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Abstract

The dynamics and stability of thin liquid films have fascinated scientists over many decades. Thin film flows are central
to numerous areas of engineering, geophysics, and biophysics and occur over a wide range of lengths, velocities, and
liquid property scales. In spite of many significant developments in this area, we still lack appropriate quantitative
experimental tools with the spatial and temporal resolution necessary for a comprehensive study of film evolution. We
propose tackling this problem with a holographic technique that combines quantitative phase imaging with a custom
setup designed to form and manipulate bubbles. The results, gathered on a model aqueous polymeric solution,
provide unparalleled insight into bubble dynamics through the combination of a full-field thickness estimation, three-
dimensional imaging, and a fast acquisition time. The unprecedented level of detail offered by the proposed
methodology will promote a deeper understanding of the underlying physics of thin film dynamics.

Introduction

Thin liquid films, such as soap bubbles, are ubiquitous

in nature and technology. Biological vesicles, magma

bubbles, insulating and food foams, detergents, and oil

foams all share most of the physics, chemistry, and

engineering of bubble formation and evolution1,2. Study-

ing these films is also important since they mediate a wide

range of transport processes, encompassing applications

from nanotechnology to biology3–5. These films may

display unusual dynamics featuring the formation of

regular or chaotic structures, periodic waves, shocks,

fronts, and “fingering” phenomena6. The entire research

area is currently thriving with new discoveries and

applications, particularly techniques for measuring both

the long-range thickness mapping and its fast acquisition

on evolving thin films. In fact, the measurement of the

thin film thickness evolution as a consequence of

manipulation, drainage, and rupture is key to under-

standing such behaviors7–9.

Currently, different techniques for quantitative phase

imaging (QPI) are used to measure the thickness of

transparent three-dimensional (3D) objects with one

dimension thinner than the other two (films)10,11. In

particular, interferometry is routinely used for the study of

thin fluid films and surface topology, using both mono-

chromatic and white light12,13. Interferometry measures

the intensity of fringes produced by the interference of

light reflected at the two interfaces of a thin film. Such

intensity depends on the wavelength of light, the refrac-

tive index of the sample, and the thickness of the material.

These techniques can be divided into two families, char-

acterized by point-like or full-field inspection9. The first

family of techniques measures the thickness in a very

restricted area of the film’s surface. Early studies used a

photomultiplier to precisely measure the equilibrium

thickness of soap films contained in a special cell,
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designed to isolate a thin film of liquid14. Modernized

versions of this setup are currently used by several

research groups15,16. Conversely, the full-field techniques

measure the thickness across the entire surface of the film

throughout the experiment17,18. Even though these sys-

tems can determine the film thickness with a resolution of

a few nanometers, they lack the (lateral) spatial or tem-

poral resolution necessary to follow the complex

dynamics of an evolving thin liquid film.

In this study, we propose the adoption of a setup for the

study of thin film dynamics based on off-axis digital

holography (DH). Holographic microscopes are inter-

ferometers that allow for a pseudo-3D reconstruction of

objects captured out of the best focal plane. This feature

adds flexibility to the experimental procedure and in turn

has kindled the spreading of DH beyond the field of

metrology, from non-destructive testing for industry to

label-free imaging of biological samples19–22. DH can

accurately determine the phase and amplitude by means

of dense carrier fringes down to fractions of the illumi-

nation wavelength. A benefit of digital holography with

carrier fringes is that, unlike some other QPI techniques,

e.g., phase shift interferometry23, the necessary informa-

tion is completely gathered into a single frame, which is

appropriate for high-speed data acquisition.

We report the measurement of the entire thickness

distribution over an aqueous polymeric thin film solution

during the formation of a bubble under non-ideal con-

ditions, where several film thicknesses are simultaneously

present in the film. Based on these data, the variation

range and variation trend of the film thickness map are

accurately measured, from the formation to the inflation

and the bubble rupture. In particular, during the bubble

growth, the location of the bubble surface changes con-

tinuously so that an imaging system in which the focusing

of the image can be retrieved ex post from the experi-

mental recordings is required. DH allows such a refocus

of the sample by numerical processing of the recorded

holograms24. In this way, it is possible to follow the

position of the film surface a posteriori during bubble

formation.

Results

Holographic thickness mapping for liquid films

The experimental setup was designed by embedding a

custom setup to form and manipulate a thin liquid film

within an off-axis Mach–Zehnder interferometer (see

Figure S1a). The films are formed on top of a metal pipe

with an internal diameter of 18 mm and a side inlet

connected to a syringe pump (see Figure S1b-c). As a

model system, we studied the temporal evolution of the

thickness profile of bubbles formed from a film made of

an aqueous solution of maple syrup and 0.05 wt% poly-

acrylamide (PA). The bubbles were inflated by pumping

air from the side inlet of the pipe at a flow rate φ= 0.015

mL/s25. DH in off-axis geometry is based on the classic

holography principle, with the difference being that the

hologram recording is performed by a digital camera and

transmitted to a computer, and the subsequent recon-

struction of the holographic image is performed

numerically (see Figure S1d-g). In DH, the interferometric

acquisition system can only measure the phase modulo-

2π, commonly referred to as the wrapped phase. To

recover the absolute phase, and then the thickness profile,

we used the Phase Unwrapping Max-flow/min-cut

(PUMA) method26. The PUMA method provides an exact

energy minimization algorithm given the assumption that

the difference between adjacent pixels is smaller than π

rad. From the experimental point of view, this leads us to

ensure that we have a good sampling of the observed area

in order to assume that the thickness changes are suffi-

ciently smooth in comparison to the fringe sampling, and

no phase jumps are missed.

Once retrieved, the absolute phase gives a measurement

of the optical path length experienced by the laser beam,

which is equal to the thickness of the film multiplied by its

refractive index. Thus, knowing the refractive index of the

solution bunches used in the experiments (see Supple-

mentary Information), we can easily map the evolution of

the film thickness during the bubble growth and drainage

(see Fig. 1a and Supplementary Videos 1 and 2).

Finally, DH acquisitions are pseudo-3D representations

of the optical thickness of the sample. This means that the

measured thickness profile, s, is a projection on the image

plane of the three-dimensional structure of the sample

(see Figure S3). However, the thickness normal to the

bubble surface, s, can be retrieved by geometric con-

siderations (see Fig. 1b–d and Supplementary Video 3). It

is worth noting that near the center, the two values are

almost identical. For example, within 1.3 mm from the

center, the estimated relative error is less than 1% (see

Figure S4).

Film thinning and bubble growth

The shape of the bubble in our system is mainly con-

trolled by the volumetric air flow, φ, set by the pump, and,

if φ is constant, the volume of the bubble grows linearly in

time:

Vbubble ¼ φt ð1Þ

Considering the bubble as a spherical cap of height h

and basal radius a, we can rewrite the previous equation

as:
π

6
h 3a2 þ h2
� �

¼ φt ð2Þ

The geometric parameters of the bubble can then be

fully controlled by the pump.

Mandracchia et al. Light: Science & Applications            (2019) 8:20 Page 2 of 12



To study the film thinning due to the gravitational

drainage of the fluid along the bubble surface, we adjusted

the experimental parameters in order to maximize the

bubble stability while approaching the hemispherical

shape. We observed that reasonably stable bubbles could

be formed by inflating air into the metal pipe with a

relatively low flow of φ=0.015 mL/s. Nonetheless, we

found it difficult to reach a perfect hemispherical shape of

the bubble (h∼a). Furthermore, this configuration was

impractical for the study of drainage towards the borders,

as discussed in the previous section, so we decided to stop

the pump at a height of approximately two-thirds of the

basal radius (h∼2/3a).

Bubbles were observed from the top and from the side.

The top view was recorded by a CCD (charge-coupled

device) camera at a maximum frame rate of 60 Hz. The

side view was recorded by a CMOS (complementary

metal-oxide semiconductor) camera (Apple Inc. iSight) at

30 Hz (see Supplementary Video 4). The experiments

were conducted at 23 °C.

During inflation, h is a function of time and Eq. (2) can

be rewritten as:

h tð Þ h2 tð Þ þ 3a2
� �

¼ 6φ

π
t ð3Þ

From which we can derive the following formula:

h tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4a6 þ b2t
p

þ bt
3
p

ffiffiffi

23
p �

ffiffiffi

23
p

a2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4a6 þ b2t
p

þ bt
3
p

ð4Þ

with b ¼ 6φ
π
:
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Fig. 1 Holographic thickness mapping during inflation and drainage. a Evolution of the film thickness during bubble inflation (left) and drainage
(right). The thickness values were obtained by holographic measurements, where the refractive index of the sample was known to be 1.47. During
the experiment, the film was inflated for 2 s and then allowed to drain naturally until rupture. b Corrected map of the film thickness. Assuming that
the bubble surface can be approximated by a spherical cap, it is possible to retrieve the film thickness in the radial direction. Three-dimensional
depictions of the radial thickness map are shown in (c) and (d). e Drainage and film thinning at the center of the bubble. Thickness maps of the
center of a bubble obtained by digital holography. The bubble was allowed to grow for 14 s. Afterwards, the pump was turned off and the fluid was
allowed to drain naturally until rupture. Scale bar 1 mm. f Plot of the thickness as a function of time during bubble blowing. g Plot of the thickness as
a function of time during gravitational drainage
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A good fit of the experimental data is given by a first-

order approximation of Eq. (4) (see Figure S1h):

h tð Þ ¼ γ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ βt3
p

� γ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ βt3
p ð5Þ

The thickness maps in Fig. 1e show an accumulation of

the fluid in the central region, when the bubble is still flat

(prior to pump starting, t= 0.1 s). During inflation, it is

possible to observe a gradual thinning at the center that

slowly continues when pumping is stopped. This process

is the consequence of the gravitational drainage of fluid

from the top towards the rim of the bubble.

Gravitational drainage causes the film thickness to

decay exponentially with time27. Now, recalling that in the

center, s ¼ s, we have that:

s ¼ s0e
�t

τ ð6Þ

where

τ ¼ α

h
; α ¼ μ

ρg
ð7Þ

where μ is the viscosity, ρ is the liquid density, g is the

gravitational acceleration, and s0 is the initial thickness,

see Fig. 1f.

During inflation, the film thickness of the bubble has a

more complicated dependence with time. Indeed, the

drainage is concurrent with the film stretching as a con-

sequence of the increase in the bubble surface. However,

the experimental data can also be satisfactorily approxi-

mated by a linear function (see Fig. 1g):

s ¼ s0 1� βtð Þ ð8Þ

Fluid drainage and convection

The continuous drainage towards the borders causes a

decrease in the mass of the fluid with time. This is directly

proportional to the volume of the film layer: V ¼ M=ρ.
Ideally, if the fluids were perfectly homogeneous, we

would expect the drainage to be radial. This means that

the thickness of the film does not depend on the polar

angle but only on the latitude. This assumption fails for

real films, where some level of inhomogeneity or asym-

metry is present in the system and gives rise to various

phenomena, such as convection of the fluid inside the

film. As expected, the center of the bubble tends to

become thinner the larger the bubble becomes (Fig. 2a, b

and Supplementary Video 5). Nonetheless, this phenom-

enon is not homogenous. At the same time, it can be

noted that this change in thickness does not happen

uniformly, but it seems to be related to a momentary

rearrangement of the fluid across the surface.

After an initial stasis period (Fig. 2c, gray area), the

bubble volume drops with time and follows the expected

exponential decay (red dashed line). Surprisingly, after

reaching a plateau value, the volume begins to grow again

a few seconds before the rupture (see Fig. 2c, yellow area).

A more detailed analysis reveals that this increase is

related to a change in the drainage dynamics of the fluid

(see Fig. 2d, e). It is possible to devise two different con-

tributions to this inversion of the trend, one at the center

of the bubble and the other close to the edge of the pipe.

The first contribution is due to a relatively small increase

in the thickness of the film around the center (Fig. 2d–f,

red arrows). The second contribution is given by a steady

in-flow of part of the fluid from the edge of the pipe back

towards the center of the bubble (Fig. 2d–f, black arrows).

This in-flow takes the form of a regular pattern which can

be devised after 4.5 s. The regular patterns observed at the

latest stage of the film evolution dynamics, depicted in

Fig. 2b, have been observed elsewhere for vertical and

horizontal thin films and are usually addressed to as

“fingers” due to the Marangoni effect, Plateau-Rayleigh

instability, and/or marginal regeneration. In the context of

Plateau–Rayleigh instability, in a cylindrical flow with

infinite length, the characteristic wavelength of the pat-

tern is:28

L ¼ s

4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ 3
ffiffiffi

2
p

Oh

q

ð9Þ

where Oh ¼ μ
ffiffiffiffiffiffiffi

2γρs
p . In our case, we found L=2.2 mm,

which is of the same order of magnitude of the experi-

mental value Lexp ¼ 2πR=N=5.4 mm, where N is the

number of fingers on the image (N= 9) and μ is the

viscosity. Furthermore, the motion of these patterns could

be due to the marginal regeneration: along the edge of the

film, where the film connects with the pipe, there is a

“Plateau border” that has curved surfaces and a lower

Laplace pressure than the central part of the film; thicker

parts are bodily drawn into the border by the negative

excess pressure, while the thinner film is pulled out of the

border.

To give a plausible physical interpretation to the

experimentally observed non-monotonic trend of bubble

thickness shown in Fig. 2c, we performed a Finite Element

numerical simulation of a system mimicking the experi-

mental one. The mathematical model underlying the

numerical simulation is created from the mass and

momentum balance equations and the constitutive

equation for the liquid film supplied with proper bound-

ary and initial conditions (see the Supplemen-

tary Information for details). The constitutive parameters

of the liquid have been derived from the rheological data

of the fluid employed in the experiments (see the

Supplementary Information).

The numerical temporal trend of the thickness at the

center of the film h, normalized by its initial value h0, is

reported in Figure S2. By comparing Fig. S2c and Fig. 2c,
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it is apparent that even if in the simulation a simplified

system is considered, a good agreement holds between the

experimental behavior of the volume of the bubble central

portion and the simulated evolution of the film thickness,

with an initial steep decrease while the bubble is inflated,

an almost horizontal portion, and then an inversion of the

trend, i.e., a thickening at the center of the bubble.

From the outcome of the numerical simulation, the

latter can be ascribed to fluid drainage from the rim

deposited on the pipe edge toward the center of the film

due to the surface tension. Indeed, two opposite

mechanisms act: during inflation, the film thins are at the

center due to gravity and liquid adherence at the pipe

wall, whereas surface tension makes the fluid move from

the border to the center to minimize the film’s external

surface. Since inflation is fast, at the beginning, the effects

connected to it dominate; then, when inflation ends, the

“reservoir” constituted by the rim “pumps” the liquid

back, thus making the film thicken at the center.

Figure 3a depicts a thin liquid film thickness evolution

in a slightly different case in which the film is left for a

long period of stasis before the inflation. In fact, thick-

ening in the central part of the film is observed, due to

sagging. Moreover, the topography of the film appears less
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Fig. 2 Fluid drainage. Thickness maps of the entire bubble surface before (a) and after (b) curvature correction. At first, the fluid accumulates in the
center with no particular ordering. It is possible to see very thin areas in the film randomly positioned. While the bubble is growing, however, most of
the fluid is drained towards the edges and the thin films move to the center. c Plot of the volume as a function of time. After an initial stasis time, the
mass drainage appears to follow the expected exponential behavior. However, just before the rupture time, the volume starts to increase once again.
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change vs time and azimuthal angle (θ) at three different distances from the bubble center, namely (I) 3 mm, (II) 6 mm, and (III) 9 mm. It is possible to
observe some amounts of mass flowing back from the rim to the center
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homogenous than in the case of Fig. 2, which is further

evidence of the thickness measurement accuracy of the

proposed technique, particularly when inhomogeneities

are present. In these cases, the mass of the fluid tends to

accumulate at the center of the film before inflation

begins (see Fig. 3a, b). However, it quickly drains towards

the rim once the bubble begins to grow. In this case, the

dynamics of the drainage process are not only far from

ideal but, at certain moments, the entire process seems to

stop (see Fig. 3c, yellow areas). On the other hand, the rate

of volume drainage does not go to zero, nor in time nor

along the radius (see Fig. 2d–f). This supports the fact that

the rapid movement of a large quantity of mass creates

some complex movement of the fluid at the rim, which

could temporarily counterbalance the draining process

(see Supplementary Video 6).

Flow tracking

It is generally hard to describe a situation of complex

motion such as the one depicted in Fig. 3. On the one

hand, we have shown how it is possible to estimate the

drift of the fluid and the dynamics of formation and dis-

solution of mass aggregates due to the presence of fluid

vortexes. On the other hand, the assessment of the
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Fig. 3 Complex fluid drainage. Thickness maps of the entire bubble surface before (a) and after (b) curvature correction. At first, most of the mass
accumulates in the center. While the bubble is growing, however, the fluid is drained towards the edges. This process is chaotic and includes the
presence of vortexes. c Plot of the volume as a function of time. The non-ideal nature of the drainage causes part of the fluid to come back towards
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especially clear in sections I and II
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dynamics of liquid film rearrangement can be simplified

following the displacement of particles dispersed in the

fluid by holographic three-dimensional tracking.

We injected poly(methyl methacrylate) (PMMA) parti-

cles with a nominal diameter of 6 μm into the PA solution

and tracked them in three dimensions via automated

numerical refocusing (see Fig. 4). After holographic

amplitude reconstruction, three particles were selected

from all visible points, which followed different paths

along the bubble surface. To effectively identify and assess

the movement of these particles, we used the correlation

recognition tracking method29,30.

All three particles have different trajectories and show

non-trivial flows within the film. Indeed, it is possible to

observe how they can have both radial and swirling

motion. The observed speed of the process and its span in

the third dimension make tracking the particles difficult

using standard imaging techniques. Holographic 3D

tracking, conversely, has proven suitable for these situa-

tions. This piece of information can be useful for not only

analyzing the mass flow on a bubble film surface but also

for following the arrangement of colloids inside the film.

High-speed holographic imaging

The rupture of a bubble is a very fast process that

requires the use of high-speed cameras to be observed. It

can have very different dynamics, depending on the par-

ticular fluid or conditions of breakage31. One important

parameter is the thickness of the opening rim and the

possible presence of fluid droplets escaping from the

film25,32.

To induce the rupture, we placed a needle on top of the

metal pipe we used to grow the bubble. When the bubble

reached an almost hemispherical shape, we gently lowered

the needle until it was in contact with the film. To record

the bubble rupture, we used a high-speed CMOS camera

(Mikrotron, MC1310, 980 Hz).

Before the bubble rupture, it is possible to see a black

film forming in correspondence with the tip of the needle

(see Fig. 5a–c, white dashed line). The black film forms

where the film thickness is half the illumination wave-

length, when the local destructive interference cancels the

light passing through. In holographic reconstructions, this

local absence of light is associated with the generation of

random values. This is why, in phase images, black spots

correspond to areas of low signal-to-noise ratio. Finally,

after approximately 453ms, the boundary breaks and the

bubble opens (see Supplementary Video 7).

High-speed holographic imaging can be useful for

studying the mechanics of bubble rupture in deeper detail.

Quantitative thickness mapping is essential for distin-

guishing the diverse profiles of the hole’s rim, which

characterize the retraction behavior of fluids33. Moreover,

when asymmetric breakage profiles are observed34,

thickness mapping provides a link between the rupture

path and the topography of the film.

For the first time, we observe the mass accumulation at

the rupture edge during the film retraction, in accordance

with the model proposed in ref. 33 (see Fig. 5d). During

retraction, the film tends to accumulate at the rim, and

then it becomes flatter during the last moments of the

breakage. Also, the thinning process steadily continues

and the black film rapidly expands around the needle.

However, further analysis reveals that the boundary seems

to move faster along the directions where the film is

thinner (θ= 180° and 270°), probably following a least-

resistance path (see Figure S3).

Discussion

The study of thin films and bubble rupture is of great

interest to industrial processes and life science. Indeed,

foams as well as plasma membranes or vesicles can be

modeled in a manner similar to soap films and bubbles.

The nature and properties of such structures have been

the subject of extensive studies and continue to be

attentively investigated35.

The characteristics of these systems, representing the

hardest characterization challenges, can be summarized as

follows. First, they have fast and ever-changing dynamics,

and hence real-time imaging systems and possibly fast

recording devices should be used. Second, the film

thickness varies from tens of micrometers to a few hun-

dred nanometers. This depends strongly on the nature of

the solution and on the experimental conditions utilized

for film formation. Last, but still important, the bubble

film is not uniform. This means that the bubble surface is

a complex system and has a unique structure each time a

new sample is prepared. The distribution of the polymer

across the film changes every time and, even under the

same pumping conditions, the time to rupture is not

constant. Using an air flow of 0.015 mL/s, we saw this

time change from 3 s to 10 s. It is likely that such a dif-

ference is due to both the initial bubble thickness and the

evolution dynamics. This is why evaluating the film

thickness based on geometric considerations is not suffi-

cient; instead, a continuous and quantitative inspection is

necessary.

In this work, the design and implementation of a setup

for imaging the dynamics of thin bubbles is presented.

Our setup is based on DH to obtain quantitative images of

the sample film dynamics. Throughout the past few years,

many methods based on interferometry have been pro-

posed to measure the actual film thickness and to monitor

the interfacial rheological properties of these systems.

Differential interferometry methods have also been

described in investigations of contact angles36 and bubble

caps37. A method based on phase shift interferometry was

developed for measurements on vertical films38. Other
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approaches based on resonant differential interferometry,

fringe patterns from a dual-wavelength reflection, and

speckle interferometry have also been reported39,40.

Compared with the abovementioned interferometric

techniques, DH combines several advantages. First, the

spatial resolution is limited only by the optics used, which

is not true for methods that use color matching, where the

thickness is measured at a few points and then inter-

polated over the entire image9. Second, it gives the full-

field three-dimensional information of the sample, unlike

techniques that use photomultipliers to have very fast

measurements but only at one point14. Third, DH does

not require multiple exposures and can be matched with

high-speed cameras to measure rapidly changing fea-

tures23, such as the rim of the hole formed by the rupture

of the liquid film.

Due to the spatial resolution and fast, full-field mea-

surement of the liquid film thickness, we proved that this

technique has several novel features. In Fig. 3, we showed

the time dependence of the film thickness on an evolving

geometry of the bubble (in the past, the only way to

measure the bubble’s thickness was without or after

inflation). In Figs. 4 and 5, we showed the film volume’s

evolution and observed that, for example, in the last few

seconds, the average film thickness increases, although

drainage towards the bottom would have suggested a

monotonic reduction of the average thickness. This

thickening is caused by mass fluxes from the border of the

film through the center, as is shown in Fig. 2 using gra-

dient plots. As such, this technique can be used to

investigate phenomena such as tear spreading or coffee

ring formation3,9,41, where Marangoni effects, drainage,

and wetting concur with the thin film evolution.

In conclusion, we proposed an experimental setup that

for the first time gathers all the features required to study

the liquid thin film evolution. Nevertheless, this comes at

the price of a more complex data analysis. However, there

are now diverse resources available for both hologram

reconstruction and data analysis, so that a custom code is

seldom needed. Furthermore, the local thickness is cal-

culated assuming a certain degree of continuity, i.e., step

heights of less than half a wavelength. Even if the results

do not show any contrary evidence and seem to be in

agreement with the expected values, it can still be viewed

as a limitation. This limitation can be overcome by

changing the system used for the bubble formation, e.g.,
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growing bubbles on top of a glass surface. Then again,

future work should focus on the implementation of a

robust optical solution, such as dual-wavelength DH. This

method can considerably extend the dynamic range of

phase detection, removing most of the issues related to

phase wrapping.

The application of DH is not limited to the proposed

configuration but could be adapted to different ones

without difficulty. The metal pipe, for example, can be

replaced by a quartz cuvette, which would be useful to

study the formation of gas bubbles in a fluid42 (see Fig-

ure S4a). Alternatively, a configuration similar to the one

proposed for phase shift interferometry can be used to

study spherical bubbles pending from a nozzle23 (see

Figure S4b). If controlling the volume is not essential, the

bubbles could be grown on a glass substrate or a Petri

dish27, as in Figure S4c. In this case, the illuminating beam

could be slightly tilted in order to avoid illuminating the

needle. In this way, it is possible to image the very first

moments of the bubble rupture close to the tip of the

needle. Finally, virtually all the systems currently used for

the study of flat bubbles could be easily integrated into a

holographic microscope7,8,18 (see Figure S4d).

Materials and methods

Experimental setup

The DH setup consisted of an off-axis Mach–Zehnder

interferometer with a sample stage adapted for the

control of bubble growth. The experimental setup is

schematically shown in Figure S1a. The illumination

source was a HeNe laser (λ = 632.8 nm). In the

Mach–Zehnder interferometer, the laser beam is divi-

ded into two parts by a polarizing beam-splitter cube.

The resulting beams are referred to as the object and

reference beam. The object beam illuminates the sample

from the top and forms the image on the camera. On the

contrary, the reference beam goes towards the camera

without passing through the sample. The two beams are

collected by a second beam-splitter cube, which is

slightly tilted so that the two beams overlap with a small

angle. This angle controls the period of the interference

fringes and can be adjusted according to the sampling

requirements. The image of the sample is de-magnified

by a factor of 0.25 with two lenses put in front of the

camera (f= 200 mm and 50 mm). With an estimated

maximum diameter of the circle of confusion of 0.4 mm,

the depth of focus of the system is 8 mm.
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Bubble formation

The bubble growth was controlled using a custom metal

pipe (see Figure S1b-c). The pipe had a diameter of 18

mm and a side inlet that was connected to a syringe pump

(Harvard Apparatus). The rim of the top of the pipe was

slightly grooved to maximize the contact surface with the

bottom of the bubble. An aqueous solution of maple syrup

(Maple Joe, Famille Michaud Apiculteur, Gan, France)

and 0.05 wt% polyacrylamide (Saparan MG 500, The Dow

Chemical Company, Midland, MI, USA) was used. Bub-

bles were created forming a film made of the solution on

top of the pipe and placing the bottom on a glass Petri

dish. The pipe was secured to the sample holder to pre-

vent any possible movement during the measurements.

Finally, a syringe pump (Harvard Apparatus, Model 22)

was utilized to inflate the film and form a half bubble with

a flow rate of 0.015 mL/s. A small amount of water was

added onto the dish to avoid pumped-air leakage.

Wavefront reconstruction

Digital holography in off-axis geometry is based on the

classic holography principle, with the difference being that

the hologram recording is performed by a digital camera

and transmitted to a computer, and the subsequent

reconstruction of the holographic image is performed

numerically.

The recorded intensity IH(xH,yH) at the hologram plane

is the square module of the amplitude superposition of

the object and reference waves. It is given by:

IH xH ; yHð Þ ¼
O0 xH ; yHð Þj j2þ R0j j2þO�

0 xH ; yHð ÞR0 þ O0 xH ; yHð ÞR�
0

ð10Þ

The phase information of the hologram is provided only

by the last two terms, which are filtered and centered in

the Fourier space. We reconstructed the holograms by

numerically propagating the optical field along the z

direction using the angular spectrum method. If E(x,y;0) is

the wavefront at plane z= 0, the angular spectrum A(ξ,

η;0)=F{E(x,y;0)} at this plane is obtained by taking the

Fourier transform, where F{} denotes the Fourier trans-

form; ξ and η are the corresponding spatial frequencies of

x and y directions, respectively; and z is the propagation

direction of the object wave. The new angular spectrum A

at plane z= d is calculated from A(ξ,η;0) as:

A ξ; η; dð Þ ¼ A ξ; η; 0ð Þ � exp j
2πd

λ
1� λξð Þ2� ληð Þ2
� �2

� �

ð11Þ

The reconstructed complex wavefront at plane z= d is

found by taking the inverse Fourier transform as

E x; y; dð Þ ¼ F�1 A ξ; η; dð Þf g ð12Þ

where F−1{} denotes the inverse Fourier transform. The

intensity image I(x,y;d) and phase image φ(x,y;d) are

simultaneously obtained from a single digital hologram by

calculating the square module of the amplitude and the

argument of the reconstructed complex wavefront:

I x; y; dð Þ ¼ E x; y; dð Þj j2 ð13Þ

ϕ x; y; dð Þ ¼ arctan
Im E x; y; dð Þ½ �
Re E x; y; dð Þ½ �

	 


ð14Þ

The workflow of the numerical reconstruction is shown

in Figure S1d.

From the experimental data, we observed that for each

frame’s spectrum, the +1 order center changes with the

bubble growth. We assumed that this phenomenon was

due to the change in the bubble’s surface. The bubble

surface could be seen as a lens, twisting the object beam

and slightly changing the off-axis angle during growth.

Therefore, if we use the same filtering window for each

frame of the holographic video, in the final phase result,

we would obtain a random phase distortion, which would

greatly affect the phase measurement accuracy. This issue

was addressed using an automatic filtering algorithm

during the holographic video reconstruction. This algo-

rithm simply scans the Fourier spectrum for the max-

imum of the +1 diffraction order and centers the filter

accordingly.

Thickness estimation

In DH, thickness estimation is directly related to the

accuracy of the absolute phase recovery. Indeed, an

interferometric acquisition system can only measure the

phase modulo-2π, commonly referred to as the wrapped

phase. Formally, we have ϕ x; y; dð Þ ¼ ψ x; y; dð Þ þ 2kπ,

where ϕ is the absolute phase value, ψ is the wrapped

phase, i.e., the measured value, and k 2 Z is an integer

accounting for the number of 2π multiples.

The main task of a phase unwrapping algorithm is the

choice where the phase of the field should be shifted. In

real experimental conditions, such a choice is often

complicated by a phase noise, which can lead to erroneous

phase unwrapping shifts. Since the phase noise often has a

higher frequency than the desired signal, initial filtering of

the wrapped phase field is the easiest and most intuitive

way to simplify unwrapping43.

In this work, we used the PUMA method26. The PUMA

method provides an exact energy minimization algorithm

under the assumption that the difference between adja-

cent pixels is smaller than π rad. From an experimental

point of view, this leads us to assume that the film

thickness changes are smooth enough to be well sampled

by the camera pixel. This assumption can be aided by

changing the magnification of the system according to the

homogeneity of the sample. A good sampling of the
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observed area is very important for an accurate thickness

estimation. Indeed, when peaks or valleys are too steep in

comparison to the fringe sampling, some phase jumps can

be missed and a wrong absolute phase is recovered.

Furthermore, absolute phase estimation requires the

assessment of a possible bias being unwrapped and real

phase profile. This is usually done taking a reference point

within the field of view. Here this reference point is given

by the Newton black films that form during bubble

inflation. The absolute thickness of these areas is half the

illumination wavelength (in our case, 316 nm). In the

frames where these are not present, we assumed that the

process of film thinning is continuous and slow in com-

parison to the recording speed. At the end of the bubble’s

life, i.e., when close to rupturing, this assumption is not

necessary because black films are usually present. How-

ever, more complicated situations in which the estimation

of a reference thickness may be more difficult can be

addressed by adopting one of the variant systems pro-

posed in the Discussion section and sketched in Figure S3.

Once the absolute phase map is obtained, the local

thickness estimation is given by the formula: s ¼ λ
2π

ϕ

n�1
,

where λ is the illumination wavelength and n the refrac-

tive index of the solution. In this estimation n is con-

sidered a constant, which could induce some error when

this is not true. In liquid films, of course, water evaporation

alters the density of the solution and, in turn, the refractive

index n. However, at the time scale of our experiments, we

estimated that the error related to evaporation is negligible

ðδs<5%Þ (see Supplementary Information).

It is well known that holographic measurements yield

pseudo-3D images. This means that the measured thickness

profile, s, is a projection on the image plane of the three-

dimensional structure. However, the radial thickness, s, i.e.,

the thickness along the normal to the bubble surface, can be

retrieved by geometrical considerations (see Figure S6).

Assuming that the upper and lower surface of the bubble

are locally parallel, the relation between measured and

radial thickness is s ¼ s
ffiffiffiffiffiffiffiffiffiffiffiffi

1� r2

R2

q

, where r is the distance

from the center in the image plane and R is the radius. It is

worth noting that in terms of the center, the two values are

almost identical. For example, we estimated a relative error

s�s
s ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffi

1� r2

R2

q

<1%; for r<1:3mm (see Figure S7). On

the other hand, in proximity of the pipe’s border, the pre-

sence of meniscus deformation alters the estimation of s

(see Figure S8). For this reason, we used s instead of s to

calculate the volume or the draining rate at the borders

because it conveys the same information with less geome-

trical assumptions (see Figure S9).

Herein, we used aqueous solutions that were sufficiently

homogenous to not require any particular adjustment of

the optical setup. However, when this is not the case and

particularly inhomogeneous samples are to be studied, the

use of two or more beams with different wavelengths is

suggested44. Using different illuminating wavelengths

with closer values gives us the possibility of creating a

synthetic wavelength with a large value, and therefore we

can enlarge continuous phase regions of the reconstructed

wavefront. Often with this method, the unwrapping pro-

cedure is simplified or not required at all. Nonetheless,

hologram registration with different light wavelengths

results in a more complicated technique for both the

hardware and software.
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