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ABSTRACT 

Nonalcoholic fatty liver disease (NAFLD) is a well defined chronic liver diseases closely related with 

metabolic disorders. The prevalence of NAFLD is rapidly increasing worldwide, while the pathology 

and the underlying mechanisms driving NAFLD are not fully understood. In NAFLD, a series of 

metabolic changes takes place in the liver. However, the alteration of the metabolic pathways in 

the human liver along the progression of NAFLD, i.e., the transition from nonalcoholic steatosis 

(NAFL) to steatohepatitis (NASH) through cirrhosis remains to be discovered. Here, we sought to 

examine the metabolic pathways of the human liver across the full histological spectrum of NAFLD. 

We analyzed the whole liver tissue transcriptomic (RNA-Seq) and serum metabolomics data 

obtained from a large, prospectively enrolled cohort of histologically characterized patients derived 
from the European NAFLD Registry (n=206), and developed genome-scale metabolic models 

(GEMs) of human hepatocytes at different stages of NAFLD. The integrative approach employed in 

this study has enabled us to understand the regulation of the metabolic pathways of human liver in 

NAFL, and with progressive NASH-associated fibrosis (F0–F4). Our study identified several 

metabolic signatures in the liver and blood of these patients, specifically highlighting the alteration 

of vitamins (A, E) and glycosphingolipids (GSLs), and their link with complex glycosaminoglycans 

(GAGs) in advanced fibrosis. The study provides insights into the underlying pathways of the 

progressive fibrosing steatohepatitis. Furthermore, by applying genome-scale metabolic modeling 

(GSMM), we were able to identify the metabolic differences among carriers of widely validated 

genetic variants associated with NAFLD / NASH disease severity in three genes (PNPLA3, TM6SF2 

and HSD17B13).  

KEYWORDS: Nonalcoholic fatty liver disease; NAFLD; NASH; steatohepatitis; metabolic models; 

pathways; transcriptomics; lipidomics; metabolomics; gene variants; genotypes. 
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INTRODUCTION 

Nonalcoholic fatty liver disease (NAFLD) represents a histological spectrum characterized by 

increased lipid accumulation in the hepatocytes, that encompasses non-alcoholic fatty liver 

(steatosis, NAFL) and an inflammatory form termed as nonalcoholic steatohepatitis (NASH) in which 

progressive hepatic fibrosis occurs, ultimately leading to cirrhosis and hepatocellular carcinoma 

(HCC) in some patients1. NAFLD is associated with features of the metabolic syndrome including 

obesity, type 2 diabetes mellitus (T2DM), dyslipidemia, and hypertension2,3. The global prevalence 
of NAFLD in the general population has been estimated to be 25%, whilst the prevalence of NASH 

has been estimated to range from 3 – 5%4. The prevalence of NAFLD has been increasing 

proportionately with the epidemics of obesity and is predicted to continue to rise5.  

The natural history of NAFLD is highly variable, with substantial interpatient variation in disease 

severity and outcome predicted by the degree of fibrosis6,7. NAFLD is generally considered to be a 

complex disease trait driven by an obesogenic environment acting on a background of genetic 

susceptibility8. However, knowledge about the processes that contribute to the observed variation 

in severity remains incomplete. There is a pressing need to elucidate the pathophysiological 

processes that occur as NAFL progresses to NASH and fibrosis stage increases towards cirrhosis. 
Such knowledge will define novel biomarkers that better risk stratify patients, helping to 

individualize their care, and aid the development of novel therapeutic strategies and drug targets.  

Progression of NAFLD is characterized by distinct metabolic changes in the liver9. Previously, we 

showed that there is an excess accumulation of liver triacylglycerols (TGs) in NAFLD, particularly 

those with low carbon number and double bond content10, which reflects increased de novo 

lipogenesis in NAFLD11,12. Over the past decade, GSMM has emerged as a powerful tool to study 

metabolism in human cells13-15, including in modeling metabolism of human liver under healthy and 

disease conditions16-18. In a recent study, we charted metabolic activities associated with degree of 

steatosis in human liver from 16 NAFLD cases by integrating genome-wide transcriptomics data 

from human liver biopsies, and metabolic flux data measured across the human splanchnic vascular 

bed using genome-scale metabolic modeling (GSMM)18. A similar GSMM study in 32 patients with 

NAFLD plus 20 controls identified serine deficiency and suggested that the serum concentration of 

glycosaminoglycans (GAGs) (e.g., chondroitin and heparan sulphates) may aid the staging of 
NAFLD17. Both studies, whilst informative, only used transcriptomic data from relatively small 

patient cohorts with crude histological characterization of disease severity and so neither was able 

to adequately address grade of steatohepatitis or stage of fibrosis with sufficient granularity.  

In this study, we aim to examine the changes in hepatic metabolic processes and pathways that 

occur across the full histological spectrum of NAFLD, exploring the evolving changes during the 

progression of NAFL to NASH with increasing fibrosis stages (F0 up to F4) including cirrhosis. 

Whole liver tissue RNA-Seq transcriptomic data from a large cohort of histologically characterized 

patients derived from the European NAFLD Registry (n=206)19,20 was integrated into genome-scale 

metabolic models (GEMs) (Table 1 and Figure 1). The integrative approach employed in this study 

has informed our understanding of how liver metabolism is altered in NAFL and with progressive 

NASH-associated fibrosis. Furthermore, GSMM predicted the metabolic differences among carriers 

of widely validated genetic variants associated with NAFLD / NASH disease severity in three genes 
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(PNPLA3, TM6SF2 and HSD17B13)8,21-23. 

RESULTS 

Genome-scale metabolic models of human hepatocytes in NAFLD 

A GEM of human hepatocyte (iHepatocytes2322) was first developed by Mardinoglu et al., by 

combining the iHepatocyte1154 GEM24 with previously published liver models. iHepatocytes2322 

comprises 2,322 genes, 5,686 metabolites and 7,930 reactions found in the human liver17. Here, by 

using NAFLD stage-specific transcriptomics data generated from the liver biopsies of 206 patients 

with NAFLD (Table 1)20, we contextualized the iHepatocytes2322 model (Methods), and developed 

GEMs of hepatocytes across the full spectrum of NAFLD severity (NAFL through NASH F0-F4) 

(Figure 1). A stepwise strategy that combines GIMME25 and E-flux26 algorithm was developed for 

the contextualization of GEMs, i.e., selection of stage-specific reactions and their associated genes 

and metabolites from the iHepatocytes2322 (Methods). The number of genes, metabolites and 

reactions included in these models are given in (Figure S1). 

The GEMs were used to study the metabolic differences across the NAFLD spectrum. To increase 

the statistical power of differential expression analysis of the transcriptomic data required for 

GSMM, cases were grouped by disease severity and clinical implications for outcome7: ‘minimal’ 

disease – NAFL + NASH (F0-1) (n= 85); ‘mild’ disease – NAFL + NASH (F0-2) (n= 138); ‘clinically 

significant’ non-cirrhotic fibrosis – (NASH F2-3) (n= 107); and ‘advanced’ fibrosis – (NASH F3-4) (n= 
68).  

Regulation of metabolic subsystems of human hepatocytes in steatosis and 

progressive stages of fibrosis 

Flux variability analysis (FVA) is a computational method used to estimate the minimum and 

maximum flux carried by each metabolic reaction of a GEM27, in this case, the stage-specifc 

hepatocyte GEMs developed. A high or low flux span (max – min reaction flux) denotes the extent 
of variability (metabolic alteration) exhibited by each reaction within a metabolic pathway or 

subsystem of a GEM (Methods).  

FVA has shown remarkable alterations in the metabolic subsystems across various stages of 

NAFLD (Figure 2). Average flux spans of the reaction fluxes in the metabolic subsystems were 

markedly higher at NASH F4, whilst lower flux spans were evident at NAFL and NASH F01 stages 

(Figure 2a), suggesting that alteration of metabolic pathways were higher in NASH F4 as compared 

to the other stages of NASH-associated fibrosis. In contrast, lower flux spans at NASH F01 and 

NAFL suggests, at these stages, the metabolic pathways of hepatocytes are tightly regulated28,29 

(Figure 2a-b). Intriguingly, the results of FVA showed that the alterations of metabolic pathways in 

NASH F01 were similar to NAFL (Figure 2a). 

FVA identified 55 metabolic subsystems altered across one or more stages of NAFLD (Figure 2b). 

In NAFL, the % of relative average flux span (RFS) of the metabolic subsystems associated with 

leukotriene, glycerophospholipid (GPL), ascorbate and aldarate, retinol (vitamin A), riboflavin 

(vitamin B1), nicotinamide metabolism (vitamin B3), and fatty acid activation were increased (>20%) 

(Figure 2b). Higher %RFS values across the ether lipid metabolism, pantothenate and CoA 
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biosynthesis were observed at NASH F01 as compared to NAFL (Figure 2a-b). In NASH F2, %RFS 

values across the bile acid, steroid and alanine, aspartate glutamate metabolism was increased. 

Intriguingly, NASH F3 and F4 stages showed a proportional change of % RFS values across several 

metabolic subsystems, except for the aromatic amino acid, fatty acid, vitamin (A, B1) metabolism 

which showed higher %RFS values at NASH F4 (Figure 2b). 

Next, we performed an unbiased non-uniform random sampling (RS)30 and estimated the flux 

differences between the metabolic subsystems of the human hepatocytes at various stages of 

NAFLD. Our results suggest that, fatty acid (FA) metabolism was elevated whilst the b-oxidation of 

FA was decreased in NASH (F0-4) as compared to NAFL (Figure 3). These changes were also 

apparent in ‘clinically significant’ non-cirrhotic and / or ‘advanced’ (vs. ‘minimal’) fibrosis. At these 

stages, vitamin (A, B1, D, E) metabolism was differentially regulated; average fluxes of vitamin E 

and D were decreased whilst an increase in retinol metabolism (vitamin A) was observed (Figure 

3). Intriguingly, an increase in the sphingolipid (SL) metabolism and a decrease in the 

glycosphingolipid (GSL) (cerebrosides / globo-, lacto- and neolacto series) metabolism was marked 

with the progression of NASH-associated fibrosis (Figure 3). Moreover, the average fluxes of GAGs, 

particularly chondroitin, heparin and keratin sulphate, cholesterol, aromatic amino acid, ether lipid, 

eicosanoid metabolism, bile acid biosynthesis and glycolysis / gluconeogenesis were altered at one 

or more stages of NASH-associated fibrosis vs. NAFL (Figure 3).  

Reporter metabolite analysis of human hepatocytes unveiled the intrinsic regulation 

of GSLs, GAGs and cholesterols in advance fibrosis 

Reporter metabolite (RM) analysis is a metabolite-centric differential approach that aids in 
identifying metabolites in a network around which significant transcriptional changes occur31,32. RMs 

can predict hot spots in a metabolic network that are significantly altered between two different 

conditions, in this case, different stages of NAFLD. 

RM analysis revealed that several species of eicosanoids, estrone, steroids and retinoic acids were 

increased (p<0.05) in NASH F2 stage as compared to NAFL (Figure S2). RMs of NASH F3 (vs. 

NAFL) showed a remarkable pattern with several species of GSLs, particularly, cerebrosides 

(glucosylceramides (GlcCers), lactosylceramides (LacCers), digalactosylceramides), globosides 

and gangliosides (GM1-, GM2-alpha) were decreased. At this stage, RMs of GAGs (heparin, keratin 

sulphates) and cholesterols were also decreased. Intriguingly, these GAGs were linked to GSLs by 

3'-Phosphoadenosine-5'-phosphosulfate (PAPs) and globotriaosylceramides which were also 

decreased (Figure 4). In addition, RMs of multiple eicosanoids, prostaglandins (PGs), leukotrienes 

(LTs) and arachidonic and retinoic acid derivates were increased (Figure 4).  

Interestingly, RMs of GSLs, GAGs, and cholesterols remain decreased in cirrhosis (NASH F4 vs. 

NAFL) (Figure S3). A similar directional change in the RMs of GSLs, GAGs, cholesterols, gamma-

tocopherols (Vitamin E) was observed in ‘advanced’ fibrosis – (NASH F3-4) vs. ‘minimal disease – 

NAFL + NASH (F0-1) (Figure S4) and ‘mild disease’ – NAFL + NASH (F0-2), respectively (Figure 

S5). In addition, RMs of aromatic and sulphur containing amino acids, i.e., phenylalanine, tyrosine, 

tryptophan, histidine and methionine were increased in the ‘advanced’ fibrosis vs. ‘mild disease’. 

These amino acids were associated with apolipoproteins (apo), primarily involved in the formation 
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of low-density lipoprotein particles (LDL and VLDL). Sensitivity analysis of the hepatocyte models 

showed that, with the progression of NASH-associated fibrosis the intracellular concentration of 

apolipoprotein, fatty acyl carrier protein (ACP) and cholesterols tends to be limiting towards the liver 

biomass (Shadow price33, SP > 0) (Figure S6). However, no significant change in the GSLs, GAGs, 

cholesterols was observed in the ‘clinically significant’ non-cirrhotic fibrosis – (NASH F2-3) vs. 

‘minimal disease’ (Figures S7 and S8). 

Regulation of sphingolipid and ceramide pathways in advanced fibrosis 

GSLs and Cers are essential intermediates of sphingolipid (SL) pathways (Figure 5a). They play a 

significant role in maintaining the integrity of the plasma membrane. Our results suggest that, 

several species of GSLs and related pathways were altered in ‘advanced’ fibrosis (Figures 3-4 and 

S8). At this stage, the GSLs were associated with GAGs (heparin, keratin sulphates) and 

cholesterols (Figures 4 and S8). Therefore, the intracellular regulation of SL pathways might play a 

critical role in the progression of fibrosis. 

Next, we identified the metabolic genes (MGs) of the sphingolipid (SL) pathways that were 

differentially expressed (p.adjusted < 0.05) with the progression of NASH-associated fibrosis. MGs 
and fluxes of denovo SL pathway (R2, R3, R4) were downregulated in ‘advanced’ fibrosis vs. 

‘minimal’ and ‘mild’ disease stages (Figure 5a-c). Moreover, the expression of sphingomyelinase 

(SMase) and the flux through the (R5: SMase) pathway was increased, which suggests production 

of ceramides (Cers) from sphingomyelin (SM) via SMase (R5) is facilitated in ‘advanced’ fibrosis as 

compared to ‘minimal’ and ‘mild’ disease stages respectively (Figure 5a-c). The majority of MGs 

and fluxes of the GSL pathways, notably (R7, R8, R9a) were downregulated along the fibrosis 

progression (Figure 5a-c). A marked increase in the activity of the sphingosine recycling pathway 

(R10) was also observed. Taken together, in ‘advanced’ fibrosis the hepatocytes tend to enhance 

the Cer production from SMs. It also decreases the synthesis of GSLs, particularly GlcCers, 

LacCers and GalCers from Cers (Figure 5a-c). Excessive accumulation of Cers in the hepatocyte 

may be required to exert cellular signaling, modulate inflammatory response or generate apoptotic 

stress signals34,35.  

Marked alterations of Cers and GSLs levels in the serum of the patients with 

advanced fibrosis 

By applying lipidomics to serum samples obtained from NAFLD patients in the present study, we 

measured the levels of Cers and GSLs. We found that the serum levels of several Cer species were 

increased (Tukey’s HSD, p<0.05) (Figure 6a-d), whilst GSLs (HexCers, GlcCers) were decreased 

(Tukey’s HSD, p<0.05) in the ‘advanced’ fibrosis (NASH F3) as compared to ‘minimal’ and / or ‘mild’ 

disease stages (Figure 6e-f). Overall, the directional changes (up or downregulated) of the 

predicted RMs of GSLs in the liver were comparable with the differences (increase or decrease) in 

the serum GSL levels of the patients at different stages of NASH-associated fibrosis. Intriguingly, 

there was an abrupt decrease in the levels of Cers and HexCers at NASH F4 (cirrhosis) stage, which 

may be attributed to the alterations in the SL pathway(s) in the liver.  

Impact of genetic variants associated with NAFLD on liver metabolic pathways 
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Genetic susceptibility plays a vital role in the development of NAFLD8,36. Here, we studied the most 

widely validated genetic modifier and strongest genetic risk factors for NAFLD, i.e., PNPLA3 

(rs738409), TM6SF2 (rs58542926) and HSD17B13 (rs72613567)8,21,36-38. Some of these gene 

variants are known to alter TAG hydrolysis39 and retinol (Vitamin A) metabolism40,41 and increase the 

severity of NAFLD37,39,42. However, little is known about the metabolic differences conferred by these 

variants.  

Here, we developed GEMs for hepatocytes in the individuals carrying one of these three common 
gene variants, PNPLA3 (GC, GG) (n=69), TM6SF2 (CT, TT) (n=13), HSD17B13 (-T, TT) (n=21) 

compared with wild type (WTs) (n=36) i.e., individuals homozygous for all the three gene variants: 

PNPLA3 (CC) , TM6SF2 (CC) and HSD17B13 (--) (Tables 1 and S1), using genome-wide 

transcriptomics data and the iHepatocytes2322 model. The number of metabolites and reactions 

included in these models are given in (Figure S1). Selection of individuals exclusively carrying 

PNPLA3 or TM6SF2 or HSD17B13 gene variants from the study cohort43 is given in (Table S1). 

FVA of the hepatocyte models of the gene variants showed that, the average flux span across the 

metabolic subsystems in PNPLA3 variant carrier was markedly higher than TM6SF2 and HSD17B13 

variant carriers, whilst lowest flux variation was found in the WT model (Figure 7a). FVA identified 

31 metabolic subsystems that were altered in at least one gene variant carrier (Figure 7b). 

Interestingly, PNPLA3 variant carriers showed higher values of %RFS (>50%) across the ether lipid, 

vitamin E, leukotriene, starch and sucrose, pantothenate and CoA biosynthesis, and 

glycerophospholipid and tryptophan metabolism (Figure 7b). Furthermore, PNPLA3 (heterozygous: 

GC, n=47) variant carriers showed larger %RFS values across these subsystems as compared to 

(homozygous: GG, n=22) variant carriers (Figure S9). On the otherhand, lower values of %RFS was 

marked across fatty acid activation and biosynthesis in the hepatocytes of the PNPLA3 variant 

carrier as compared to TM6SF2 and HSD17B13 variant carriers, suggesting that fatty acid 

metabolism might be tightly regulated and essential for the cellular function of the PNPLA3 variant 

carriers (Figure 7b). Also, random sampling of the flux states of PNPLA3 variant carriers vs. WT 

also showed an increase in the fluxes across the ether lipid and fatty acid metabolism (Figure S10). 

DISCUSSION 

GSMM of human hepatocytes in NASH-associated fibrosis (n=206) identified several metabolic 

signatures and pathways markedly regulated at different stages of fibrosis. The previous GSMM 
study of human NAFLD44 also identified altered metabolic pathways in NAFLD, however, that study 

was confined to a relatively small patients group, not representing the full spectrum of NAFLD. Here, 

we used genome-wide transcriptomics (RNA-seq)43 data that provided a dynamic range of genes, 

enzymes / reactions, metabolites and their interactions, to model stage-specific GEMs for human 

hepatocytes in NAFLD (Figure 1). In addition, the study cohort allowed us to stratify and model the 

metabolic differences in three major genetic variants (PNPLA3, TM6SF2 and HSD17B13) 

associated with risk and severity of NAFLD. 

Our results implicate changes in the levels of vitamins (A, E) in the NASH-associated fibrosis 

progression. In the hepatocytes, a significant increase in the RMs of retinoic acid derivatives were 

observed in NASH F2, F3 (vs. NAFL) and in 'clinically significant’ non-cirrhotic fibrosis (vs. ‘minimal 
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disease’)(Figure S2, Figures 4 and Figure S7). A small increase in the serum levels of Vitamin A 

(retinol) and retinyl palmitate was observed at NASH F01 stage, whilst  retinyl palmitate was 

markedly decreased at NASH F4 stage (Figure 6g-h). At this stage, the activated hepatic stellate 

cells tend to lose the retinyl esters stored in the liver, ultimately leading to vitamin A deficiency42,45. 
Vitamin A is a regulator of glucose and lipid metabolism in the liver and adipose tissue and may 

attenuate in the development of NAFLD42,45. The PNPLA3 gene product is known to have retinyl 

ester hydrolase activity, and PNPLA3-I148M is associated with low serum retinol level with 

enhanced retinyl esters in the liver of NAFLD patients40,41. However, GSMM have not identified any 

differences in vitamin A metabolism related to PNPLA3 variant carriage. Intriguingly, Vitamin E 

derivatives were subsequently decreased across the stages of fibrosis. High dose of Vitamin E 

supplementation has been shown to improve histological steatohepatitis over placebo in the 

PIVENS randomized controlled trial of pioglitazone or vitamin E in patients with NASH46. 

We observed a dynamic regulation of complex GSLs in the advanced fibrosis. At this stage, majority 

of cerebrosides (HexCers: glucosylceramides (GlcCers) and lactosylceramides (LacCers)), and 

globosides were decreased in the patient groups. Intriguingly, the serum concentrations of GSLs 

(HexCers, GlcCers) were abruptly decreased in the patients with advance fibrosis or cirrhosis (F4) 

(Figure 6e-f). Ceramides (Cers) are the key intermediates of sphingolipid metabolism that promote 

cellular proliferation, differentiation and cell death47,48. Cers interact with several pathways involved 

in insulin resistance, oxidative stress, inflammation, and apoptosis, that are linked to NAFLD48,49. 

Understanding the role of ceramides in the staging of NASH-associated fibrosis is of great 

diagnostic interest49. In normal physiological conditions, Cers converts to GSLs, which prevents its 
excessive accumulation in the cells50. Our data suggest that in patients with advanced fibrosis, the 

serum concentrations of Cers increase up to NASH F3, and decrease at NASH F4 stages. 

Differential expression of metabolic genes and flux analysis showed an increase of Cer production 

via SMase, whilst production of GSLs (GlcCer, GalCer and LacCers) decreases (Figure 5). Thus, 

the conversion of Cers to GSLs (via glucosylceramide synthase, GCS) might have been 

compromised in ‘advanced’ fibrosis. Intriguingly, we found that the GSLs (LacCers and globosides) 
were associated with GAGs (heparin, keratin sulphate), which was also altered in the progression 

of NASH-associated fibrosis. It is well demonstrated that inhibiting GSL synthesis in obese mice 

has improved glucose homeostasis and markedly reduced the development of NAFL51.  

Taken together, the current study has identified several novel metabolic signatures and pathways 

in staging NAFLD. It enabled us to understand, how different metabolites and their intermediates 

are regulated across various stages of NASH-associated fibrosis. While some of our key results 

corroborate with the earlier findings, others allowed us to elucidate the dys(regulation) of metabolic 

pathways in NAFLD. Moreover, GSMM has demonstrated several stage-specific metabolic 

changes, which might help discover biomarkers, identify drug targets, and ultimately lead to 
effective therapeutic strategies for NASH. To this end, our data indicate the significance of GSL 

pathways and targeting these pathways might ameliorate the liver pathology associated with NAFL 

and NASH-associated fibrosis. However, some of these findings remains to be validated by in vivo 

and/or in vitro experiments. 

METHODS 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 12, 2021. ; https://doi.org/10.1101/2021.02.09.21251354doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.09.21251354


 9 

Cohort description  

A full description of the transcriptomic analysis of the whole liver RNA-Seq data used in this study 

has previously been reported20. Patient samples were derived from the European NAFLD Registry 

(NCT04442334)19 and comprised snap-frozen biopsy samples and associated clinical data from 206 

patients diagnosed with histologically characterized NAFLD in France, Germany, Italy, or the United 

Kingdom. All biopsies were centrally scored by two expert liver pathologists according to the 

semiquantitative NASH-Clinical Research Network ‘NAFLD Activity Score’ (NAS)52. Fibrosis was 
staged from F0 to F4 (cirrhosis). Patients with alternate diagnoses and etiologies were excluded, 

including excessive alcohol intake (30 g per day for males and 20 g per day for females), viral 

hepatitis, autoimmune liver diseases, and steatogenic medication use. As previously described19, 

collection and use of samples and clinical data for this study were approved by the relevant local 

and/or national Ethical Review Committee covering each participating center, with all patients 

providing informed consent for participation. All participant recruitment and informed consent 

processes at recruitment centers were conducted in compliance with nationally accepted practice 

in the respective territory and in accordance with the World Medical Association Declaration of 

Helsinki 2018.  

All samples obtained in this study were histologically scored by two expert liver pathologists 

according to the widely accepted, semiquantitative NASH-Clinical Research Network ‘NASH 

Activity Score’ (NAS) system52 and grouped according to histopathological grade of NASH and 

stage of fibrosis from F0 up to F4 (cirrhosis)20. 

Transcriptomics 

Transcriptomic (RNA-seq) data associated with this study was obtained from20; also available in the 

NCBI GEO repository (accession GSE135251). 

Genotyping 

Genotypes were obtained from the GWAS data described in detail in8. Some data was also obtained 

from RNA-seq as reported elsewhere43.  

Genome-scale metabolic modelling 

Contextualization of GEMs  

Functional GEMs of human hepatocytes were developed by step-wise combining Gene Inactivity 

Moderated by Metabolism and Expression (GIMME)25 and E-Flux26 algorithms, applied to 

iHepatocytes2322 as a template model. By integrating NAFLD stage-specific whole tissue 

transcriptomics (RNASeq) data with iHepatocytes2322, we contextualized and developed 

hepatocyte-GEMs for different stages of NASH-associated fibrosis, i.e., ‘minimal’ NAFL + NASH 

(F0-1) (n= 85); ‘mild’ NAFL + NASH (F0-2) (n= 138); ‘clinically significant’ non-cirrhotic fibrosis 

(NASH F2-3) (n= 107); and ‘advanced’ fibrosis (NASH F3-4) (n= 68). The stage-specific 

transcriptomics data was used to score the active reactions encoded by the metabolic genes (MGs) 

of iHepatocytes2322. Accordingly, the feasibility of a particular reaction(s) to be included or 

discarded in the hepatocyte-GEM was determined. Subsequently, a draft GEM for each stage, that 
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include the active reactions, and their associated genes and metabolites was generated. The draft 

models were subjected to gap filling by assigning metabolic tasks performed using 'FitTask' 

function deployed in the RAVEN suite53. All the models were able to carry out 256 metabolic tasks 

(e.g., gluconeogenesis, fatty acid biosynthesis, oxidation etc.)17,54, which was tested using 

'CheckTask' function. The blocked reactions were rectified or removed.  

A similar approach was adapted to contextualize GEMs (iHepatocytes2322) for hepatocytes in the 

individuals exhibiting carriage of gene variants, PNPLA3 (GC, GG) (n=69), TM6SF2 (CT, TT)(n=13), 

HSD17B13 (-T, TT)(n=21) and wild type (WTs)(n=36). 

Normalized flux differences 

We deployed an unbiased and non-uniform random sampling (RS) method30 that finds solutions 

among the feasible flux distributions of the metabolic network. By applying RS on the context / 

stage-specific GEMs, we estimated the flux distribution (sampled, n=1000). Only reactions having 

non-zero measurable fluxes (<1e-6) fluxes were considered in the pair-wise (case – control) 

comparision. The absolute values of the reaction fluxes were grouped by their corresponding 
subsystems. The fluxes per subsystem were averaged and subjected to quantile normalization. 

Thereby, the flux differences between the case vs. control was estimated as stated in30,55. RS was 

performed using RAVEN 2.0 suite using 'MOSEK 8' solver53. 

Flux Variability Analysis  

A loop-less version of fastFVA56 implemented in COBRA Toolbox v3.057 was used to prevent the 

formation of futile cycles. By using FVA, we estimated the flux range of reactions included in each 

context / stage-specific GEM for NAFLD, and thereby, the flux span (max – min) was estimated. 

Only reactions having non-zero flux span were considered. All the flux spans per subsystem was 
averaged. Percentage of relative average flux span (% RFS) per metabolic subsystem for each 

stage of NAFLD was estimated.  

Sensitivity Analysis 

Shadow price (SP) of a metabolite determines its impact on the cellular biomass, when the 
intracellular concentration of the metabolite deviates by one-unit from the steady-state33. If a 

metabolite has a positive SP, an increase in the concentration of the metabolite will increase the 

cellular biomass, suggesting the metabolite is limiting for the biomass. A negative SP suggests 

metabolite is available in excess, and zero SP suggests that, the concentration of metabolite 

remains insensitive towards the cellular biomass. Of note, the sign of the SP depends on the solver 

used. SP was evaluated using ‘optimizeCbModel’ function implemented in the COBRA Toolbox 

v3.057. 

Mixed integer linear programming (MILP) was performed using 'MOSEK 8' solver (licensed for the 

academic user) integrated in the RAVEN 2.0 suite53. Linear programming (LP) and optimization was 

performed using 'ILOG-IBM CPLEX (version 128)' solver. Quality control and sanity checks58 were 

performed using COnstraint-Based Reconstruction and Analysis Toolbox (Cobra toolbox v3.0)57. 

Simulations were performed using Cobra toolbox (v3.0) and RAVEN suite. All the operations were 

performed in MATLAB 2017b (Mathworks, Inc., Natick, MA, USA).  
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Reporter metabolite analysis 

RM analysis was performed by using 'reporterMetabolites' function of the RAVEN 2.0 suite53. RMs 

that were significantly (p < 0.05) altered between two different NAFLD patient groups were listed.  

Data visualization and graphics 

Several libraries / packages of R v3.6.0, a statistical programming language such as ‘Heatmap.2’, 

‘boxplot’, 'beanplot', ‘gplot’, and ‘ggplot2’ and Cytoscape v3.8.0 software were used for data 

visualization and network analysis.  

Analysis of lipids and polar metabolites 

Lipidomics analysis 

Serum samples were randomized and extracted using a modified version of the previously-

published Folch procedure59. The maternal samples were analysed as one batch and the cord blood 

samples as a second batch. In short, 10 µL of 0.9% NaCl and, 120 µL of CHCl3: MeOH (2:1, v/v) 

containing the internal standards (c = 2.5 µg/mL) was added to 10 µL of each serum sample. The 

standard solution contained the following compounds: 1,2-diheptadecanoyl-sn-glycero-3-

phosphoethanolamine (PE(17:0/17:0)), N-heptadecanoyl-D-erythro-sphingosylphosphorylcholine 

(SM(d18:1/17:0)), N-heptadecanoyl-D-erythro-sphingosine (Cer(d18:1/17:0)), 1,2-diheptadecanoyl-
sn-glycero-3-phosphocholine (PC(17:0/17:0)), 1-heptadecanoyl-2-hydroxy-sn-glycero-3-

phosphocholine (LPC(17:0)) and 1-palmitoyl-d31-2-oleoyl-sn-glycero-3-phosphocholine 

(PC(16:0/d31/18:1)), were purchased from Avanti Polar Lipids, Inc. (Alabaster, AL, USA), and, 

triheptadecanoylglycerol (TG(17:0/17:0/17:0)) was purchased from Larodan AB (Solna, Sweden). 

The samples were vortex mixed and incubated on ice for 30 min after which they were centrifuged 

(9400 × g, 3 min). 60 µL from the lower layer of each sample was then transferred to a glass vial 

with an insert and 60 µL of CHCl3: MeOH (2:1, v/v) was added to each sample. The samples were 

stored at -80 °C until analysis. 

Calibration curves using 1-hexadecyl-2-(9Z-octadecenoyl)-sn-glycero-3-phosphocholine 
(PC(16:0e/18:1(9Z))), 1-(1Z-octadecenyl)-2-(9Z-octadecenoyl)-sn-glycero-3-phosphocholine 

(PC(18:0p/18:1(9Z))), 1-stearoyl-2-hydroxy-sn-glycero-3-phosphocholine (LPC(18:0)), 1-oleoyl-2-

hydroxy-sn-glycero-3-phosphocholine (LPC(18:1)), 1-palmitoyl-2-oleoyl-sn-glycero-3-

phosphoethanolamine (PE(16:0/18:1)), 1-(1Z-octadecenyl)-2-docosahexaenoyl-sn-glycero-3-

phosphocholine (PC(18:0p/22:6)) and 1-stearoyl-2-linoleoyl-sn-glycerol (DG(18:0/18:2)), 1-(9Z-

octadecenoyl)-sn-glycero-3-phosphoethanolamine (LPE(18:1)), N-(9Z-octadecenoyl)-sphinganine 

(Cer(d18:0/18:1(9Z))), 1-hexadecyl-2-(9Z-octadecenoyl)-sn-glycero-3-phosphoethanolamine 

(PE(16:0/18:1)) from Avanti Polar Lipids, 1-Palmitoyl-2-Hydroxy-sn-Glycero-3-Phosphatidylcholine 
(LPC(16:0)), 1,2,3 trihexadecanoalglycerol (TG(16:0/16:0/16:0)), 1,2,3-trioctadecanoylglycerol 

(TG(18:0/18:0/18:)) and 3β-hydroxy-5-cholestene-3-stearate (ChoE(18:0)), 3β-Hydroxy-5-

cholestene-3-linoleate (ChoE(18:2)) from Larodan, were prepared to the following concentration 

levels: 100, 500, 1000, 1500, 2000 and 2500 ng/mL (in CHCl3:MeOH, 2:1, v/v) including 1250 ng/mL 

of each internal standard. 

The samples were analyzed by ultra-high-performance liquid chromatography quadrupole time-of-
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flight mass spectrometry (UHPLC-QTOFMS). Briefly, the UHPLC system used in this work was a 

1290 Infinity II system from Agilent Technologies (Santa Clara, CA, USA). The system was equipped 

with a multi sampler (maintained at 10 °C), a quaternary solvent manager and a column thermostat 

(maintained at 50 °C). Injection volume was 1 µL and the separations were performed on an 

ACQUITY UPLC® BEH C18 column (2.1 mm × 100 mm, particle size 1.7 µm) by Waters (Milford, 
MA, USA). The mass spectrometer coupled to the UHPLC was a 6545 QTOF from Agilent 

Technologies interfaced with a dual jet stream electrospray (Ddual ESI) ion source. All analyses 

were performed in positive ion mode and MassHunter B.06.01 (Agilent Technologies) was used for 

all data acquisition. Quality control was performed throughout the dataset by including blanks, pure 

standard samples, extracted standard samples and control serum samples, including in-house 

serum and a pooled QC with an aliquot of each sample was collected and pooled and used as 

quality control sample. 

Relative standard deviations (% RSDs) for identified lipids in the control serum samples (n = 13) 
and in the pooled serum samples (n = 54) were on average 22.4% and 17.5%, respectively.  

Mass spectrometry data processing was performed using the open source software package 

MZmine 2.1860. The following steps were applied in this processing: (i) Crop filtering with a m/z 

range of 350 – 1200 m/z and an RT range of 2.0 to 12 minutes, (ii) Mass detection with a noise level 

of 750, (iii) Chromatogram builder with a minimum time span of 0.08 min, minimum height of 1000 

and a m/z tolerance of 0.006 m/z or 10.0 ppm, (iv) Chromatogram deconvolution using the local 

minimum search algorithm with a 70% chromatographic threshold, 0.05 min minimum RT range, 

5% minimum relative height, 1200 minimum absolute height, a minimum ration of peak top/edge of 

1.2 and a peak duration range of 0.08 - 5.0, (v), Isotopic peak grouper with a m/z tolerance of 5.0 
ppm, RT tolerance of 0.05 min, maximum charge of 2 and with the most intense isotope set as the 

representative isotope, (vi) Peak filter with minimum 12 data points, a FWHM between 0.0 and 0.2, 

tailing factor between 0.45 and 2.22 and asymmetry factor between 0.40 and 2.50, (vii) Join aligner 

with a m/z tolerance of 0.009 or 10.0 ppm and a weight for of 2, a RT tolerance of 0.1 min and a 

weight of 1 and with no requirement of charge state or ID and no comparison of isotope pattern, 

(viii) Peak list row filter with a minimum of 10% of the samples (ix) Gap filling using the same RT and 

m/z range gap filler algorithm with an m/z tolerance of 0.009 m/z or 11.0 ppm, (x) Identification of 

lipids using a custom database search with an m/z tolerance of 0.009 m/z or 10.0 ppm and a RT 
tolerance of 0.1 min, and (xi) Normalization using internal standards PE(17:0/17:0), SM(d18:1/17:0), 

Cer(d18:1/17:0), LPC(17:0), TG(17:0/17:0/17:0) and PC(16:0/d30/18:1)) for identified lipids and 

closest ISTD for the unknown lipids followed by calculation of the concentrations based on lipid-

class concentration curves. 

Analysis of polar metabolites 

Serum samples were randomized and sample preparation was carried out as described 

previously61. The maternal samples were analysed as one batch and the cord blood samples as a 

second batch. In summary, 400 μL of MeOH containing ISTDs (heptadecanoic acid, deuterium-

labeled DL-valine, deuterium-labeled succinic acid, and deuterium-labeled glutamic acid, c = 1 

µg/mL) was added to 30 µl of the serum samples which were vortex mixed and incubated on ice 

for 30 min after which they were centrifuged (9400 × g, 3 min) and 350 μL of the supernatant was 
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collected after centrifugation. The solvent was evaporated to dryness and 25 μL of MOX reagent 

was added and the sample was incubated for 60 min at 45 °C. 25 μL of MSTFA was added and 

after 60 min incubation at 45 °C 25 μL of the retention index standard mixture (n-alkanes, c=10 

µg/mL) was added. 

The analyses were carried out on an Agilent 7890B GC coupled to 7200 QTOF MS. Injection volume 
was 1 µL with 100:1 cold solvent split on PTV at 70 °C, heating to 300 °C at 120 °C/minute. Column: 

Zebron ZB-SemiVolatiles. Length: 20m, I.D. 0.18mm, film thickness: 0.18 µm. With initial Helium 

flow 1.2 mL/min, increasing to 2.4 mL/min after 16 mins. Oven temperature program: 50 °C (5 min), 

then to 270°C at 20 °C/min and then to 300 °C at 40 °C/min (5 min). EI source: 250 °C, 70 eV 

electron energy, 35µA emission, solvent delay 3 min. Mass range 55 to 650 amu, acquisition rate 5 

spectra/s, acquisition time 200 ms/spectrum. Quad at 150 °C, 1.5 mL/min N2 collision flow, aux-2 

temperature: 280 °C. 

Calibration curves were constructed using alanine, citric acid, fumaric acid, glutamic acid, glycine, 
lactic acid, malic acid, 2-hydroxybutyric acid, 3-hydroxybutyric acid, linoleic acid, oleic acid, 

palmitic acid, stearic acid, cholesterol, fructose, glutamine, indole-3-propionic acid, isoleucine, 

leucine, proline, succinic acid, valine, asparagine, aspartic acid, arachidonic acid, glycerol-3-

phosphate, lysine, methionine, ornithine, phenylalanine, serine and threonine purchased from 

Sigma-Aldrich (St. Louis, MO, USA) at concentration range of 0.1 to 80 μg/mL. An aliquot of each 

sample was collected and pooled and used as quality control samples, together with a NIST SRM 

1950 serum sample and an in-house pooled serum sample. Relative standard deviations (% RSDs) 

of the metabolite concentrations in control serum samples showed % RSDs within accepted 

analytical limits at averages of 27.2% and 29.2% for in-house QC abd pooled QC samples. 

SUPPLEMENTAL INFORMATION 

Supplemental Information includes fourteen figures (Figures S1-10) and one table (Table S1).  

DATA AND SOFTWARE AVAILABILITY  

The GEMs for human hepatocytes contextualized for various stages of NAFLD were deposited in 

BioModels62 (www.ebi.ac.uk/biomodels/), and assigned an identifier MODEL2102060002. The 

RNA-Seq data are available in the NCBI GEO repository (accession GSE135251). The lipidomic / 

metabolomic datasets generated in this study are available at the NIH Common Fund's National 

Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench 

(https://www.metabolomicsworkbench.org). 
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Figure Legends 

Figure 1. Study design and schematic illustration. Key steps in the reconstruction of stage-

specific genome-scale metabolic models (GEMs) of human hepatocytes in NAFLD. Labels F(0-4) 
represents different stages of fibrosis. 

Figure 2. Flux variability across the metabolic subsystems of human hepatocytes in NAFLD. 

a) Showing cumulative distribution / proportion of average flux span (max - min) of all the reactions 

within a metabolic subsystem at different stages of NAFLD. b) Stacked bar plot showing the % of 

relative average flux span of each metabolic subsystem at different stages (color coded) of NAFLD.  

Figure 3. Metabolic flux states of human hepatocytes in NAFLD. Normalized average flux 

differences across the metabolic subsystems of the hepatocytes at different stages of NAFLD. Red and 

blue color denotes increase and decrease of average reaction fluxes within a metabolic subsystem at 

two different stages of NAFLD. 

Figure 4. Reporter metabolites of NASH F3 vs. NAFL. A metabolic-centric view of reporter 

metabolite (RM) modules that were significantly altered (p<0.05) between NASH F3 vs. NAFL. 

Orange and blue color denotes up and downregulated respectively. Each node represents a ‘RM’ 

and single or double lines represent reversible or irreversible metabolic reactions respectively. RMs 

that belong to a particular chemical class are color coded. 

Figure 5. Regulation of sphingolipid metabolism in NAFLD. a) A schematic illustration of 

sphingolipid (SL) metabolism in human hepatocytes. SPT: serine palmitoyl-CoA transferase, CerS: 

ceramide synthase, and DES: dihydroceramide desaturase, SMase: sphingomyelinase pathway 

S1P: sphingosine-1-phosphate, CDase: ceramidases, SK: sphingosine kinase, S1PPase: 

sphingosine phosphate phosphatases GCDase: glucosidase, GalCDase: galactosidase, C1P: 

ceramide 1-phosphate. The modeled reactions are labeled with ‘R#’. b) Log2 fold change (FC) of 

the differentially expressed (p.adjusted < 0.05) metabolic genes (MGs) of SL pathways at two 

different stages of NAFLD. c) Normalized flux differences across the SL reactions of the hepatocytes 

at different stages of NAFLD. Red and blue color denotes increase and decrease of reaction fluxes within 

at two different stages of NAFLD. 

Figure 6. Serum metabolic levels of ceramides, glycosphingolipids and retinoids in the 

patients at different stages of NAFLD. a-i) Beanplots showing the log2 intensities of the 

metabolites across different stages of NAFLD. Significant differences (Tukey’s HSD, p < 0.05) are 

shown by ‘*’. The dotted line denotes the mean of the population, and the black dashed lines in the 

bean plots represent the group mean. 

 

Figure 7. Flux variability across the metabolic subsystems of human hepatocytes in the 

genetic modifiers of NAFLD. a) Showing cumulative distribution / proportion of average flux span 

of all the reactions within a metabolic subsystem in the hepatocytes of the carriers of three major 

genetic variants (PNPLA3, TM6SF2 and HSD17B13) associated with risk and severity of NAFLD 

and the wild types (WT)(Table S1) models. b) Stacked bar plot showing the % of relative average 

flux span of each metabolic subsystem in the hepatocyte of the carriers of different genetic variants.  
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FIGURE 7 
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Table 1. Demographics of the EPoS RNA-Seq Cohort 

Clinical features Patients (n) Values 

(mean ± SD and / or patients ‘n’) 

Age (mean ± SD) 206 54 (± 11.87) 

Sex 
  

male 206 123 

female 
 

83 

BMI (mean ± SD) 204 31.34 (± 5.04) 

T2DM  206 
 

no 
 

96 

yes 
 

110 

HBA1C (mmol/mol ± SD) 135 48.06 (± 14.54) 

ALT (mean± SD) 204 67.12 (± 41.61) 

AST (mean± SD) 201 44.67 (± 23.08) 

Steatosis grade 206 
 

0 
 

0 

1 
 

60 

2 
 

73 

3 
 

73 

Ballooning 206 
 

0 
 

52 

1 
 

98 

2 
 

56 

Kleiner lobular  

Inflammation 

206 
 

0 
 

16 

1 
 

95 

2 
 

80 

3 
 

15 

SAF lobular  206 
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inflammation 

0 
 

16 

1 
 

140 

2 
 

50 

Brunt fibrosis  

stage 

206 
 

0 
 

38 

1 
 

47 

2 
 

53 

3 
 

54 

4 
 

14 

NASH 206 
 

no 
 

53 

yes 
 

153 

NAS score ≥ 4 206 
 

no 
 

58 

yes 
 

148 

SAF activity score ≥ 2 206 
 

no 
 

53 

yes 
 

153 

 

HSD17B13 rs72613567 (--/-T/TT) [unknown] 

 

188 

 

120/61/7 [18] 

 

PNPLA3 rs738409 (CC/GC/GG) 

 

206 

 

75/89/42 

 

TM6SF2 rs58542926 (CC/CT/TT) 

 

206 

 

156/48/2 
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 S1 

Quantitative genome-scale analysis of human liver reveals dysregulation 

of glycosphingolipid pathways in progressive nonalcoholic fatty liver 

disease 
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 S2 

Supplementary Figure 1 

Genome-scale metabolic models of human hepatocytes in NAFLD. A bar plot comparing the 

number of genes, metabolites and reactions included in the genome-scale metabolic models (GEMs) 

of human hepatocytes contextualized for various stages of NAFLD. GEMs contextualized for three 

major genetic variants (PNPLA3, TM6SF2 and HSD17B13) associated with risk and severity of 

NAFLD are shown as PNPLA3, TM6 and HSD respectively. ‘het’ and ‘hom’ represents homozygous 

and heterozygous respectively. ‘HMR2’ is Human Metabolic Reaction (GEM) version2.0 1 and ‘WT’ 

is wild type. 
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 S3 

Supplementary Figure 2 

 

Figure S2.  A metabolic-centric view of reporter metabolite (RM) modules that were significantly altered 

(p<0.05) between NASH F2 vs. NAFL. Orange color denotes upregulated. Each node represents a ‘RM’ and 

single or double lines represent reversible or irreversible metabolic reactions respectively. RMs that belong 

to a particular chemical class are color coded. 
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Supplementary Figure 3 

 

Figure S3.  A metabolic-centric view of reporter metabolite (RM) modules that were significantly altered 

(p<0.05) between NASH F4 vs. NAFL. Orange and blue color denotes up and downregulated respectively. 

Each node represents a ‘RM’ and single or double lines represent reversible or irreversible metabolic reactions 

respectively. RMs that belong to a particular chemical class are color coded. 
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Supplementary Figure 4 

 

Figure S4.  A metabolic-centric view of reporter metabolite (RM) modules that were significantly altered 

(p<0.05) between ‘advanced’ fibrosis vs. ‘minimum’ disease. Orange and blue color denotes up and 

downregulated respectively. Each node represents a ‘RM’ and single or double lines represent reversible or 

irreversible metabolic reactions respectively. RMs that belong to a particular chemical class are color coded. 
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Supplementary Figure 5 

 

Figure S5.  A metabolic-centric view of reporter metabolite (RM) modules that were significantly altered 

(p<0.05) between ‘advanced’ fibrosis vs. ‘mild disease. Orange and blue color denotes up and downregulated 

respectively. Each node represents a ‘RM’ and single or double lines represent reversible or irreversible 

metabolic reactions respectively. RMs that belong to a particular chemical class are color coded. 
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Supplementary Figure 6 

 

 

Figure S6. Showing shadow price (SP) of the metabolites across various stages of NAFLD estimated by flux 

imbalance analysis (FIA). Blue and orange color denotes negative and positive SPs respectively.  
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Supplementary Figure 7 

 

Figure S7.  A metabolic-centric view of reporter metabolite (RM) modules that were significantly altered 

(p<0.05) between ‘clinically significant’ non-cirrhotic fibrosis vs. ‘minimum’ disease. Orange and blue color 

denotes up and downregulated respectively. Each node represents a ‘RM’ and single or double lines 

represent reversible or irreversible metabolic reactions respectively. RMs that belong to a particular chemical 

class are color coded. 
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Supplementary Figure 8 

 

Figure S8. a-b) A heatmap showing RM clusters of glycosphingolipids (GSLs) and glycosaminoglycans 

(GAGs) that are significantly (***p<0.01, **p<0.05) downregulated (blue color) along the different stages 

NAFLD. 
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Supplementary Figure 9 

 

 
 

Figure S9. Flux variability across the metabolic subsystems of human hepatocytes carrying variants of 

PNPLA3 gene. a) Showing cumulative distribution / proportion of average flux span of all the reactions within 

a metabolic subsystem in the hepatocytes of the carriers of genetic variants of PNPLA3 (homozygous: GG, 

n=47 and heterozygous: GC, n=22) and wild type (WT, n=36); i.e. individuals homozygous for all the three 

gene variants: PNPLA3 (CC) , TM6SF2 (CC) and HSD17B13 (--)(Table S1). b) Stacked bar plot showing the 

% of relative average flux span of each metabolic subsystem in the hepatocyte of the carriers of different 

genetic variants.  
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Supplementary Figure 10 

 
 

 

Figure S9. Normalized average flux differences in the hepatocytes of the carriers of three major genetic 

variants (PNPLA3 (n=69), TM6SF2 (n=13) and HSD17B13 (n=21)) associated with risk and severity of NAFLD. 

Red and blue color denotes increase and decrease of fluxes in each subsystem between the gene variants 

and wild type (WT, n=36) models; i.e. individuals homozygous for all the three gene variants: PNPLA3 (CC) , 

TM6SF2 (CC) and HSD17B13 (--). ‘hom’ denotes homozygous (GG, n=47) , ‘het’ denotes heterozygous (GC, 

n=22) and ‘hom_het’ denotes combination of homo- and heterozygous (GG and GC, n=69)(Table S1). 
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Supplementary Table 1 

 

Gene variants 

RNA-seq 

cohort2 

(Individuals) No. of participants  

PNPLA3 rs738409 

(CC/GC/GG) 206 

69 individuals exclusively exhibiting carriers of PNPLA3 

rs738409 (GG, GC) and homozygous / wild types for 

TM6SF2 rs58542926 (CC) and HSD17B13 rs72613567 (--). 

PNPLA3 rs738409 (CC) 75 

PNPLA3 rs738409 (GG) 42 

PNPLA3 rs738409 (GC) 89 

   
TM6SF2 rs58542926 

(CC/CT/TT) 206 

13 individuals exclusively exhibiting carriers of TM6SF2 

rs58542926 (CT, TT) and homozygous  / wild types for 

PNPLA3 rs73840 (CC) and HSD17B13 rs72613567 (--). 

TM6SF2 rs58542926 (CC) 156 

TM6SF2 rs58542926 (CT) 2 

TM6SF2 rs58542926 (TT) 48 

  

   
HSD17B13 rs72613567 

(--/-T/TT) 188 

21 individuals exclusively exhibiting carriers of HSD17B13 

rs72613567 (-T, TT) and homozygous / wild types for 

TM6SF2 rs58542926 (CC) and PNPLA3 rs73840 (CC). 

HSD17B13 rs72613567 (--) 120 

HSD17B13 rs72613567 (TT) 7 

HSD17B13 rs738409 (-T) 61 

   

Wild types, WTs (PNPLA3 

rs738409 (CC) + TM6SF2 

rs58542926 (CC) +  HSD17B13 

rs72613567 (--)) -- 

36 individual wild types for PNPLA3 rs738409, TM6SF2 

rs58542926 and HSD17B13 rs72613567) 

 

Table S1. Selection of individuals carrying variants for PNPLA3, TM6SF2 and HSD17B13 genes associated 

with risk and severity of NAFLD. 
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