active and both-active categories.

Discussion

This study is the first systematic association based analysis of

how normal genetic variation in humans affects the binding of a

sequence-specific transcription factor, where the binding is

measured as a quantitative trait. The properties of the binding

quantitative trait loci (QTLs) that we identified are consistent with

and extend previous smaller-scale studies of how genetic variation

Figure 4. Properties of allele specific CTCF sites. A. Summary of allele-specific analysis. SNP loci that show significant allele-specific CTCF
binding in at least 2 samples are included. The y-axis represents the proportion of the total read counts from the ancestral allele. The 589 SNP loci are
ordered by mean proportion ancestral allele for all heterozygous samples (black line). Heterozygous samples that do not pass the allele-specificity
threshold are shown as light gray points. Significant and consistent allele-specific samples (ie. the binding bias is toward the same allele) are
represented by red triangle points. Significant but inconsistent samples are either blue square (inconsistency explained by the nature of the site) or
green diamond (inconsistency unexplained). B. Allele-specificity correlates with QTL effect size (BETA). The mean proportion reference allele count for
all heterozygous samples at SNP loci that show significant allele-specificity in at least 2 samples are plotted against the QTL effect size (BETA) at that
locus. Only the BETA values from associations where the SNP is located within the associated binding region are shown.
doi:10.1371/journal.pgen.1004798.g004
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affects CTCF binding [8,12], as well as similar analyses of

chromatin QTLs underlying DNase I hypersensitive sites [17]. We

find a large number of QTLs, with the majority being within or

close to the binding region, and approximately a quarter inside the

bound CTCF motif. By using 1000 Genomes Project cell lines, we

can be reasonably confident that we have a full catalog of common

variation of which some subset are the causal variants. Using this

information we could show that for a large fraction of the

associations where the initial analysis suggested a distal variant

more than 1 kb away, there was a plausible causal candidate also

within 1 kb of the binding motif. Overall this suggests that, at least

for CTCF, the substantial majority (,75%) of common genetic

variants in the region with a reasonably strong effect on its binding

lie within 1 kb of the binding motif, although only a minority are

actually within the motif. This clarifies previous observations that

genetic variants contributing to transcription factor binding were

typically not in the motif itself [9,13] but there was enrichment

nearby [11].

We see hundreds of sites showing allele-specific binding. The

idea that allele-specific events have similar effects inside one cell as

genotypic effects do between individuals is commonplace [40].

Here we show that these two effects are well modeled by a linear

relationship (at least for this assay), though with an interesting

subset of allele-specific sites that show no QTL. In contrast there

are few QTL loci that overlap binding regions without an allele-

specific signal.

As expected, some of the allele specific sites switch specificity

between the alleles in different samples, consistent with a nearby,

incompletely linked causal allele, random allelic inactivation or

parent-of-origin imprinting. Many of these sites can be explained

by an incompletely linked nearby locus, highlighting that the

causal variant is often not co-incident with the binding region.

Finally with more confident mapping of reads from paired read

ChIP-seq data we are able to show that a consistent signal towards

reference alleles is in fact predominantly due to a biological effect

favouring ancestral alleles (at least for the CTCF transcription

Figure 5. Properties of X chromosome CTCF sites. A. Plot of the metric to distinguish single-active from both active-sites, across the X
chromosome for a variety of molecular assays (mRNA, ncRNA, DNase I and CTCF, coloured according to the key). B. A smooth density of the distribution
of the dosage compensation fit for the 4 molecular assay types, with CTCF split into the 3 classifications (single active, both active and female specific). C.
Allele-specific signal of heterozygote sites on the X chromosome from the 13 clonal female lines in the sample. The both-active sites show balanced
allele-specificity, whereas the single-active sites show strong single allele CTCF binding. D. Box plot of the gender-specific behaviour of the DNase I assay
at the major classes of X chromosome CTCF sites. DNase I data was collected in a different laboratory on different cell lines [17]. The both-active class
shows a strong gender split, consistent with females having around double the signal, whereas the single-active sites show no gender change.
doi:10.1371/journal.pgen.1004798.g005
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factor). This suggests that base pair changes segregating in the

population tend to reduce binding of existing sites (rather than

create new sites), at least for CTCF, and this is consistent with

CTCF motif creation occurring by non-base pair changes, e.g.

repeat deposition, as suggested in Schmidt et al [41].
We were initially surprised by the strikingly different behaviour

of CTCF on the X chromosome compared to gene expression.

Unlike transcribed genes, a large proportion of CTCF sites behave

in a similar manner on both chromosomes. This is due to the same

sites being bound on both the active and inactive X chromosome

in females, as shown by the distribution of CTCF signal, the

corresponding change in DNaseI signal in entirely separate cell

lines and the lack of allele-specific signals in heterozygote sites in

this class. This suggests that there is a subset of CTCF sites on the

X chromosome that is bound on both copies despite the striking

large scale compaction of the inactive X. This X chromosome-

wide behaviour of CTCF is a very different phenomenon to the

locus-specific interaction at the Xist/Tsix locus implicated in

determining which X chromosome is inactivated [42,43].

This observation has a number of implications. It is consistent

with the multi-functional nature of CTCF, which has been

commented on many times before in locus-specific [20–26] or

specific genome-wide screens [27–30]. In this study we only

examined behaviour in lymphoblastoid lines, and there might be

cell type specific differences as well. Single-active sites show

histone modifications and TF co-binding consistent with involve-

ment with regulating expression on active chromatin. In contrast,

the both-active sites show far less complex histone modification,

consistent with structural functions that might apply to both

chromosomes. Finally although we discovered this phenomenon

on the X chromosome due to how these sites interact with X

chromosome inactivation, it is consistent with the different binding

behaviours of CTCF seen on the autosomes, with a diversity of

different histone modification patterns at different CTCF sites

[37].

The female-specific CTCF sites on the X chromosome are a

very distinct subset; these are placed mainly over two non-coding

RNAs expressed from the active X in females and males. The

simplest explanation is that CTCF binding at these sites is involved

in transcription repression on the inactive female X chromosome.

This catalog of CTCF QTL sites is part of a growing set of

molecular assays that are being examined in outbred individuals

(for example, see [12,17,40,44,45]). It provides a specific

hypothesis for the 63 disease related loci which overlap these

QTLs, and for future overlaps with other molecular, cellular and

disease related phenotypes. The gradual unraveling of the different

variant effects on different molecular behaviour will provide a

growing understanding of molecular and physiological processes in

health and disease.

Materials and Methods

ChIP-seq
Cells were cross-linked with 1% formaldehyde for 7 min at

room temperature. Formaldehyde was deactivated by adding

glycine. Chromatin from harvested cells was sonicated with a

Bioruptor to an average size of 500 bp DNA. Immunoprecipita-

tion was performed using sonicated chromatin by adding anti-

CTCF antibody (Millipore 07-729). ChIP DNA was used to

generate a ChIP-seq library according to the standard Illumina

Figure 6. Chromatin behaviour around X chromosome sites. Aggregated signals for histone modifications (A.) and nucleosome positioning
by micrococcal nuclease sensitivity (B.) at X chromosome binding regions split by single-active (top panels) and both-active (bottom panels) classes.
Only binding regions distal to promoters are shown. Equivalent plots for binding regions including promoter regions are shown in Figure S19.
Histone modifications are indicated by colour as described by the key below the plots. Signal data comes from GM12878 from the ENCODE project
[37] and shows the average fold enrichment for this region against random Poisson distribution with local lambda.
doi:10.1371/journal.pgen.1004798.g006

Quantitative Genetics of CTCF Binding

PLOS Genetics | www.plosgenetics.org 10 November 2014 | Volume 10 | Issue 11 | e1004798



protocol. The library was then sequenced using the Illumina

HighSeq platform in 50 bp paired end reads. On average

,85.54M reads were produced per sample. Sequence lanes were

assessed for multiple quality metrics including total yield, read

quality, mapping quality, GC content distribution and duplication

rate. All sequencing reads were aligned to the human reference

sequence (GRCh37) using BWA v0.5.9-r16 [46] using default

parameter settings. Duplicate reads were marked by the

‘‘MarkDuplicates’’ function of the software Picard (v1.47 http://

picard.sourceforge.net/) and removed. We applied a stringent

filter by removing all the reads with MAQ quality score below 30,

improperly paired (with 0x2 flag set in the BAM format), or with

mate pairs more than 1 kb apart were removed. For allele specific

analysis, we further performed local realignment using a variant-

aware aligner glia (https://github.com/ekg/glia), which aligns

reads against paths in a variant graph built by combining the

reference sequence and known variants.

Data processing
Genotypes. Our 51 samples consist of 35 individuals

present in the 1000 Genomes Phase 1 release (v3 20101123)

[2], 11 individuals in the 1000 Genomes Pilot, 2 individuals in

1000 Genomes high coverage Trio (NA12891 and NA12892)

and 3 individuals in the HapMap III [47]. The eleven 1000

Genomes Pilot samples have low coverage. We calculated the

genotype likelihood for each of the Phase 1 sites using samtools

[48] and then performed imputation using BEAGLE [49] and

IMPUTE2 [50] with the 1000 Genomes Phase 1 data as a

reference panel. Using Illumina Omni 2.5M SNP array

genotypes (available from ftp://ftp.1000genomes.ebi.ac.uk/

vol1/ftp/technical/working/

20120131_omni_genotypes_and_intensities/) as a validation

set, we obtained good accuracy from this procedure with a

mean non-reference discordance rate of 2.33% and average

genotype dosage R2 of 0.956. We also imputed the three

HapMap III samples, using their genotype data on the Omni

2.5M array as the imputation panel and the 1000 Genome

Phase 1 as the reference panel. We then integrated data from

each source and obtained a consolidated genotype set for all 51

individuals. For association mapping, we filtered variants by

requiring .5% minor allele frequency, P value for Hardy-

Weinberg Equilibrium (HWE).1E-4 and position within

Figure 7. Expression and genomic organization of non-coding RNA genes X56 and X130. (A) Representative RNA-FISH image of X56
(white signal) and X130 (red signal) expression relative to XIST RNA (green signal) in female nuclei (counterstained with DAPI) and sequential DNA-
FISH representative image with X chromosome paint probe (red signal) showing that X56 and X130 are transcribed from the active X chromosome
nuclear territory. (B) Representative images of X56 (white signal) and X130 (red signal) expression by RNA-FISH in male nuclei (counterstained with
DAPI).
doi:10.1371/journal.pgen.1004798.g007
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50 kb of the binding region being mapped. Finally, 4,687,317

variants entered analysis, with 4,250,881 SNPs and 436,436

INDELs.

The 1000 Genome Phase 1 release gives a comprehensive

ascertainment of the genetic variants. However, it is still possible

that some variants private to this study cohort are yet to be found.

To address this concern, we performed variant calling for the

CTCF binding regions using ChIP-seq data. The calling was done

by using samtools mpileup with parameters ‘‘-DV -C50 -q 30 -Q

30 -d 10000 –u -l $qtl_regions -b $bam_list -f $reference’’,

followed by BCF tools with parameter ‘‘-t $qtl_regions -mv’’. We

filtered on the quality of the calling by keeping only variants with

QUAL score greater than 20. We also kept only the variants that

are private to the new call set and are absent in the 1000 genomes

phase1. In the end, we obtained 4,756 variants are within binding

regions with 2,282 SNPs and 2,474 INDELs. It is a small quantity

compared to the variant set of the 1000 Genome Phase1 release.

This set is also enriched for INDELs (52%). When we conducted

the same association scan using these variants, we discovered 55

QTL binding regions associated with 60 variants, out of which

only 8 are new. We also repeated the same analysis but with a

lower threshold for the mapping quality, the results are similar

with very marginal increase in findings. Thus the effect of this

additional variant set is minimum in our QTL scan.

Binding region calling. We performed binding region

identification using a Parzen kernel density window algorithm

described previously [18,51]. This procedure was applied to both

experimental and Input datasets after combining lanes and

replicates into cell-line sample sets. Local maxima of these Parzen

scores were used to define binding peak positions, and the

interquartile range of the kernel density profile was used to

determine the corresponding binding site of highest read density.

The resulting set of candidate CTCF binding sites was then

subjected to input correction, filtering for copy number artifacts,

and determination of statistical significance.

First, in order to normalize for background represented by the

Input control, each binding site was paired with the corresponding

Input site with the highest read count within 200 bp. A binomial

P-value was computed for each binding site under the null

hypothesis that ChIP and Input reads were equally likely. The

ratio of total ChIP to Input reads for each sample was used to

normalize for differences in sequencing depth before calculating

the binomial P-value, with the library having higher sequencing

depth always scaled downward. Binding sites falling in previously

defined genomic regions with aberrantly high signal due to copy

number differences were discarded [5]. Input-dominated binding

sites were also discarded, retaining only sites where the sequenc-

ing-depth-scaled ChIP read count exceeded Input.

The resulting set of filtered peak P-values was subjected to

multiple hypothesis testing using the Benjamini-Hochberg method

[52]. Next, binding regions for the cell lines at various significance

levels were merged using bedtools v2.17.0 [53] in such a way as to

preserve the set of calling cell lines (bedtools merge -nms -scores

collapse -n). We employed several metrics in order to determine an

appropriate significance cutoff, including the relationship between

binding region count and P-value (Figure S15) and the number of

calling cell lines for each binding region (Figure S16). binding

regions with BH-adjusted P-value #1E-5 were initially retained as

significant (n = 127,351), as that value appeared to be the

inflection point in the binding region versus P-value curve and

had the largest reduction in one-caller binding regions.

Finally, in order to assess the quality of binding regions called by

only one cell line, we used bedtools (bedtools intersect –c) to

identify binding regions containing the extended CTCF motif

(Figure S17). binding regions called by only one cell line showed a

significantly lower occurrence of the CTCF motif as compared to

binding regions called by two or more cell lines. Therefore, we

discarded binding regions with only one calling cell line and

retained the 63,753 merged binding regions at adjusted P-value

1E-5with two or more callers.

Blacklisting regions. Out of 63,753 binding regions identi-

fied, we removed 2,898 binding regions falling in repeat sequences

or in the Immunoglobulin heavy chain locus or major histocom-

patibility complex (MHC). In detail, 2,578 binding regions lie

completely within repeat sequences marked by a merged set

consisting of ‘‘Repeat Masker’’, ‘‘Segmental Dup’’ or ‘‘Simple

Repeat’’ data sets from the table browser of the UCSC Genome

Browser, 35 binding regions lie within the Immunoglobulin heavy

chain locus (chr14:106053226–106330470) and 285 fall in the

MHC region (chr6:28477797-33448354).

Motif word identification. We searched for the instances of

CTCF motif in the discovered binding regions using the CTCF

canonical 19 bp position weight matrix downloaded from the

JASPAR database (http://jaspar.binf.ku.dk/). We extracted DNA

sequences at the identified binding regions from human genome

reference GRCh37 to construct a sequence database. The search

was then performed using the software FIMO [54] in the MEME

tool suite [55] using parameter –threshold 1E-4. This process

identified at least one motif instance in 45,867 of our 57,428

binding regions. When calculating the overlapping between QTL

variants and motifs we considered all discovered motif instances

within a binding region. For the QTL variants that do not overlap

any motif variants, we used the motif instance within binding

region with the best matching score as an anchor for calculating

the distance.

Identifying motif of other factors. We also searched for

other motifs at regions nearby (+230 bp) the lead QTL variants as

well as within the QTL binding regions. We extract sequences of

the regions using software fastaFromBed of the BEDTools suite

[53] using reference sequence GRCh37. We then used software

MEME [55] to search for motifs. The discovered motifs were then

compared against known motifs using software tomtom [55] in

JASPAR and UniPROBE databases. The discovered motifs are

then provided to MSigDB [56] for functional annotations.

The most enriched motif was a CTCF related motif. After

removing a number of low complexity motifs and cryptic repeats

by manual inspection, the next most enriched motif was a G-rich

motif similar to multiple SP-1 sites. There was not a strong

accessory motif in these regions.

CTCF binding quantitation. With the peak profile identi-

fied above, we quantified the signal for each binding region by

counting the number of sequencing fragments - read pairs. We

applied stringent criteria by only counting the properly aligned

read pairs with quality score at least 30 and excluding all the

duplicated reads(samtools view -f 0x42 -F0x604 –q 30). We used

Bedtools (v2.16.2) [53] to count the intersection between

fragments and identified binding regions. This produced an N
by M matrix, where N is the number of samples and M is the

number of binding regions. To evaluate the variation in the ChIP

experiments, we compared the correlation between replicates

grown on consecutive days and the correlation between all other

samples. We found a mean pairwise correlation coefficient of

0.831460.0006 and 0.820260.0099 for the replicate sets for

NA12891 and NA12892, respectively, while the mean pairwise

correlation coefficient between samples was 0.171960.0177. This

suggests a good signal noise ratio in the experiment.

For the subsequent genetic analysis, we are interested in the

binding regions that have good signal and also vary between
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individuals. The mean and variance of binding intensities are

correlated by the nature of the Poisson process for the sequencing.

We found a group of 4,516 binding regions (7% of the total

binding regions identified) with little signal or variation - defined as

binding regions mapped with fewer than 6 fragments on average

per sample and SD,5.14 (Figure S18). These binding regions

were excluded from further analysis.

Normalization. Previous studies [17,31] have shown that

appropriate normalization can substantially enhance genetic

association signals by removing confounding non-genetic sources

of variation. Potential sources of confounding variation include

experimental batch effects, GC bias in sequencing library

construction and latent unknown technical or biological factors

that have systematic effects across large numbers of binding

regions. To address these issues, we normalized the raw binding

intensity using the following five step approach to generate a

normalised adjusted binding intensity (NABI).

1. Rescale by sequence depth.

Xi,j~
Ri,jMean(Sj)

Sj

,i~1:::M,j~1:::P

where Ri,j is the raw intensity of the ith binding region of the

jth lane, and Sj is the sum of intensity across all binding regions

for the jth lane. Ri,j is scaled by a factor of the proportion of

mean of S across all P lanes over Sj.

2. Remove variance introduced by GC composition. We adjusted

for GC bias in sequencing library construction by forming

percentile bins for GC composition of all binding regions and

normalising the binding intensities within each bin.

Xi,j~
Xi,j

Median(Xk,j ; k same GC bin as i)

where i,j,k are the indices for binding region, lane, and GC bin

respectively.

3. Merge lanes of a same individual by taking the mean. A subset

of our samples were sequenced on multiple lanes and in these

cases we took the mean value across lanes as the measurement

of the individual.

Di,l~Mean(Xi,j ; j lanes of l), l~1:::N

where Xi,j is the measure from the previous step, i,j,l are indices
for the binding region, lane and samples, respectively. N is the

total number of samples.

4. Centre-scale binding intensity for each binding region. We

then scaled the binding intensity for each binding region by

subtracting the mean and then dividing by the standard

deviation. This transforms the measures of each binding region

into zero mean and unit variance, which is needed for the

quantile normalization to be less affected by the different

variances of different binding regions

Zi,l~
Di,l{Mean(Di)

StDev(Di)

where i,l are indices for binding region and sample.

5. Quantile normalize each sample data to a normal distribution.

The distribution of binding intensities for each individual is

complex. Previous studies have shown that quantile normali-

zation, initially developed for normalising the microarray

signals of gene expression, can assist statistical analysis by

converting the distributions of each sample to a reference

distribution. The linear regression model used to identify QTL

in our study assumes a Gaussian distribution of binding

measures within each genotype class. We therefore mapped the

measures across all binding regions of each sample to the

corresponding normal quantiles. This produces a matrix that is

essentially a perturbation permutation of the normal quantiles

Zi,l~W{1(

XM

m~1

IfZm,lvZi,lg

Mz1
)

where W is the cumulative normal density function andM is the

total number of binding regions. I is an indicator function that

returns 1 if the condition is met and 0 otherwise.

6. Remove confounding variation by principal component

analysis (PCA). The measures of binding for each individual

can be confounded by a number of hidden factors due to either

biological or technical factors, or both. We performed PCA

and saw that the first factor explained 24.1% of the variance in

the data, substantially more than later components (Figure S2).

Further investigation of this component showed that it was

correlated with ChIP batch date, and it was therefore removed.

Association and estimation of the false discovery rate

(FDR). We applied linear regression for association testing. For

each binding region, we tested the association between the binding

intensities and the genotypes of the variants that are within

650 kb of the binding region by least-squares linear regression.

We applied an additive model, where genotypes are coded as the

dosages of the alternative alleles, either 0,1, or 2. The P value was

obtained from a t-test of the regression coefficient (beta) against the

null hypothesis of beta = 0. We estimated FDR by a Q value

method [34], which establishes P,7.1E-5 as an FDR of 1%. We

further filtered the associated SNPs by requiring the P value to be

within 1 order of magnitude to that of the P value of the lead SNP.

We report these cluster variants as associated to the target binding

region. We also reported results when a more stringent Bonferroni

threshold was applied. The threshold was calculated at a

significant level of a=0.05 corrected for 13,293,727 tests, which

gives 3.8E-9 for the actual threshold.

Allele-specific analysis
Read counts at each allele were counted for the 5.6M SNPs

within 50 kb of a binding region. Heterozygous SNPs with

significant allele-specific CTCF binding were identified. In detail,

we calculated a binomial P value at all heterozygous SNPs with the

null hypothesis that the two allele counts are equal. We then

performed multiple testing adjustment at all heterozygous SNPs

that have at least 2 reads at each allele and at least 2 reads

difference between the two alleles using the Benjamini &

Hochberg [52] method. Significant allele-specific binding was

determined with an FDR 5%.

X chromosome analysis
We analysed the gender specific CTCF binding on the X

chromosome in the 27 female and 24 male LCLs. To ensure that

our normalisation would not introduce any bias we used the raw

CTCF binding intensities. For each of the 1,968 binding regions

on the X chromosome, after blacklisted regions were removed, we

assessed gender specificity by a Mann-Whitney U (MWU) test
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between the male and female samples. Binding regions were then

classified as single-active and both-active based on the significance

of the MWU test on the binding intensities. To classify the female

specific binding regions we also incorporate the fold change

between the average male and average female binding intensity.

Similar analysis as for CTCF was performed on mRNA and

ncRNA data from the Geuvadis project [35] and on DNase I [17].

To differentiate clonal and ployclonal sample, we analyzed

allelic RNA expression on previously identified X inactivated

genes [36] in 17 female samples. Samples where only one allele is

expressed are determined to be clonal and polyclonal samples have

RNA expressed from both alleles. Figure S22 shows examples of a

clonal and a polyclonal sample.

For the single-active and both-active sites, we analysed the overlap of

each category of sites with the ENCODE transcription factor and

histone modification datasets for the female CEU lymphoblastoid cell

line GM12878 [37]. To avoid bias introduced by unequal distribution

of promoter sequences between the classes, we removed all binding

regions that overlap with promoters identified in GM12878. For each

binding region we define a partial overlap as an overlap. Signal

aggregation of each of the classes of sites for histone modification and

TF ChIP-seq data, and micrococcal nuclease cleavage was calculated

using the ACT toolkit (http://act.gersteinlab.org/, [57]) with the

parameters ‘-nbins=50 -mbins=0’. Only binding regions that are in

the top 50% of bound sites were used. ENCODE bedGraph files for

both TF and histone modifications were obtained from ftp.ebi.ac.uk:

pub/databases/ensembl/encode/integration_data_jan2011/byData-

Type/signal/jan2011/bedgraph/and converted into signal files that

are used as input for ACT.py.

Sequential RNA and DNA fluorescence in situ
hybridisation (FISH)
Female and male human dermal fibroblasts cells (Invitrogen)

were grown directly on Nunc Lab-Tek chamber slides, rinsed

briefly using 16PBS (PAA) and immediately fixed in 3%

formaldehyde (Sigma-Aldrich) for 10 minutes, permeabilized

using 0.5% Triton X-100 (BHD), 10 mM Ribonucleosidase

Vanadyl complex (Biolabs) in 16PBS (PAA) for 10 minutes, and

then dehydrated through a 70%, 90% and 100% ethanol series, all

at room temperature. The probes for X56 and X130 were selected

according to their genomic locations reported in Horakova et al
[38]. The probe for X56 consisted of the BAC clone RP11-416J22

and the fosmid G248P8472H8, the probe for X130 consisted of

the BAC clone RP11-158M12, while the probe for XIST consisted

of the fosmid G248P8779H11. All the clones were selected from

the UCSC Genome Browser (GRCh37/hg19 assembly). Plasmid

DNA was purified using the PhasePrep BAC DNA kit (Sigma-

Aldrich) following manufacturer’s protocol, amplified using the

whole genome amplification kit (WGA2, Sigma-Aldrich) following

manufacturer’s recommendations. Clones were labeled using the

whole genome re-amplification kit (WGA3, Sigma-Aldrich) as

described before [58]. Briefly, X56 probe was labeled with

Cyanine 3-dUTP (Enzo), the X130 probe was labeled with

ChromaTide Texas Red-12-dUTP (Invitrogen) and the XIST

probe was labeled with Green-dUTP (Abbott). For RNA-FISH,

approximately 100 ng of labeled DNA from each probe and 2–

4 mg of human Cot-1 DNA (Invitrogen) were ethanol precipitated,

then resuspended in hybridisation buffer containing 50% form-

amide, 26SSC, 10% dextran sulphate, 0.5 M phosphate buffer,

pH 7.4. The probe mix was denatured at 65uC for 10 minutes

before being applied onto cells on the chamber slides. Hybridisa-

tion was carried out in a 37uC incubator overnight. The post-

hybridisation washes consisted of two rounds of 50% formamide/

26SSC washes followed by two additional washes in 26SSC. All

washes were done at 40uC, for 5 minutes. After detection, slides

were mounted with SlowFade Gold mounting solution containing

49,6-diamidino-2-phenylindole (Invitrogen). Images were visual-

ised on a Zeiss AxioImager D1 fluorescent microscope. Digital

image capture and processing were carried out using the

SmartCapture software (Digital Scientific UK).

For the subsequent DNA-FISH, the same slides that have

passed through the RNA-FISH assay described above were subject

to the following treatment before denaturation in 70% formam-

ide/26SSC for 1.5 minutes, including one wash in 26SSC for

5 minutes, digestion with RNase A (100 mg/ml RNase A in

26SSC) for 30 minutes at 37uC, further digestion with 0.01%

pepsin in 10 mM HCl for 5 minutes at room temperature,

dehydration through an ethanol series as above and ageing on a

65uC hot plate for an hour. The X chromosome paint probe was

labeled with biotin-16-dUTP (Roche). The making and denatur-

ation of the X chromosome paint probe mix, hybridisation

incubation, post-hybridisation washes and digital imaging were the

same as above described, except that the biotin-labeled probes

were visualised using Cy3 conjugated avidin (Sigma Aldrich).

Accession numbers
The ChIP-seq data reported in this paper have been deposited

in the European Nucleotide Archive, available with accession

number ERP002168. The sample information and experimental

design was deposited in ArrayExpress with accession number E-

ERAD-141, linked to ERP002168.

Supporting Information

Figure S1 Higher correlation within day replicates compared to

between different samples. We calculate the pair-wise Spearman

correlation among all samples, including the two day-replicates,

12891 and 12892, shown as the last two sets of four samples. A

diagonal line in each cell represents perfect correlation whereas a

full circle represents no correlation. Increasingly flattened ellipses

indicate a greater degree of correlation. When comparing among

the day replicates, we obtained a correlation coefficient of 0.8314

and 0.8202 for GM12891 and GM12892, respectively. We also

looked at the mean correlation of all the other samples and found a

correlation of 0.1719. Therefore we see much higher correlation

within day replicates than that of all other samples.

(PNG)

Figure S2 Proportion of phenotypic variance explained by each

principal component (PC). We performed principal component

analysis (PCA) on the normalized data to discover latent factors

that explain large proportion of phenotypic variation. We saw that

the first principal component explain substantially more variance

than the others. When we looked at the correlation between the

first principal component and technical and experimental

variables, we found that it correlates with ChIP batch at

r=0.47. The first principal component is removed from the data

before further analysis.

(PDF)

Figure S3 The number of significant QTLs found as a function

of false discovery rate (FDR), plotted for the raw data and after

each stage of the data normalization procedure that we used (see

Methods for details of the method). We first normalised the

binding intensities for each sample by the total read depth for that

sample. We then corrected for GC composition by removing the

median count of binding regions in the same GC bin (100 bins in

total) from each binding region. The measures for each binding

region were then centre-scaled by removing the mean and then
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dividing by the standard deviation (track hidden behind GC as

center scale does not affect regression). This was followed by a

quantile normalization, which maps the measures of each sample

to normal quantiles across all binding regions. Lastly, we removed

the first principal component that explains the most global

phenotypic variation.

(PDF)

Figure S4 QQ plot for all associations between CTCF binding

intensities and genotypes of variants within 50 kb to the centre of

binding sites. Purple and green dots indicate P values from actual

tests and permutation controls - where sample labels are randomly

permuted. We used 1% FDR (brown line) as our cutoff for results.

(PDF)

Figure S5 Spearman rank test for association is more conser-

vative but gives similar results. Association test by linear methods

can be inappropriate and gives spurious signal if the normality

assumption is not met. Although in our normalization procedure

the binding measures are mapped to normal quantiles sample-

wise, it is still possible that the normality assumption does not hold

binding region-wise. To test if this would bias the QTL mapping

we performed the same tests using the Spearman rank method.

The P values from both sets are sorted and then plotted against

each other as Y-axis for the linear test and X-axis for the

Spearman rank test. We see a slight elevation of the black line,

suggesting the rank test is more conservative but would give similar

results, and our linear test is mostly appropriate.

(PNG)

Figure S6 P value distribution of the proximal variants. Here the

P values from the association between the CTCF binding and the

lead distal QTL variants are plotted against that of the proximal

variants, which are in LD with the distal QTL variants. The

horizontal and vertical dashed lines are the 1% genome wide FDR

threshold established in the main analysis. The diagonal line assists

to indicate same P values. Each dot is colored by its D9 value of

LD with its size scaled by the allele frequency of the proximal

variant.

(PDF)

Figure S7 Distribution of the proximal variants that are on motif

and in LD with the distal lead QTL variants. Here the proximal

variants were aligned to the motif positions. We saw a correlation

between their distribution and the information content of the motif

at r=0.36.

(PDF)

Figure S8 Evidence for indirect effects when a second binding

region is present in the distal QTL window. Many (75.5%) of our

distal QTLs contain a second CTCF binding region in their 50 kb

cis-window. To explore possible causal relationships between the

lead variant, the associated binding region(BR1) and the second

binding region(BR2) we constructed seven graphical models (A)

and compared them using the Bayesian Information Criterion

(BIC). In each case we assign the most likely model, chosen as

having the lowest BIC. The frequency of the chosen models (B)

suggests that there is almost never evidence for the association

effect of the distal variant being mediated via a secondary binding

region. The most frequently preferred model (1) did not involve

BR2 at all; for the next most preferred models (3 and 4) there was

some evidence of interactions between neighbouring CTCF

binding sites, but we could not explain the variant association to

BR1 binding via BR2. The only models which support mediation

of binding at BR1 via BR2 are 5 and 6, and in only one case do we

see one of these being selected. The P value of BR1 when

conditioned on BR2 is plotted in (C). We further investigated the

enrichment of a range of ENCODE [1] signals over the QTL

binding region and the neighboring region. We found the

association between two binding regions (model 3,4) tend to

correlate with the active regulatory signals (Figure S9).

(PDF)

Figures S9 The interaction between QTL binding region and

neighboring binding region correlates with regulatory events. The

distal QTL set is as previously described (Figure S8). For each of the

four categories with sufficient abundance (model 1, 2, 3 and 4), we

compare the average signals between the QTL binding region (B1)

and the neighboring binding region (B2) for a number of molecular

markers using data obtained from the ENCODE project [1]. We

observed distinct patterns of regulatory signals between model 1,2

and model 3,4. We saw that when there exists interactions between

two binding regions (model 3,4), active transcription factors,

enhancers and active histone markers tend to be more enriched in

the QTL binding regions, as shown in red. This change is not driven

by their distances being closer to the transcription start site (TSS) by

chance, measured as the distance to the closest TSS, because the

neighboring binding regions have similar distance to the TSS as the

QTL binding regions (red and green lines in the density plots). Some

of the histone modifications (H2AZ, H3k27ac, H3k4me1, H3k4me2

and H3k4me3) swap enrichment direction between model 3 and

model 4 depending on the direction of interaction between B1 and B2

(also see Figure S10 for more detailed enrichment signals).

(PDF)

Figure S10 Change of histone modifications depending on the

interaction models between the QTL binding region and the

neighboring binding region (see Figure S8 and S9 for explanations

about the models).

(PDF)

Figure S11 Effect size versus derived allele frequency for all

CTCF QTLs identified at 1% FDR.

(PDF)

Figure S12 Effect of the Reference Allele. Even when the

reference allele is the derived allele (Derived), the binding bias

remained towards the ancestral allele.

(PDF)

Figure S13 Effect of alignment to allele specific analysis. We

performed local realignment using a variant aware aligner glia

(https://github.com/ekg/glia) and compared the allelic bias in our

significant allele specific sites between the two alignments. We saw

that the effect of local realignment is minimum.

(PDF)

Figure S14 No QTLs with strong effect size in binding regions

that do not show strong allele specificity. The x-axis shows allele

specificity (measured as % reference), and the y-axis shows

between-individual effect (beta) orientated such that positive is

towards reference.

(PDF)

Figure S15 Number of merged binding regions plotted as a

function of 2log(BH-adjusted binomial P-value).

(PDF)

Figure S16 Number of merged binding regions as a function of

number of calling cell lines, at three adjusted P-values.

(PDF)

Figure S17 Proportion of merged binding regions as a function

of number of calling cell lines, at three adjusted P-values.

(PDF)
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Figure S18 Quality control by raw signal intensity and inter cell

line variability. For each binding region we counted the

overlapping sequencing fragments (identified by a properly paired

read pair) and used it as a measure for the raw binding intensity.

We plot the log of the variance of the binding intensities across 51

individuals versus the log of the mean of the binding intensities

using the R function smoothScatter. The degree of blue is

proportional to the density of data points. As a Poisson process

the mean and variance correlate with each other. There exists a

natural cut-off between the lower left tail and the majority at mean

6 and standard deviation 5.14. These lower left tail binding regions

are the sites with very low intensity and also low variability. We

removed these sites, 4,516 binding regions in total, before further

analysis.

(PDF)

Figure S19 Aggregated signals for histone modifications at X

chromosome binding regions split by single-active (top panels) and

both-active (bottom panels) CTCF classes for binding regions

overlapping promoters. The average ENCODE signal, in

GM12878, is determined by the average fold enrichment for this

region against random Poisson distribution with local lambda [2].

(PDF)

Figure S20 Aggregated signal for transcription factors SMC3

and Rad21 at X chromosome shown for single active and double

active binding regions. We plot the aggregated average ENCODE

signal in GM12878, which is determined by the average fold

enrichment for this region against random Poisson distribution

with local lambda [2]. Single active CTCF sites tend to have a

small increase in binding.

(PDF)

Figure S21 Gender difference in transcription factor binding

and histone modification. Using data from [2] (5 males and 5

females, all unrelated), we compared the average signals between

males and females on the X (black) and autosome (blue) for a

range of markers with data obtained from the ENCODE project

[1]. For each marker, all data is used, irrespective of overlapping

with CTCF binding. Mann Whitney test is performed separated

data on gender. A significant Mann Whitney test indicates a

gender specific marker binding. We observed minimum gender

specific signals, except for H3K27me3.

(PDF)

Figure S22 Examples of clonal and polyclonal cell lines. X

chromosome genes are grouped according to their expression on

the inactivated X [3]. On the x axis, 0/9 are the most strictly X

inactivated genes and 9/9 are the genes that show consistent

expression from the inactivated X. ‘NA’ denote the genes whose X

inactivation status was not determined. On the y axis, percent

reference reads from RNA-seq data were counted on the

heterozygous SNP sites within those genes and plotted against

their X inactivation status. NA12749 on the left was determined to

be a clonal sample and NA12761 on the right was determined to

be a polyclonal sample.

(PDF)

Figure S23 Aggregated signal for transcription factors using

data from [2] (5 males and 5 females, all unrelated). We plot the

average raw read signal, for several markers in regions that overlap

CTCF binding region. Aggregate plots are separated on gender

and CTCF classification. We observe that for the both-active and

single-active CTCF sites there is, as expected, double as much

signal for female than for male cell lines. For regions that show

female specific CTCF binding, the aggregated signal track show a

change in binding profile for H3K4me3, H3K4me1, and

H3K27ac.

(PDF)

Table S1 Sites with random allelic bias. See Supplementary MS

Excel file ‘‘switching_sites.xlsx’’.

(XLSX)
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