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Abstract 25 

Quantitative proxy-based and high-resolution palaeoclimatic datasets are scarce for the lower reaches 26 

of the Yangtze River (LYR) basin. This region is in a transitional vegetation zone which is 27 

climatologically sensitive; and as a birthplace for prehistorical civilization in China, it is important to 28 

understand how palaeoclimatic dynamics played a role in affecting cultural development in the region. 29 

We present a pollen-based and regionally-averaged Holocene climatic twin-dataset for mean total 30 

annual precipitation (PANN) and mean annual temperature (TANN) covering the last 10,000 years for 31 

the LYR region. This is based on the technique of weighted averaging-partial least squares regression 32 

to establish robust calibration models for obtaining reliable climatic inferences. The pollen-based 33 

reconstructions generally show an early Holocene climatic optimum with both abundant monsoonal 34 

rainfall and warm thermal conditions, and a declining pattern of both PANN and TANN values in the 35 

middle to late Holocene. The main driving forces behind the Holocene climatic changes in the LYR 36 

area are likely summer solar insolation associated with tropical or subtropical macro-scale climatic 37 

circulations such as the Intertropical Convergence Zone (ITCZ), Western Pacific Subtropical High 38 

(WPSH), and El Niño/Southern Oscillation (ENSO). Regional multi-proxy comparisons indicate that 39 

the Holocene variations in precipitation and temperature for the LYR region display an in-phase 40 

relationship with other related proxy records from southern monsoonal China and the Indian monsoon-41 

influenced regions, but are inconsistent with the Holocene moisture or temperature records from 42 

northern monsoonal China and the westerly-dominated region in northwestern China. Overall, our 43 

comprehensive palaeoclimatic dataset and models may be significant tools for understanding the 44 

Holocene Asian monsoonal evolution and for anticipating its future dynamics in eastern Asia.  45 

 46 

Keywords: lower Yangtze, China, Holocene, climate, pollen, quantitative reconstructions 47 

 48 

 49 

 50 

1 Introduction 51 
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The Yangtze River and its catchment occupy one of the largest drainage-basin systems in eastern Asian 52 

continent and act as a boundary zone of northern and southern China (e.g. Zhao and Chen 1999; Wu 53 

et al. 2012). The lower reaches of the Yangtze River (LYR) are situated in an area that is dominated by 54 

the East Asian monsoonal circulation (EAM); and the natural vegetation is warm temperate broadleaf 55 

and subtropical evergreen forests as well as transitions of these biomes (e.g. Ren and Beug 2002; Innes 56 

et al. 2014). The vegetation and environment in the LYR region would have been sensitive to even 57 

small-scale Holocene climatic as well as sea level fluctuations, due largely to its special bioclimatic 58 

locality and any marked weakening or strengthening of the EAM regime (e.g. Morrill et al. 2003; Yi 59 

et al. 2003; Zong et al. 2011). In particular, the LYR has been identified as one of the birthplaces for 60 

prehistorical Chinese civilization such as the ancient Hemudu and Liangzhu Cultures, and for rice 61 

cultivation such as the domesticated paddy Oryza sativa, as broadly elucidated by detailed 62 

palaeoecological and archaeological evidence obtained in earlier studies (e.g. Londo et al. 2006; Zong 63 

et al. 2007; Atahan et al. 2008; Fuller et al. 2009; Zhao et al. 2009; Li et al. 2010). As a consequence, 64 

the LYR has thus been suggested as an ideal region of interest for exploring the history of Holocene 65 

environmental, climatic, and cultural changes in eastern monsoonal China (e.g. Chen et al. 2005, 2009; 66 

Innes et al. 2009, 2014; Wang et al. 2011, 2012; Zong et al. 2007, 2011, 2012).  67 

Quantitatively-integrated and high-resolution records of Holocene precipitation and temperature 68 

variations are rarely available in the LYR region, and the nature of Holocene climatic evolution in this 69 

region remains unclear (e.g. An et al. 2000; Yi et al. 2003; Chen et al. 2005; Zong et al. 2006; Atahan 70 

et al. 2008; Innes et al. 2009; Shu et al. 2010; Zong et al. 2011, 2012). Several questions arise, including 71 

(i) has the Holocene climate evolved similarly or differently between the LYR and other EAM-affected 72 

regions of China such as northern monsoonal China? (ii) What potential driving factors have possibly 73 

triggered the Holocene climatic oscillations in the LYR? (iii) Have precipitation and temperature 74 

patterns behaved synchronously or asynchronously during the course of Holocene in the LYR? (iv) 75 

What was the timing and magnitude of the Holocene climatic optimum in the LYR? Making progress 76 

on these issues requires regional-scale, high-resolution, and numerical palaeoclimatic data.  77 

  Quantitative palaeoclimatological estimates using biological fossil proxies preserved in sediments 78 

provide an important avenue to develop these climatic data for comparison with regionally-averaged 79 
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and temporally-detailed Holocene precipitation as well as temperature data in northern China (e.g. Xu 80 

et al. 2010; Chen et al. 2015; Li et al. 2015, 2017), the Tibetan Plateau (e.g. Shen et al. 2008; Herzschuh 81 

et al. 2009; Wang et al. 2014), and many regions of Europe and North America (e.g. Seppä et al. 2009; 82 

Bartlein et al. 2011; Viau et al. 2012; Heiri et al. 2014; Mauri et al. 2015; Ladd et al. 2015), at local, 83 

regional, and continental scales. The continuous and conceptual advances in developing and improving 84 

large-scale calibration datasets and novel statistical techniques, have greatly promoted the accuracy 85 

and robustness of climatic reconstructions, with different means of transforming a variety of fossil 86 

biological assemblages into numerical estimates of past rainfall and temperature during the Holocene 87 

(e.g. Birks et al. 2010; Salonen et al. 2014; Wang et al. 2014; Li et al. 2015, 2017). Such reconstructed 88 

climatic data are particularly valuable for validating climatic transient-model simulations and other 89 

independent climatic proxies comprising various geophysical, geochemical, and geoecological records 90 

from both terrestrial and marine environments worldwide (e.g. Braconnot et al. 2012; Renssen et al. 91 

2012; Heiri et al. 2014; Li et al. 2015, 2017). In this respect, pollen data are one of the most commonly-92 

used biological proxies for quantitative Holocene terrestrial climatic inferences at a broad scale (e.g. 93 

Seppä et al. 2009; Birks et al. 2010; Wang et al. 2014; Li et al. 2017).  94 

  In view of the above, we place a key focus on reporting new, high-resolution Holocene precipitation 95 

and temperature reconstructions based on three fossil pollen sequences located within the lower 96 

Yangtze region of monsoonal China. Our main purpose is to enable a broader understanding and 97 

discussion with respect to the Holocene climate-related issues presented above regarding the LYR and 98 

monsoonal China. We further assess our pollen-based Holocene climatic reconstructions by relying 99 

upon an extensive multi-proxy comparison with a large number of either single or integrated moisture- 100 

and temperature-related proxy records from China as well as other regions of the world, such as 101 

speleothem oxygen isotope records (e.g. Fleitmann et al. 2003; Wang et al. 2005), loess-palaeosol 102 

sequences (e.g. Wang et al. 2014; Li et al. 2014), lake sediment cores (e.g. Shen et al. 2005; Chen et 103 

al. 2015), and climate model simulations (e.g. Jin et al. 2013; Chen et al. 2014). Moreover, the most 104 

important element of this study is to contribute improved and meaningful insights for evaluating the 105 

role of causal forces and atmospheric circulations in driving Holocene climatic, environmental, and 106 

cultural changes as well as on forecasting their future possible dynamics in the lower Yangtze region 107 
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of China.  108 

2 Study area 109 

The lower valley of the Yangtze basin is located in the eastern part of monsoonal China (Fig. 1), where 110 

the Asian monsoon dominates the climate and is characterized by warm, wet monsoon in summertime 111 

and cold, dry monsoon in wintertime, with four well-pronounced climatic seasons occurring per year. 112 

The 700 hPa atmospheric airstream lines in Figure 1 clearly show that the lower Yangtze region is 113 

under the typical influence of the East Asian summer monsoon system, whilst northwestern and 114 

southwestern China are dominated by the westerlies and Indian summer monsoon circulation, 115 

respectively. Mean annual temperature (TANN) varies between 14.5 and 16.2 °C, and mean total 116 

annual precipitation (PANN) ranges from 800 to 1400 mm, with its maximum level taking place in 117 

July (e.g. Yi et al. 2006; Li et al. 2012). The area of our investigation is naturally covered by a high-118 

density of water-bodies including lakes, peats, bogs, marshes, swamps and wetlands, and it has thus 119 

been particularly attractive for palaeoenvironmental studies (e.g. Tao et al. 2006; Innes et al. 2009, 120 

2014; Wang et al. 2011, 2012). The vegetation of the LYR area is a biogeographical ecotone consisting 121 

of mixed broad leaved deciduous and evergreen forests with distinct transitional characteristics (e.g. 122 

Wu 1983; Huang and Zhang 2000). The main temperate components comprise species of Betula, 123 

Ulmus, Alnus, Populus, Quercus, and Acer. The dominant evergreen components include Castanopsis, 124 

Cyclobalanopsis, Lithocarpus, and Fagaceae. In addition, a low number of coniferous plant taxa such 125 

as Pinus, Picea, and Cupressaceae occur in the high-elevation mountainous areas (e.g. Zong et al. 2011, 126 

2012). It is therefore likely that in the transitional vegetation belt of the LYR, the Holocene climatic 127 

variability would have caused a northward or southward shift of the temperate or subtropical biome 128 

because of fluctuations in precipitation as well as temperature controlled primarily by the overall 129 

variability of Eastern Asian summer monsoonal (EASM) intensity (e.g. Yi et al. 2006; Zong et al. 2007, 130 

2011).  131 

3 Materials and methods  132 

Pollen-based quantitative estimates for both PANN and TANN were prepared from three Holocene 133 

pollen datasets at Chaohu (Chen et al. 2009), Gucheng (Yang et al. 1996), and Pingwang (Innes et al. 134 
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2014), that lie within the lower reaches of the Yangtze catchment (Fig. 1). These fossil pollen profiles 135 

were selected as they have reliable chronological control and fine-scale temporal resolution (see Table 136 

1 for other details). The AMS radiocarbon technique was utilized to create geochronological datasets 137 

(Yang et al. 1996; Chen et al. 2009; Innes et al. 2014). Plant macrofossils, shell fragments, pollen 138 

residues, charcoal particles, and basal peats have been used for AMS dating (Yang et al. 1996; Chen 139 

et al. 2009; Innes et al. 2014). The age–depth models were estimated by a linear interpolation between 140 

adjacent samples (Yang et al. 1996; Chen et al. 2009; Innes et al. 2014). The radiocarbon dates were 141 

calibrated and transformed to calendar years before present according to the IntCal13 calibration 142 

dataset (Reimer et al. 2013). The AMS 14C dates are presented here as cal. yr BP throughout the text. 143 

The three fossil sites are geographically very close to each other, suggesting that they have probably 144 

witnessed similar climatic histories during the Holocene. 145 

  Pollen-based numerical calibration models for both PANN and TANN were established using the 146 

Chinese surface pollen–climate database which has been shown to be robust and reliable for Holocene 147 

climatic inferences that have been described elsewhere in more detail (e.g. Zheng et al. 2008, 2014; Li 148 

et al. 2014, 2015, 2017). The technique in terms of weighted averaging-partial least squares (WA-PLS; 149 

ter Braak and Juggins 1993) regression and calibration was chosen for constructing the pollen-based 150 

reconstruction models for PANN as well as TANN, because it has been successfully employed in a 151 

large number of empirical, theoretical and practical studies; and has been shown to perform as well as 152 

or better in comparison with other statistical regression approaches that are commonly applied for 153 

developing pollen-based calibration models for regional, continental and global scales (e.g. Birks 1998; 154 

Seppä et al. 2009; Birks et al. 2010; Salonen et al. 2012; Li et al. 2015, 2017). The performance of all 155 

WA-PLS models was assessed with the method of leave-one-out cross-validation (Birks 1998). The 156 

calculated model statistics for PANN and TANN embrace coefficient of determination (R2) between 157 

measured and predicted data, root-mean-square-error of prediction (RMSEP), and maximum bias. The 158 

two-component WA-PLS models (Fig. 2) were selected with respect to high R2, low RMSEP and 159 

maximum bias, as well as the smallest number of useful components (Birks 1998). All terrestrial pollen 160 

taxa were taken into account and their percentage values were square-root transformed to reduce noises 161 

and stabilize variances in the pollen data (Prentice 1980). The constructions or evaluations of all WA-162 
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PLS models associated with the numerical PANN or TANN estimates were carried out using the C2 163 

software (Juggins 2007). In addition, it has been demonstrated elsewhere that PANN and TANN are 164 

not always strongly correlated and that either PANN or TANN is statistically significant as well as 165 

ecologically meaningful in influencing broad-scale pollen distribution, indicating that they can be 166 

employed simultaneously for the pollen-based palaeoclimatic reconstructions applied here (e.g. Li et 167 

al. 2014, 2015). 168 

  To obtain the underlying characteristics and summarize the potential regional signals, a total of six 169 

quantitative climatic reconstructions based on the three fossil pollen datasets were integrated to 170 

produce two general high-resolution Holocene climatic sequences (PANN and TANN) for the lower 171 

Yangtze region of China. Such a composite methodology has been successfully used for quantitative 172 

pollen-derived and regional-scale Holocene climatic reconstructions in Europe (e.g. Seppä et al. 2009; 173 

Salonen et al. 2014; Mauri et al. 2015), North America (e.g. Viau et al. 2006, 2012; Ladd et al. 2015), 174 

and northern China (e.g. Li et al. 2015, 2017). It can be described briefly as follows. Each PANN or 175 

TANN estimate was calculated as deviations from their mean values across the Holocene. All 176 

estimated values of individual reconstructions for PANN or TANN were then combined so as to 177 

prepare two Holocene climatic records with an average time-resolution of circa 36 years for both 178 

PANN and TANN. Power spectra for potential periodicities in the pollen-stacked precipitation and 179 

temperature records were performed using the Redfit software (Schulz and Mudelsee 2002). This 180 

software is able to deal with unevenly distributed time-series data, and can test statistical significance 181 

of the spectral peaks against the red-noise background with a null-hypothesis, which can be evaluated 182 

by utilizing the first-order autoregressive signals, where characteristic time-scales as well as sampled 183 

time-spans match those of the real data, without the necessity for any interpolation (Schulz and 184 

Mudelsee 2002). 185 

4 Results and discussion  186 

4.1 Climatic reconstructions with low- and high-frequency trends 187 

The pollen-inferred site-specific Holocene climatic reconstructions are presented in Figure 3. The 188 

regionally-averaged estimates are shown in Figure 4. Thus we provide the first ~36-year resolution 189 
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pairwise-dataset for both PANN and TANN records covering the last 10,000 years. These portray both 190 

general patterns as well as detailed features of the Holocene rainfall and temperature variations for the 191 

lower reaches of the Yangtze catchment. Power spectrum analyses conducted for the composite 192 

reconstructions reveal significant periodicities of 4000, 1190, and 116 years for PANN, and of 2500, 193 

1190, and 116 years for TANN (Fig. 5). Some of these periodicities can also be found in other Holocene 194 

Asian monsoonal records and various solar parameters (e.g. Li et al. 1996; Laskar et al. 2004; Dykoski 195 

et al. 2005; Wang et al. 2008; Wanner et al. 2008, 2011; Zhao and Feng 2014), suggesting a possible 196 

mechanistic connection among these climatic systems.  197 

Overall high-frequency PANN and TANN fluctuations concurrently show a maximum level between 198 

10,000 and 7000 cal. yr BP, and a generally declining pattern with strong oscillations from 7000 cal. 199 

yr BP to the present-day (Fig. 4). The early to middle Holocene had high values of PANN and TANN, 200 

suggesting a warm, wet climate and a strong East Asian summer monsoon, as also demonstrated by 201 

rapidly increased sea level and possible small paddy rice cultivation in the LYR coastal plain (e.g. 202 

Innes et al. 2009; Shu et al. 2010; Zong et al. 2011; Wang et al. 2012). Subtropical forests were regarded 203 

as the dominant regional biome during this time phase, with Castanopsis and Cyclobalanopsis 204 

identified as the major tree taxa, which is evident in many published fossil pollen records from different 205 

parts of the LYR region (e.g. Chen et al. 2005; Yi et al. 2006; Innes et al. 2009; Wu et al. 2010; Li et 206 

al. 2012). However, since approximately 7000~5000 cal. yr BP, the cool temperate forest elements 207 

such as Quercus, Betula and Alnus started to occur and expanded while subtropical elements decreased, 208 

eventually leading to a mixed temperate–evergreen vegetation type which prevailed until modern times. 209 

The relative sea level was stable with only small fluctuations observed for this time period (e.g. Huang 210 

and Zhang 2000; Shu et al. 2007; Yi et al. 2006; Innes et al. 2014). This is closely in line with our 211 

climatic reconstructions displaying a falling trend for PANN and TANN values during this period, 212 

implying a cooling and drying climate associated with a gradually weakening EASM intensity from 213 

the middle to late Holocene in the LYR area (Fig. 4). In addition, it is noteworthy that in eastern 214 

monsoonal China, human activity played an important role in influencing vegetation cover during the 215 

late Holocene especially the last 2000 years (e.g. Zhao et al. 2009), which implies that pollen-based 216 

climatic inferences should thus be treated with caution (e.g. Li et al. 2014).  217 
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  Several low-frequency cooling and drying episodes can be clearly detected from our pollen-218 

estimated PANN and TANN records. These cold and dry climatic events at about 5300, 4200, 2800 219 

cal. yr BP and during the Little Ice Age interval in the LYR region (Fig. 4) appear to be correlated well 220 

with those widely reported from other areas in China (e.g. Wang et al. 2005; Shao et al. 2006; Xu et 221 

al. 2010; Innes et al. 2014), the North Atlantic region (e.g. Bond et al. 2001; Seppä et al. 2009), and 222 

the Northern Hemisphere (e.g. Clemens 2005; Viau et al. 2006; Wanner et al. 2008, 2011). Such short-223 

lived climatic events with high amplitude have been suggested to play a significant role in driving the 224 

demise and termination of Neolithic civilization such as the Liangzhu Culture in the Yangtze lowland 225 

area, because prehistorical farming fields and human settlements were usually situated close to water 226 

bodies such as lake shores and river channels, leading to these agricultural lands and cultural systems 227 

becoming vulnerable to abrupt changes in water supplies and thermal conditions during the Holocene, 228 

for example during the Neoglacial epoch (e.g. Zhang et al. 2005; Yao et al. 2008; Huang et al. 2010; 229 

Wu et al. 2010; Innes et al. 2014).    230 

4.2 Comparison with other subtropical or tropical Holocene records and possible mechanisms  231 

A decadal- to centennial-scale comparison of our pollen-based PANN and TANN estimates for the 232 

LYR with other related Holocene climatic proxy records from subtropical China, the Indian summer 233 

monsoon (ISM)-influenced region and other tropical or subtropical regions of the world, indicates a 234 

macro-scale in-phase pattern of general variability, exhibiting a consistent early Holocene climatic 235 

optimum in precipitation or temperature but a relatively dryer or cooler middle to late Holocene (Fig. 236 

6). However, it is notable that this general pattern is different to that indicated by two Holocene 237 

hydrological records from the middle reaches of the Yangtze River, that is, the mass accumulation rates 238 

of hopanoids from Dajiuhu peat bog as a proxy for water level, and the ratio of anhysteretic remanent 239 

magnetization (ARM) to saturation isothermal remanent magnetization (SIRM) from a stalagmite in 240 

Heshang Cave as a magnetic proxy, both suggesting a dry middle Holocene but a wetter early or late 241 

Holocene (Xie et al. 2013). These two records are also inconsistent with other proxy-based climatic 242 

records from the same region, for example, the pollen-based TANN record from Dajiuhu peat (Zhu et 243 

al. 2008) and the stalagmite δ18O record from Heshang Cave (Hu et al. 2008), which are in good 244 

agreement with our Holocene PANN and TANN records for the LYR. This discrepancy may result 245 
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from the differences in the various reconstruction techniques, distinct temporal resolutions, reliability 246 

of sedimentary chronologies, climatic significance of diverse proxy indicators, or spatial 247 

representativeness of sampled sites (e.g. Liu et al. 2015; Rao et al. 2016; Chen et al. 2016a). In addition, 248 

the aforementioned Holocene climatic records with consistent patterns that cover a broad geographical 249 

region include the following proxy datasets: the mean summer solar insolation (Laskar et al. 2004); 250 

stalagmite δ18O records from Dongge (Dykoski et al. 2005), Sanbao (Wang et al. 2008) and Qunf 251 

(Fleitmann et al. 2003) Caves; a model-simulated PANN record for southwestern China (Chen et al. 252 

2014); a pollen-inferred PANN estimate for Xingyun Lake in the ISM-influenced Yunan Province 253 

(Chen et al. 2014); a TANN reconstruction from Dajiuhu wetland in the EASM-dominated Hubei 254 

Province (Zhu et al. 2008); pollen-estimated moisture index (Zhao et al. 2009) as well as tree cover 255 

reconstruction (Tian et al. 2016) for southern China; a humification record from Hongyuan wetland on 256 

the southeastern Tibetan Plateau (Yu et al. 2006); a synthesized moisture index based on various proxy 257 

data for the southern Tibetan Plateau (Ran and Feng 2013); total organic carbon (Yancheva et al. 2007) 258 

and tree pollen records (Wang et al. 2007) from Huguangyan Maar Lake in southern China; an ISM 259 

rainfall index based on 92 monsoonal moisture records in eastern Asia (Wang et al. 2010); the 260 

Intertropical Convergence Zone (ITCZ) index inferred from Ti contents in Cariaco Basin, Venezuela 261 

(Haug et al. 2001); a Globigerina bulloides record from a marine sediment core in Arabian Sea (Gupta 262 

et al. 2005); composite sea surface temperature (SST) records for Western Pacific Warm Pool (WPWP; 263 

Scott et al. 2004; Koutavas and Joanides 2012); and an El Niño/Southern Oscillation (ENSO) record 264 

from Laguna Pallcacocha, Ecuador (Moy et al. 2002). Of these records, it is worth noting that the 265 

Holocene stalagmite δ18O data have been lately argued to probably represent a signal of the isotopic 266 

composition of precipitation from the ISM-influenced region rather than the EASM-dominated 267 

territory (e.g. Chen et al. 2014; Yang et al. 2014; Wang et al. 2014; Liu et al. 2015; Chen et al. 2016a). 268 

The above multiple lines of evidence suggest a strong causal linkage between tropical and 269 

subtropical climatic systems from the perspective of hemispheric or global scale teleconnections (Fig. 270 

6). It has been often proposed in earlier studies that the orbitally-controlled variability of summer solar 271 

insolation would have essentially modulated and triggered the tropical and subtropical summer 272 

monsoonal evolution during the post-glacial Holocene epoch (e.g. An et al. 2000; Gupta et al. 2005; 273 
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Fleitmann et al. 2003; Wang et al. 2008; Zhao et al. 2009; Koutavas and Tsukamoto 2014). During the 274 

early Holocene, the high output of summer insolation may have caused the northward migration of 275 

both mean ITCZ and Western Pacific Subtropical High (WPSH) positions as indicated clearly by the 276 

high SST values in the WPWP and the Arabian Sea. This therefore resulted in a great amount of 277 

evaporated water vapor being transported from the tropical and subtropical oceanic areas to southern 278 

and eastern Asia, leading to the northward expansion and penetration of the overall summer monsoonal 279 

strength as well as its extensive rain band, and thus abundant rainfall as well as high temperature in 280 

the low-latitude regions of monsoonal Asia (e.g. Scott et al. 2004; Zhao et al. 2007; Zhou et al. 2009; 281 

Sun and Feng 2013). In contrast, during the middle to late Holocene, a reduced summer insolation 282 

would have brought about the southward retreat of both ITCZ and WPSH zones along with the 283 

decreased pattern of tropical SST values, which led to a lower moisture transportation from the ocean 284 

to continental lands, thereby causing the southward shift and weakening of the summer monsoonal 285 

intensity and its rain belt, and reduced rainfall as well as lower heat content in the southern part of 286 

monsoonal Asia and China (e.g. Dykoski et al. 2005; Wang et al. 2008; Sun and Feng 2013). In addition, 287 

an overall stepwise intensification of ENSO activity from the early to late Holocene (Fig. 6) has been 288 

suggested to bring warm water masses with higher SST to the eastern Tropical Pacific Ocean, resulting 289 

in lower SST in the western Tropical Pacific Ocean, thus progressively reducing the transport of water 290 

vapor to monsoonal China during the entire Holocene (e.g. Wang et al. 2000; Higginson et al. 2004; 291 

Sun and Feng 2013). 292 

4.3 Comparison with Holocene climatic records from northern monsoonal and the westerlies’ 293 

region of China 294 

A detailed comparison of our inferred precipitation and temperature reconstructions for the LYR with 295 

other high-resolution Holocene moisture and temperature records in the monsoonal regions of northern 296 

China and in the westerly-dominated areas of northwestern China, reveal an out-of-phase pattern of 297 

overall climatic shifts and a major offset in relation to timings of the Holocene climatic optimum 298 

interval (Fig. 7). These early published records consist of the following datasets: pollen-reconstructed 299 

annual rainfall series from Gonghai Lake (Chen et al. 2015) on the Chinese Loess Plateau (CLP) and 300 

Daihai Lake (Xu et al. 2010) in central Inner Mongolia; a multi-proxy based temperature 301 
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reconstruction for northern China (Hou and Fang 2011); an EASM index based on various proxies in 302 

the northern part of monsoonal China (Wang et al. 2010); tree pollen percentages from Qinghai Lake 303 

(Shen et al. 2005) and Bayanchagan Lake (Jiang et al. 2006) in northern monsoonal China; a pollen-304 

based moisture record for the northern EASM marginal region (Wang and Feng 2013); frequencies of 305 

palaeosol occurrences in the CLP (Wang et al. 2014) and northern China (Li et al. 2014); frequency in 306 

the formation of loess or aeolian sands in northern China (Li et al. 2014); a magnetic susceptibility 307 

record from the Yulin loess–palaeosol section on the northern CLP (Lu et al. 2013); and a moisture 308 

index synthesized from different proxy records for the westerly-influenced regions of Arid Central 309 

Asia (ACA) including northwestern China (Chen et al. 2008).  310 

   The multiple Holocene climatic records, spanning a large geographical area in both northern and 311 

northwestern China, point to an overwhelming signal with respect to a middle Holocene climatic 312 

optimum that is characterized by the highest precipitation amounts or the warmest temperature 313 

conditions (Fig. 7). Recently, Chen et al. (2016b) indicated that in the Xinjiang region as a core area 314 

of ACA, magnetic susceptibility records from four loess–palaeosol profiles have exhibited an 315 

increasing moisture pattern from the early to late Holocene. However, these trends are out-of-phase 316 

with a typical signal of an early Holocene climatic optimum demonstrated by our pollen-stacked PANN 317 

or TANN reconstructions for the LYR region as well as other Holocene monsoonal records from the 318 

subtropical and tropical domains of China or the ISM-dominated regions presented in this study (Fig. 319 

6). Such an inconsistency may have arisen from unreliable dating controls, various proxy 320 

interpretations and resolutions, or different methodological issues and assumptions (e.g. Zhao et al. 321 

2009; Cai et al. 2010; Sun and Feng 2013; Liu et al. 2015). In addition, the climatological viewpoints 322 

with regard to this notable timing mismatch remain under debate, which can be tentatively attributed 323 

to the significant cooling effect at a hemispherical-scale caused by the deglaciation of broad-scale 324 

remnant ice sheets in the high-latitude territories of the Northern Hemisphere during the early 325 

Holocene (Fig. 7) (e.g. Chen et al. 2008; Renssen et al. 2012; Li et al. 2015; Liu et al. 2015; Mjell et 326 

al. 2015). The rapid melting of these remnant ice sheets such as the Laurentide Ice Sheet (Jennings et 327 

al. 2015) in North America and the Agassiz Ice Cap (Fisher et al. 2012) in Greenland, would have 328 

likely yielded a large body of freshwater discharge into the northern Atlantic Ocean (Fig. 7). This may 329 
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have resulted in a suppressed Atlantic meridional overturning circulation (AMOC) as well as North 330 

Atlantic Deep Water circulation (NADW), and at the same time increased Ice-Rafted Debris (IRD) in 331 

ocean sediments, massive glacial advances, strong meridional temperature gradient and westerly 332 

airstreams, and intensified Siberian High and winter monsoon strength, which may in turn have played 333 

an important role in blocking the northward movements of the summer monsoon as well as its rainfall 334 

front to the northern part of monsoonal China during the early Holocene (Fig. 7) (e.g. Zhao et al. 2009; 335 

Chen et al. 2015; Li et al. 2015; Liu et al. 2015). 336 

Conclusions 337 

Here we present a pollen-based Holocene climatic dataset with a ~36-year resolution for both PANN 338 

and TANN records over the last 10,000 years for the lower reaches of the Yangtze basin in eastern 339 

monsoonal China. Our reconstructions show that precipitation and temperature have a concurrent trend 340 

of variability on a centennial- to multidecadal timescale, implying a notable climatic pattern of moist-341 

warm or dry-cool intervals during the Holocene. Multi-proxy comparisons indicate that regional-scale 342 

Holocene rainfall and thermal variations in the lower Yangtze area are in good agreement with other 343 

Holocene climatic records from southern monsoonal China or the ISM-dominated regions, suggesting 344 

an early Holocene climatic optimum that was characterized by high precipitation and warm conditions, 345 

and a drying or cooling climate for the middle to late Holocene. The orbitally-triggered changes of 346 

summer solar insolation and tropical or subtropical climatic circulations such as ITCZ, WPSH, and 347 

ENSO may be recognized as the important driving factors for the Holocene summer monsoon 348 

variability in the lower Yangtze region of China. Further regional inter-comparisons reveal that the 349 

LYR Holocene climatic development has been different to the Holocene moisture or thermal records 350 

from the EASM-influenced northern China and the westerly-affected northwestern China where the 351 

Holocene climatic optimum mostly took place during the middle Holocene. Overall, our pollen-based 352 

high-resolution climatic dataset may be useful for validating climate model simulations, understanding 353 

the nature of monsoon climate, and predicting future climatic scenarios in monsoonal Asia and its 354 

surrounding areas. Clearly, more case studies would enhance understanding the nature of Holocene 355 

climatic changes in different bioclimatic regions of monsoonal China. 356 
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 638 

Figure captions 639 

Figure 1 Mean 700 hPa atmospheric airstream lines between June and August based on the 640 

NCEP/NCAR Reanalysis data during the time interval of 1971–2000 (Kalnay et al. 1996). Blue plus 641 

signs correspond to the localities of three fossil sites (Chaohu, Gucheng, and Pingwang) in the lower 642 

reaches of the Yangtze basin. ISM, EASM, and Westerlies indicate the regions dominated by the Indian 643 

and Eastern Asian summer monsoon, as well as westerly air circulation, respectively. Green dashed 644 

line shows the present-day northern boundary of the Asian summer monsoon system modified from 645 

Chen et al. (2008). 646 

Figure 2 Numerical performance of the calibration models for mean total annual precipitation (PANN) 647 

as well as mean annual temperature (TANN) based on pollen data. Statistical parameters consist of 648 

coefficient of determination (R2) between observed and predicted values, root-mean-square-error of 649 

prediction (RMSEP), and maximum (Max.) bias. 650 

Figure 3 Pollen-based quantitative reconstructions for PANN with RMSEP of 232.06 mm and TANN 651 

with RMSEP of 3.62 °C at Chaohu, Gucheng and Pingwang over the last 10,000 years.  652 

Figure 4 Pollen-based PANN and TANN estimates during the last 10,000 years for the lower Yangtze 653 

region of China derived from the six reconstructions in Figure 3. 654 

Figure 5 Power spectrum analyses for the pollen-stacked PANN and TANN records spanning the past 655 

10,000 years. 656 

Figure 6 Holocene comparison of pollen-estimated a PANN and b TANN sequences for the lower 657 

Yangtze region (LYR) of China with other related climatic records including: c mean summer solar 658 

insolation (SI) at 65 °N (Laskar et al. 2004); stalagmite δ18O series from d Dongge (Dykoski et al. 659 

2005), e Sanbao (Wang et al. 2008), and f Qunf (Fleitmann et al. 2003) Caves; g Kiel Climate Model 660 

(KCM)-based PANN simulation for southwestern China (Chen et al. 2014); pollen-derived h PANN 661 

reconstruction for Xingyun Lake in Yunan Province (Chen et al. 2014) and i TANN reconstruction for 662 

Dajiuhu wetland in Hubei Province (Zhu et al. 2008); pollen-composited j moisture index (MI; Zhao 663 
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et al. 2009) and k tree cover (TC; Tian et al. 2016) records for southern China (SC); l humification (H) 664 

record from Hongyuan wetland on the southeastern Tibetan Plateau (Yu et al. 2006); m moisture index 665 

(MI) synthesized from various proxy data from the southern Tibetan Plateau (ST; Ran and Feng 2013); 666 

records of n total organic carbon (TOC; Yancheva et al. 2007) and o tree pollen percentage (TP; Wang 667 

et al. 2007) from Huguangyan Maar Lake in SC; p Indian summer monsoon (ISM) index synthesized 668 

for monsoonal China (Wang et al. 2010); q Intertropical Convergence Zone (ITCZ) index from 669 

Venezuela (Haug et al. 2001); r Globigerina bulloides percentage record from ODP Site 723 in Arabian 670 

Sea (AS; Gupta et al. 2005); s and t composite sea surface temperature (SST-1 and SST-2) records for 671 

Western Pacific Warm Pool (WPWP; Scott et al. 2004; Koutavas and Joanides 2012); and u El 672 

Niño/Southern Oscillation (ENSO) index from Ecuador (Moy et al. 2002). The grey band depicts the 673 

moisture or thermal maximum during the early Holocene in southern China. 674 

Figure 7 Holocene comparison of pollen-inferred a PANN and b TANN records for the lower Yangtze 675 

region (LYR) of China with other climatic proxy records from northern China and other regions of the 676 

northern Hemisphere: pollen-reconstructed PANN records for c Gonghai Lake (Chen et al. 2015) on 677 

the Chinese Loess Plateau (CLP) and d Daihai Lake (Xu et al. 2010) in northern China (NC); e multi-678 

proxy-based TANN sequence for NC (Hou and Fang 2011); f East Asian summer monsoon (EASM) 679 

index for monsoonal China (Wang et al. 2010); tree pollen records from g Qinghai Lake (Shen et al. 680 

2005) and h Bayanchagan Lake (Jiang et al. 2006) in NC; i pollen-based moisture index (MI) for the 681 

EASM marginal region (Wang and Feng 2013); frequency distributions of palaeosol occurrences in j 682 

CLP (Wang et al. 2014) and k NC (Li et al. 2014); l frequency formations of  loess or aeolian sands 683 

(AS) in NC (Li et al. 2014); m magnetic susceptibility (MS) record from the Yulin loess–palaeosol 684 

section on CLP (Lu et al. 2013); n moisture index (MI) synthesized for Arid Central Asia (ACA; Chen 685 

et al. 2008); melt water input (MI) from o the Laurentide Ice Sheet (Jennings et al. 2015) and p the 686 

Agassiz Ice Cap (Fisher et al. 2012); q ice-sheet coverage in northern Hemisphere (NH; Dyke 2004); 687 

and r Atlantic meridional overturning circulation (AMOC) index based on mean sortable silt grain size 688 

(SSGS) from core GS06-144 08GC in northern Atlantic Ocean (Mjell et al. 2015). The grey band 689 

shows the moisture or thermal maximum during the middle Holocene in northern monsoonal China. 690 

The pink band indicates the moisture or thermal maximum during the early Holocene in southern 691 



26 

 

monsoonal China. 692 

 693 

Table 1 Summary of fossil pollen datasets for PANN and TANN reconstructions at Chaohu, Gucheng 694 

and Pingwang in the lower Yangtze region of China 695 

 696 

Site Lat. Long. Elev. Num. Res. Reference  

  (°) (°) (m) dates (years)   

Chaohu 117.39 31.56 10 10 158 Chen et al. (2009) 

Gucheng 118.9 31.28 6 4 30 Yang et al. (1996) 

Pingwang 120.64 30.96 1.6 5 135 Innes et al. (2014) 

Lat. = latitude; Long. = Longitude; Elev. = Elevation; Num. = Number; Res. (yrs) = Resolution 697 

(years/sample) 698 
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