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Abstract

‘We present a new technique for determining how much information
about a program’s secret inputs is revealed by its public outputs. In
contrast to previous techniques based on reachability from secret
inputs (tainting), it achieves a more precise quantitative result by
computing a maximum flow of information between the inputs and
outputs. The technique uses static control-flow regions to soundly
account for implicit flows via branches and pointer operations, but
operates dynamically by observing one or more program execu-
tions and giving numeric flow bounds specific to them (e.g., “17
bits”). The maximum flow in a network also gives a minimum cut
(a set of edges that separate the secret input from the output), which
can be used to efficiently check that the same policy is satisfied on
future executions. We performed case studies on 5 real C, C++,
and Objective C programs, 3 of which had more than 250K lines
of code. The tool checked multiple security policies, including one
that was violated by a previously unknown bug.

Categories and Subject Descriptors D.2.4 [Software/Program
Verification]; D.2.5 [Testing and Debugging]; E.4 [Coding and
Information Theory]; G.2.2 [Graph Theory]

General Terms Languages, Measurement, Performance, Secu-
rity, Theory, Verification

Keywords
flow

Information-flow analysis, dynamic analysis, implicit

1. Introduction

The goal of information-flow security is to enforce limits on the
dissemination of information. For instance, a confidentiality prop-
erty requires that a program that is entrusted with secrets should
not “leak” those secrets into public outputs. Absolute prohibitions
on information flow are rarely satisfied by real programs: if a sen-
sitive input does not affect a program’s output at all, it is better
to simply omit it, and unrelated computations at different security
levels should be performed by separate processes. Rather, the key
challenge for information-flow security is to distinguish acceptable
from unacceptable flows.

Systems often deal with private or sensitive information by
revealing only a portion or summary of it. The summary contains
fewer bits of secret information, providing a mathematical limit on
the inferences an attacker could draw. For instance, an e-commerce
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web site prints only the last four digits of a credit card number,
a photograph is released with a face obscured, an appointment
scheduler shows what times I’'m busy but not who is meeting me,
a document is released with text replaced by black rectangles, or
a strategy game reveals my moves but not the contents of my
board. However, it is not easy to determine by inspection how
much information a program’s output contains. For instance, if a
name is replaced by a black rectangle, it might appear to contain
no information, but if the rectangle has the same width as the text it
replaces, and different letters have different widths, the total width
might determine which letters were replaced. Or a strategy game
might reveal extra information in a network message that is not
usually displayed.

The approach of quantitative information-flow security ex-
presses a confidentiality property as a limit on the number of bits
that may be revealed, measures the bits a program actually reveals,
and detects a violation if the measured flow exceeds the policy.
The problem we address here is how to measure, by observing an
execution of a program (dynamic analysis), how much information
about a subset of its inputs (the “secret inputs”) can be inferred
from a subset of its outputs (the “public outputs™). The text of the
program itself is always considered public, and other techniques
must be used to prevent inferences from observable aspects of the
program’s behavior other than its output, such as its use of time
or system resources. The measurement produced is a sound upper
bound on the actual information flow, so that our technique can
overestimate the amount of information revealed, but can never un-
derestimate it. The bound applies only to the examined execution:
other executions might reveal either more information or less.

Most previous research on quantitative information flow has
focused on very small flows. For instance, an unsuccessful login
attempt reveals only a small fraction of a bit, if the attacker had
no previous knowledge of the password. We focus on a broader
class of problems in which a flow of many bits may be acceptable
(though a quantitative policy is still only applicable if the allowable
flows are all less than the undesirable ones).

In some violations of information-flow policies, confidential
data is exposed directly, for instance if the memory containing
a user-provided password is not cleared before being reused by
the operating system. A number of existing techniques can track
such direct data flows. However, in many other cases information
is transformed among formats, and may eventually be revealed in
a form very different from the original input. Our research aims
to soundly account for all of the influence that the secret input
has on the program’s output, even when the influence is indirect.
Specifically, this means our technique must account for implicit
Sflows in which the value of a variable depends on a previous secret
branch condition or pointer value.

Most previous approaches to information-flow program analy-
sis are based on some kind of fainting: a variable or value in a
program is tainted if it might contain secret data. The basic rule of
tainting is that the result of an operation should be tainted if any of
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Figure 1. Two possible graphs representing the potential informa-
tion flow in the expression ¢ = d = a + b, where each variable
is a 32-bit integer. The graph on the left permits 32 bits of informa-
tion to flow from a to c, and a different 32 bits to flow from b to d.
To avoid this, our tool uses the graph on the right.

the operands is. Tainting is appropriate for determining whether an
illegal flow is present or not, but it cannot give a precise measure-
ment of secret information because of its conservative treatment of
propagation. A single tainted input can cause many later values to
be tainted, but making copies of secret data does not multiply the
amount of secret information present.

A key new idea in the present work is to measure information-
flow not using tainting but as a kind of network flow capacity. One
can model the possible information channels in an execution of a
program as a network of limited-capacity pipes, and secret informa-
tion as an incompressible fluid. Then the maximum rate at which
fluid can flow through the network corresponds to the amount of
secret information the execution can reveal. According to the clas-
sic max-flow-min-cut theorem, this capacity also corresponds to the
weight of a minimum cut: a set of edges whose removal disconnects
the secret input from the public output, representing a set of secret
intermediate values that (along with public information) determine
the program’s output.

The rest of this paper is organized as follows. Section 2 de-
scribes how to construct a flow network representing the propaga-
tion of secrets in a program execution, and Section 3 defines sound-
ness and describes how to ensure it between results from different
runs. Section 4 gives an implementation of the technique that op-
erates at the instruction level. Then, Section 5 discusses efficiently
computing the maximum flow in a large network, and Section 6
describes how a flow bound, once found, can be checked on future
program runs. Section 7 discusses the situations in which our tool is
most appropriate, and Section 8 evaluates it on confidentiality prop-
erties in a number of real applications. Finally, Section 9 surveys
related research, Section 10 discusses future work, and Section 11
concludes.

2. Dynamic maximum-flow analysis

Our basic technique is to construct a graph that represents the
possible flows of secret information through a program execution.
This section describes that construction, including how to account
for implicit flows, and how to assign capacities to edges in the flow
graph.

2.1 Basic approach

The flow graphs our technique constructs represent an execution
in a form similar to a circuit. For efficiency, the graph represents
byte or word-sized operations. Edges represent values, and have
capacities giving how many bits of data they can hold. Nodes
represent basic operations on those values, where the in-degree
of a node is the operation’s arity. For the case when the result of
an operation is used in more than one subsequent operation, our
tool adds an additional single edge and node, which represents the
constraint that the operation has only one output (see Figure 1); this
is also equivalent to giving a capacity limit on a node.
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Copying a piece of data without modifying it does not lead
to the creation of new nodes or edges, but because memory is
byte-oriented, loads and stores of larger values are split into bytes
for stores and recombined after loads. The graph is directed, with
edges always pointing from older to newer nodes, and so is also
acyclic. Inputs and output are represented by two distinguished
nodes, a source node representing all secret inputs, and a sink node
representing all public outputs.

2.2 Implicit flows

General programs are more complex than circuits because of op-
erations such as branches, arrays, and pointers that allow data to
affect which operations are performed or what their operands are.
These operations lead to indirect or implicit flows which do not cor-
respond to any direct data flows. For instance, later execution might
be affected by a branch that caused a location not to be assigned to,
or the fact that the Sth entry in an array is zero might reveal that the
index used in a previous store was not equal to 5. To account for
such situations, a sound graph representation must have edges that
represent all possible implicit flows.

To recover the intuitive perspective of execution as a circuit,
our tool treats each operation (e.g., branch) that might cause an
implicit flow as being enclosed as part of a larger computation with
defined outputs. The tool adds edges to connect each implicit flow
operation to the outputs of the enclosed computation. For instance,
consider computing a square root. If a single hardware instruction
computes square roots, then there is no implicit flow, but the square
root of a secret value is itself secret. On the other hand, if the square
root is computed by code that uses a loop or branches on the secret
value, these implicit flows can be conservatively accounted for by
assuming that they might all affect the computed square root value,
so our tool can represent the implicit flows with edges to the result.
For precision, the capacity of these implicit flow edges corresponds
to the number of possible different executions: for instance, a two-
way branch yields an edge with capacity one bit, while the capacity
for a pointer operation such as an indirect load, store, or jump is as
many bits as are secret in the pointer value. (Multi-way branches
show up as either nested two-way branches or jump tables at the
instruction level.)

To achieve soundness, it is sufficient to consider the entire
program as being enclosed in this way: our tool’s default behavior
connects each implicit flow operation to the program’s output.
Better precision results from using additional enclosure regions
around smaller sub-computations, such as the square-root function
mentioned earlier. In our system, enclosure regions are specified
using annotations which mark a single-exit control-flow region and
declare all of the locations the enclosed code might write to (see
Figure 2 for examples). These annotations can be inferred using
standard static analysis techniques; Section 8.6 describes a pilot
study examining what is required. Our tool can also dynamically
check that the soundness requirements for an enclosure region hold
at runtime, but this is less satisfactory because if a check fails, it
is not always possible to continue execution in a way that is both
sound and behavior-preserving.

For precision and efficiency, the graph structures our tool con-
structs are somewhat more complex than simple edges from each
implicit flow operation to each output. Each enclosure region has
a distinguished node, and our tool adds edges from each implicit
flow operation to that node, and then from that node to each output.
For the enclosure of the entire program, our tool takes advantage of
the time sequence in outputs by building a chain of nodes each cor-
responding to an output operation. Each implicit flow is connected
to the then-current end of the chain, so that information leaked by
an implicit flow can escape via any subsequent output one, but not
an output that occurred earlier.
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1 /* Print all the "."s or "7"s,

2 whichever is more common. */

3 void count_punct(char *buf) {

4 unsigned char num_dot = O, num_gm = O, num;
5 char common, *p;

6 ENTER_ENCLOSE (num_dot, num_gm);
7 while (p = buf; *p != ’\0’; p++)
8 if (xp == ’.?)

9 num_dot++;

10 else if (xp == ’7?)

11 num_gm++;

12 LEAVE_ENCLOSE() ;

13 ENTER_ENCLOSE (common, num);

14 if (num_dot > num_gm) {

15 /* "."s were more common. */
16 common = ’.’; num = num_dot;
17 } else {

18 /* "?"s were more common. */
19 common = ’7’; num = num_gm;
20 }
21 LEAVE_ENCLOSEQ) ;
22 /* print "num" copies of "common". */
23 while (num--)
24 printf ("%c", common);

25 }

Figure 2. C code to print all the occurrences of the most common
punctuation character is a string. For instance, when run on its own
source code, the program produces the output “........ 7. As
detailed in Section 2.4, our tool reports that this execution reveals
9 bits of information about the input.

2.3 Bit-capacity analysis

Subsections 2.1 and 2.2 described the structure of the graph our
tool computes for a program execution, but to compute a maxi-
mum flow, each edge must also be labelled with a bound on the
amount of information it can convey. To compute these bounds,
our tool simultaneously performs a dynamic bit-width analysis to
determine which of the bits in each data value might contain secret
information. This analysis is essentially implemented as dynamic
tainting, but at the level of bits. The analysis maintains, for every
location in memory or a register, a shadow bit vector of the same
size representing which data bits might be secret. For each basic
program operation the analysis computes conservative secrecy bits
for its results based on the secrecy bits of the operands. The amount
of secret information that might flow through a value is bounded by
the number of its bits that are marked secret. This analysis is very
similar to the analysis that the Valgrind Memcheck tool [47] uses
to track undefined values, so we were able to reuse much of its
implementation (as did, independently, the Flayer tool [17]).

2.4 Example

As a concrete example of the techniques of this section, consider
the code shown in Figure 2. This function counts the number of
periods and question marks in a string, and then whichever was
more common, prints as many as appeared in the string (modulo
256, because it uses an 8-bit counter). For instance, the source code
contains 8 periods and 4 question marks, so the when run on its own
source the program prints 8 periods. Our tool measures that such
an execution reveals 9 bits of information about the secret input:
1 bit from the selection of which character is more common, and
8 bits from the count. The corresponding minimum cut consists of
two edges, one for the implicit flow from the comparison between
num_dot and num_gm on line 14 (capacity 1 bit), and one for the
value of num after the second enclosure region on line 21 (capacity
8 bits).
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This example shows the importance of several of the techniques
introduced above. The only relationships between the input buffer
and num_dot, between num_dot and common, and between num and
the output, are implicit flows. A tool that did not account for all
of them could give an unsound (too small) result. The enclosure
regions marked by ENTER_ENCLOSE and LEAVE_ENCLOSE improve
the precision of the results: without them, the default treatment of
enclosing the entire program would cause the tool to measure a leak
of 1 bit each time a value from the input buffer was compared to
a constant, 1855 in total. The maximum flow computation also im-
proves precision; without it, simple tainting would determine that
all of the bits in the output might depend on the input, giving a
bound of 64 bits. Though we chose this example as a simple illus-
tration, similar situations occurred commonly in real applications
such as those described in Section 8.

3. Soundness and consistency

The technique of Section 2 often gives a good bound based on only
a single program execution. But from a theoretical perspective, the
amount of information a program reveals should be defined in terms
of multiple possible runs. This section first provides a more specific
definition of what our technique computes, then describes how to
merge flow graphs to compute a bound that is sound in that sense
across multiple program executions.

3.1 Soundness for a dynamic analysis

We describe what it means for an analysis that examines a subset of
possible executions to give an acceptable flow bound in two steps.
First, we present a general attack model in which an adversary
uses the program to communicate a secret message of her choosing
to a confederate. Second, we define a sound flow bound in this
model: in summary, a bound of k bits is sound if an adversary
could have communicated the same information by sending a k-bit
message directly. Throughout, we use the perspective of expressing
information with a code that represents possible messages via bit
strings of variable length.

Other quantitative information-flow analyses have commonly
treated the secret to be protected as being drawn from a fixed (e.g.,
uniform) distribution. Though this is appropriate in some circum-
stances, such assumptions limit a technique’s usability: in practice,
the distribution of an input is often unknown, or worse, might be
controlled by an adversary. Instead, we have found it more natural
to consider a more powerful adversary who can choose the secret
inputs to reveal as much information as possible. For instance, con-
sider a division function for 32-bit words that hides its normal out-
put, but has an observably different behavior on a divide by zero
error. If one assumes that the inputs are uniformly distributed, the
expected information revealed is a very small fraction of a bit, since
a zero divisor would almost never occur by chance (though when it
does, it should be counted as revealing 32 bits). But if an adversary
could influence the divisor, she might cause it to be 0 with proba-
bility one half, in which case each execution would reveal one bit
of information.

In more detail, consider a pair of spies, Alice and Bob. Alice
wants to use the program to send a message to Bob, by choosing
the program’s secret inputs to cause some change to the public out-
puts that Bob observes. Alice and Bob have prior knowledge of the
program, and they have agreed in advance on a set of possible mes-
sages they might want to communicate. The public inputs might
be out of Alice and Bob’s control, or Alice and Bob might have
chosen them, but we will treat them as being fixed in advance: the
analysis’s results and soundness will be with respect to a particu-
lar set of public inputs. We will also assume that Alice and Bob
are interested in error-free communication (the program is deter-
ministic), and have no computational limits, so their strategy is to
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choose a set of possible program inputs that Alice might send, each
of which will cause a distinct public output. For instance, in the
division example above, they might choose the following code: Al-
ice gives the input 5/3, causing normal program output, to convey
“attack at dawn”, while she gives 2/0, causing an error report, to
convey “no attack”. In essence, we treat the program’s execution
as a channel for transmitting messages, and are interested in an up-
per bound on the amount of information the channel can convey
under any coding scheme: its channel capacity. The channel ca-
pacity is determined by the total number of different public outputs
the program can produce, but counting them directly would be im-
practical. Instead, our tool’s measurements correspond to a natural
coding scheme suggested by the structure of the analyzed program,
which will always be an upper bound on the channel capacity.

The perspective of a fixed uniform distribution, in which one bit
of input data always carries a full bit of information, has an intuitive
appeal: for instance, in the division example, it is tempting to argue
that finding out that a 32-bit input has all bits zero should always
count as discovering 32 bits of information. However, we believe it
is ultimately less useful because it is tied to a particular data repre-
sentation, that of the inputs to the program being analyzed. By con-
trast, channel capacity abstracts away from a particular represen-
tation to more abstractly characterize the computation a program
performs. In particular, channel capacity can be more naturally be
approximated compositionally, as our graph-based analysis does.

To Alice and Bob, the originally intended behavior of the pro-
gram might just be a distraction: they wish to use its input/output
behavior as a communications channel. To define how well they
can exploit the program, we can compare their results using it to
what they could achieve by using a direct communications chan-
nel. Instead of an execution of the program that our tool measures
to reveal at most k bits, we imagine that Alice sends a string of
up to k binary digits directly to Bob according to a code they have
settled on in advance. For instance, 0 might correspond to “attack
at dawn”, and 1 to “no attack”. Suppose that for each input 7 € I
that Alice sends, our tool reports an information-flow bound & (%).
We will say that that result is sound if there is also a code by which
Alice and Bob could have unambiguously communicated the same
messages, in which each message was represented by a string of
k(%) bits. Thus, in the division example, it would be sound for the
tool to report a bound of 1 bit.

There is also an equivalent characterization of soundness as a
numeric condition on the amounts k(). Intuitively, it is impossible
for there to be many distinct outputs, none of which reveal much
information. The precise characterization of this relationship is
Kraft’s inequality, which in our notation states that ZZ 27k@ < 1,
(Kraft’s inequality holds for any uniquely-decodable code, and
conversely, it is straightforward to construct a code to match a set
of lengths that satisfy the inequality [12].) Several more specific
consequences follow from this soundness definition. First, if a
sound tool ever reports a flow of O bits, then it must be the case
that the public output for that execution is the only one that can
possibly be produced with any other secret inputs (for that public
input). In other words, the case of 0 bits corresponds to the non-
interference criterion for no information flow. Second, if there are
N messages that all carry the same information, each one must
be convey at least log, N bits: k bits are enough to distinguish
between 2* possibilities.

3.2 Achieving consistency over multiple runs

As explained above, soundness is best defined as a property about
sets of inputs, even if the tool examines only a single execution.
But if a tool analyzes a set of executions, soundness requires that
the results taken together correspond to a single possible code. As
described so far, the maximum flow values our technique produces
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would only be guaranteed to be sound in this sense if the minimum
cut always occurred at the same place in the flow graph.

For instance, consider the final phase (lines 22-24) of the ex-
ample program of Figure 2, in which a character is printed n times
(0 < n < 255). If the analysis chooses a cut before the loop, n will
be measured in its binary representation, and so will be counted as
revealing 8 bits. Alternatively, if it chooses a cut at the implicit flow
edges corresponding to each loop test, then printing n characters
will be counted as revealing n + 1 bits. Either of these choices is
sound on its own (they correspond to binary and unary encodings
of n), but always choosing the smaller one (i.e., min(8,n + 1))
gives measurements that are too small. Kraft’s inequality confirms
this unsoundness: Zisjo g~ min(8,n+1) 58 > 1.

We have seen that if our maximum-flow analysis is run inde-
pendently on different executions of a program, the results may be
inconsistent with each other: some of the variation between the ex-
ecutions may cause the tool to pick different cut locations, rather
than contributing to the estimated information flow. To get sound
results from multiple executions, our tool combines the graphs from
multiple executions and analyzes them together.

In outline, this graph combining process merges all the edges
that correspond to the “same” program location. More precisely, it
labels each edge with a value that includes a static location (i.e., in-
struction address), and optionally a 64-bit hash of the calling con-
text (stack backtrace), similarly to Bond and McKinley’s proba-
bilistic calling context [4]. Then, any number of labelled graphs
can be combined by identifying edges with the same label (replac-
ing them with a single edge whose capacity is the sum of the origi-
nal capacities), and unifying all of the nodes the original edges are
incident upon. This can be done in almost-linear time with a union-
find structure: for each edge (u,v) with location [, merge the sets
containing v and a placeholder for “source of edges at {”, and sim-
ilarly for v and “target of edges at [”.

When flow graphs are combined in this way, any sum of possible
flows in the original graphs is possible in the combined graph, so a
bound computed for the combined graph is still sound. On the other
hand, the possible cuts in the combined graph correspond only to
sets of cuts that appear in the same places in each original graph,
excluding the possibility of lower flow bounds corresponding to
inconsistently placed cuts.

4. Machine-level implementation

We have implemented the information-flow analysis described in
the previous sections as a dynamic binary analysis for executables
on Linux/x86 systems, called Flowcheck (http://people.csail.
mit.edu/smcc/projects/secret-flow/flowcheck.html).

4.1 Dynamic instruction rewriting

Our tool instruments a program by dynamically rewriting its in-
struction stream, using the Valgrind framework [40]. Valgrind
translates each basic block of instructions into a simple compiler-
like intermediate representation; our tool adds instrumentation op-
erations in that format; and then Valgrind translates the IR back into
x86 instructions for execution. This translation insulates our anal-
ysis from most of the complexities of the large x86 instruction set:
Valgrind automatically handles features such as complex address-
ing modes, implicit operands, string instructions, condition codes,
and conditional moves, which require special treatment in tools that
operate directly on instructions [10]. Valgrind’s automatic register
allocation also makes it easier to insert instrumentation operations.

One architectural complexity of the x86 that is not abstracted
by Valgrind is the presence of overlapping registers: for instance,
the 16-bit register %dx consists of the lower-order bits of the 32-bit
register %edx. In order to be able to treat each register as distinct,
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we have changed Valgrind’s translation of such sub-registers so that
instructions that access them instead read or write from the full
register, selecting the relevant portion using bitwise operations.

4.2 Graph construction by value tagging

To build the flow graph described in Section 2, the tool associates
a positive integer, which we call a tag, with each execution-time
value that might contain secret information; values that are not
reachable from the secret input have a tag of 0. These tags represent
the identities of nodes in the flow graph; a tag is associated with
each register, and each byte in memory. The tags are maintained
in parallel with the secrecy bit-masks described in Section 2.3; if
a value’s tag is 0, its bit-mask is necessarily all public, and it is
omitted from the graph. If at least one operand of a basic operation
has a non-zero tag, the instrumentation code for the operation
assigns a fresh tag for the result of the operation, and creates edges
linking the inputs to the result.

The representation of edges depends on whether the graph-
combining feature of Section 3.2 is in use. If every edge is to be
considered unique, they do not need any in-memory representation:
each edge is output to the graph immediately, as an ordered pair of
node tags. In this mode, the memory usage of the tool is bounded
by a multiple of the memory usage of the original program: it does
not grow as the graph becomes larger. On the other hand, if edges
are to be combined based on their program locations, it is more
efficient to keep a representation of each class of equivalent nodes
in the tool’s memory. However, it is not necessary to retain the
entire original graph: instead, all that is needed is the combined
graph (whose size is bounded by the program size), and information
about those nodes that still correspond to values in registers or
memory. The tool implements an algorithm similar to mark-and-
sweep garbage collection to identify when tags can be reclaimed.
These techniques differ from previous implementations because of
our constraint that memory usage must not grow with the length
of a program’s execution. For instance, Redux [39] builds a similar
graph with an in-memory linked data structure, which facilitates
computing a backward slice from the output but is less scalable.

4.3 Optimizing large-region operations

Because the output of an enclosure regions can be an entire array
or other large data structure, the tool often needs to represent the
fact that a piece of information might flow to any byte in a large
memory region. It would be too slow to do this by modifying the
tag of each memory location individually: for instance, consider a
loop operating on an array in which each iteration might potentially
modify any element (say, if the index is secret). Operating on each
element during each iteration would lead to quadratic runtime cost.

Instead, the tool performs operations on large memory regions
lazily. It maintains a limited-size set (default size: 40) of region de-
scriptors, each of which describes a range of more than 10 contigu-
ous memory locations, along with another list of up to 30 addresses
excepted. Operations such as a flow to an entire region are recorded
just by modifying the descriptor, and operations on single addresses
are marked as exceptions. However, if a region accumulates more
than 30 exceptions, it is either shrunk to exclude them (if they are
all in the first half), or eliminated.

4.4 Other issues

Because the analysis operates at the binary level, all of the libraries
that a program uses are included automatically. It would be possible
to treat malloc as part of the instrumented program, though we
currently inherit Memcheck’s behavior of replacing the program’s
allocator. Doing so leaves the possibility of information flow via
the addresses returned from malloc; this channel could be blocked
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by using a separate arena for allocations inside enclosure regions,
or randomizing the addresses.

Inputs and outputs are recognized based on system calls, such
as read and write respectively. Memory-mapped I/O is not recog-
nized, though doing so would not be difficult because every mem-
ory operation is already instrumented.

We have not studied the best extension of our technique to
multi-threaded programs, since Valgrind implicitly serializes the
programs it executes; it would likely suffice to execute enclosure
regions atomically. (The case studies of Section 8§ are all single-
threaded.)

Many aspects of a program’s interactions with its environment
might reveal information about its internals, such as how long it
takes to execute or how much power the CPU draws. If such side
channels are reflected in the program’s output, they can be included
in our approach: for instance, the result of gettimeofday could be
treated as secret. However, observations made outside the program
are beyond this scope of our technique.

5. Efficient maximum-flow

Computing the maximum flow in a network is a long-studied com-
putational task, but the flow graphs constructed by our technique
are both very large and fairly well-structured, so specialized op-
timizations are both necessary and possible. We have investigated
both exact algorithms with the potential to be efficient, and uncon-
ditionally efficient algorithms with the potential to be precise. Em-
pirically, the later approach seems to work better.

5.1 Exact approaches

The best general algorithms for computing a maximum flow have
time complexity at least O(V E'), where V and E are the number of
vertices and edges in the input graph [11], but a dynamic program
analysis is usually only feasible if its running time is close to linear
in the running time of the original program. What is needed is an
algorithm that is likely to run in close to linear time on the graphs
that arise in flow analysis.

Flow graphs often have many nodes connected in series or
parallel, for which flow computation is linear-time, so we explored
the use of SPQR trees, an incremental graph representation that can
capture series-parallel structure [3]. In our case studies, the graphs
have a mixture of series-parallel and non-series-parallel structure,
with neither one dominant. For instance, in bzip2, the largest non-
series-parallel structure represents 16% of the graph size over a
range of input sizes, and this constant fraction of the graph still
requires super-linear processing time. Therefore, while SPQR trees
capture some useful regularities, they do not appear sufficient to
allow the technique to scale to very large graphs. More details of
these experiments can be found in a technical report [33] and the
first author’s thesis [31].

5.2 Graph collapsing by code location

An alternative to exactly computing the maximum flow in large
graphs is to simplify the graph in a way that makes it much smaller,
while still being sound and not greatly increasing the maximum
flow. The most important regularities in large graphs seem to come
from loops in the original program, and are most easily exploited
by using information about the program. Our tool does this using
the same implementation of edge labelling and node collapsing that
was described in Section 3.2: even the graph of a single run can
be simplified by combining edges with the same context-sensitive
code location, since the context does not distinguish different loop
iterations. A graph can be collapsed even further by combining
edges based on their code location (context-insensitive).

The size of the collapsed graph grows not with the runtime of
the original execution, but with its code coverage; since the latter
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Figure 3. The amount of information revealed in compressing files
with bzip2, as measured by our tool (note log-log scale). The solid
line shows the flows measured by our tool, in bits. The dotted lines
represent other functions that would be expected to bound the flow:
The straight line through the origin represents the input size. The
two curved lines (which are close to linear but do not pass through
the origin) represent the size of the program’s output, minus upper
and lower approximations of the amount of output (such as fixed
headers and progress messages) that does not depend on the input.

tends to plateau (and is bounded by the program size), much longer
executions can be analyzed. Graph collapsing can potentially re-
duce precision, for instance if two calculations in a loop had neg-
atively correlated flows on different iterations. However, we have
not observed this to be a practical problem (graph collapsing was
enabled in all of our case studies).

5.3 Maximum-flow performance in practice

To test the scalability of our graph construction and maximum-flow
computations on large graphs, we ran our tool on bzip2, a general-
purpose (lossless) compression tool based on block sorting, com-
pressing inputs marked as entirely secret. bzip2 was not intended
as a realistic target for security analysis (obviously its output con-
tains the same information as its input). We chose it because it rep-
resents a worst-case for our analysis’s performance: it is computa-
tionally intensive, almost all of the computation operates on data
derived from the input, and it makes extensive use of large arrays
that necessitate the laziness described in Section 4.3. (Section 8 dis-
cusses larger, more security-relevant programs; for them the tool’s
overhead is less, because many operations are not connected to the
secret data.) Also, it is easy to select inputs of various sizes, and
the expected amount of information flow can be computed a priori
to give a bound on the expected results. We chose a class of inputs
that are highly compressible: the digits of 7, written out in English
words, as in “three point one four one five nine”.

We ran our tool with context-sensitive edge collapsing, and
bzip2 in verbose mode -vv with a 100k block size. The computer
was a 1.8GHz AMD Opteron 265 running Linux; bzip2 and our
tool ran in 32-bit mode.

Figure 3 compares the flow measured by our tool to the expected
bound, which is the minimum of the size of the input, and the size of
that portion of the output that depends on the input. The exact value
for the latter is somewhat uncertain, because part of the output
format consists of fixed headers, and the commentary printed to
the terminal is only partially input-dependent; so we estimate it
with lower and upper bounds (curved dotted lines in the figure).
The results match our expectations: very small inputs cannot be
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compressed by bzip2, but for inputs that bzip2 can compress, our
tool’s flow bound matches the size of the compressed output.

The running time of our tool grows linearly over this range
of input sizes, thanks to the lazy range operation implementation
and graph collapsing techniques. For the largest input, 2.5MB, the
tool’s running time was 1.5 hours. Though still quite slow com-
pared to an uninstrumented execution, this time reflects process-
ing a graph (before collapsing) with 3.6 billion nodes, since almost
all of bzip2’s time is spent operating on secret data. (After col-
lapsing, the graph had only about 22000 nodes and 30000 edges.)
When tracing code that is not operating on secrets, no graph is con-
structed, so the tool’s is overhead less, though still more than Mem-
check’s. The time to compute a maximum flow on the collapsed
graph was less than a second in all cases.

6. Checking a flow bound

Once the main flow measurement technique discussed in this paper
has been used to determine the amount of information a program
reveals under testing, users of a program would also like to check
that the same bound always holds as the program is used in deploy-
ment. Checking a bound is a simpler and faster than discovering
it. Section 6.1 describes how to compute a cut of the flow graph
from a maximum flow, then Sections 6.2 and 6.3 give two checking
techniques that use such a cut.

6.1 Computing a minimum cut

A cut (an s-t cut, to be precise) is a way of dividing a flow graph
into two pieces, one containing the source and the other the sink. A
cut can be defined as the set of nodes that lie in the half containing
the source, but we are interested in the set of edges that cross from
that set to its complement; their removal disconnects the source
from the sink. There is duality between flows and cuts, captured
by the classic max-flow-min-cut theorem: the value of any flow
is bounded by the capacity of any cut, and the maximum flows
are those with the same value as the minimum-capacity cuts, since
there is no way to augment them [11].

Once a maximum flow has been discovered, our tool computes
a cut by first enumerating the nodes on the source side of the cut
by depth-first search: they are the nodes that are reachable from the
source along a path in which each edge has excess capacity. Then,
the cut edges are those that connect nodes reached in the DFS to
nodes not reached.

On the analyzed run(s), the edges of the cut carried an amount
of data equal to our tool’s estimate of the amount of information the
execution revealed, and all information flows from the secret inputs
to the public outputs passed through them. On future executions,
the amount of data corresponding edges carry will be a sound mea-
sure of the information revealed, as long as no other flows occur.
Therefore, a static representation of the edges can be used to effi-
ciently check when an analogous policy holds on future executions,
reducing detection to a reachability check; Sections 6.2 and 6.3 de-
scribe specific implementations. Such checking will soundly detect
any leaks other than, or larger than, those allowed by the cut; the
price paid for reduced overhead is that novel leaks may not be mea-
sured precisely.

6.2 Tainting-based checking

Checking that no secret information reaches the output other than
across a given cut is a simple tainting problem. We have imple-
mented this as an alternate mode of our tool, reusing the bit-level
tainting analysis described in Section 2.3. The cut edges correspond
to annotations that clear the taint bits on data, while simultaneously
incrementing a counter of information revealed. If any other tainted
bits reach the output or an implicit flow operation, they are conser-
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vatively counted in the same way, and the location reported: en-
closure regions are still required. The runtime overhead of this ap-
proach is comparable to that of Memcheck: between 10 and 100
times the uninstrumented execution time.

6.3 Output-comparison checking

An even more efficient checking technique is based on running
two copies of a program. The basic idea is to run two copies of
a program in lockstep, one which initially has access to the secret
input, and the other which operates on a non-sensitive input of the
same size. At the point when the programs reach a cut annotation,
the program with the real secret input sends a copy of the values
on the cut to the second copy. If the programs produce the same
output, then the data that the second program received from the
first at the cuts is the only secret information needed to produce the
output, and the flow policy is satisfied. If the outputs diverge, then
another flow is present and execution should be terminated. (The
disadvantage compared to a tainting approach is that detecting a
violation at output time is of less help in tracking down its cause.)

The key advantage of this technique is that the execution of
the two programs can be mostly uninstrumented: they only need to
behave unusually at the cut points. Enclosure regions are also not
required, as long as the non-sensitive input is such that the program
can execute the code that would be enclosed without crashing or
looping. A factor of two overhead is less than any binary-level
dynamic tainting system, and using two copies can take advantage
of multiple processors.

A simpler version of this technique (without a cut, for check-
ing only complete non-interference) has been implemented in an
operating-system-level tool called TightLip [57]. We previously
suggested the extension to quantitative policies by sending in-
formation at a cut, but in a theoretical context to convert an
information-flow property into a safety property that could be more
easily proved by induction [34].

7. Discussion

This section provides some additional discussion of the ways in
which a dynamic quantitative analysis would be useful in devel-
oping secure software, including which policies can be quantified,
how to use a dynamic tool, and a comparison between our tech-
nique and standard tainting.

A quantitative policy may only be an approximation to a com-
plete security policy—the projection of a set of acceptable and un-
acceptable behaviors onto a single axis—but it is usually sufficient
to catch large categories of attack. For instance, in a system protect-
ing privacy in a census database, a simple quantitative policy could
not prevent the query “Was Stephen McCamant’s income more or
less than $40,000?”, since it carries the same amount of informa-
tion as an acceptable query like “Was the average income of Boston
residents more or less than $40,000?”. But it could prevent a query
from requesting the incomes of everyone in Boston. Since the flow
bounds our tool supports are whole numbers, it is also important
to control the number of times an attacker might repeat a process,
since even a small bound would become large if multiplied by a
large number of repeated requests; but if the executions are ana-
lyzed together, our tool can be used to determine whether they are
revealing the same or different information.

Our tool measures the flows in particular executions, and is
intended for testing or debugging: its results do not say anything
about other possible executions, which might leak either more
information or less. As with any other kinds of testing, developers
must choose inputs that exercise program behaviors relevant to a
policy. It is still important for a dynamic tool that its results never
underestimate the amount of flow that has occurred on a single
run, even though this soundness for a dynamic analysis is different
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# of secret
Program ‘ KLOC ‘ libraries data
KBattleship 6.6 37 ship locations
OpenSSH client 65 13 authentication key
ImageMagick 290 20 original image details
OpenGroupware.org | 550 34 schedule details
X server 440 11 displayed text

Figure 4. Summary of the programs examined in the case studies
of Section 8. The program sizes, measured in thousands of lines
of code (KLOC), include blank lines and comments, but do not
include binary libraries (3rd column, measured with 1dd) that were
included in the analysis but not directly involved with the security
policy.

from soundness for a static analysis that describes all possible
executions. As discussed in Section 6, other techniques can be used
to check for violations of a policy on future executions, such as
after a system has been deployed.

No matter how automated a flow measurement tool is, it is
still the responsibility of a developer to decide which flows are
acceptable, and how to resolve any violations. Using a tool like ours
can be seen as a kind of machine-checked auditing: the developer
conjectures a security policy the program is expected to satisfy, and
the tool checks whether it really is satisfied in a particular case.
Mismatches might either represent a policy that is too restrictive,
or a bug in the program. The same kind of understanding and
policy specification would be required to annotate a program with
an information-flow type system: the difference is that a dynamic
tool can be used to examine one program execution at a time, while
a static approach requires that a policy covering every possibility
be provided up-front.

Our analysis has a close relationship with dynamic tainting: the
graph it constructs contains all the values that a tainting analysis
would mark as secret. Our tool reports a flow of 0 bits in exactly the
cases when a (sound) tainting analysis would allow a program; any
program with non-zero flow would be rejected by a taint analysis
(counting the number of tainted output bits corresponds to the total
capacity of edges to the sink in our graph). Using maximum flows
allows our technique to find a more precise flow measurement,
but it does not provide any more precise information about which
parts of the output contain secret information. For instance, in the
example of Section 2.4, 64 bits of the output are tainted, and our
tool finds that together, these bits carry 9 bits of information about
the secret input. But it is not possible to pick out a particular 9 bits
out of the 64 that contain the information.

8. Case studies

To learn about the practical applicability of our tool, we used it
to test a different security property in each of five open-source
applications. The programs and the secret information protected are
summarized in Figure 4. In each program the secret information
participates in implicit flows, and is partially disclosed in ways
that are nonetheless acceptable; thus both a quantified policy and
a sound treatment of implicit flows are needed.

To obtain precise results, all of the programs required enclo-
sure region annotations. Section 8.6 describes a pilot experiment
with a very simple static analysis for C which was able to infer
a majority of the annotations used, and discusses how to improve
its results by adding other standard techniques. We supplied the
remaining enclosure annotations by hand: we found the locations
where they were needed by running the tool in a mode in which
every implicit flow operation caused a warning message. Because
of limitations in our current syntax for specifying such regions,
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this sometimes required local code refactorings, such introducing
a temporary variable to hold a return value. Writing annotations
was easy: we spent about as much time writing such annotations as
compiling and configuring the programs to run on our system and
developing test cases for the relevant policies.

8.1 KBattleship

In the children’s game Battleship, successful play requires keeping
secrets from one’s opponent. Each player secretly chooses locations
for four rectangular ships on a grid representing the ocean, and then
the players take turns firing shots at locations on the other player’s
board. The player is notified whether each shot is a hit or a miss,
and if a hit has sunk a complete ship. A player wins by shooting all
of the squares of all of the opponent’s ships. In a networked version
of this game, one would like to know how much information about
the layout of one’s board is revealed in the network messages to the
other player. If the program is written securely, each missed shot
by the opponent should reveal only one bit, since “hit” and “miss”
represent only two possibilities. KBattleship is an implementation
of the game that is part of the KDE graphical desktop. We used
our tool to measure how much information about the player’s ship
locations is revealed when playing KBattleship.

We were inspired to try this example because Jif, a statically
information-flow secure Java dialect (the latest descendant of the
work described in [35]) includes as an example a 500-line Battle-
ship game. Apparently unlike Jif Battleship, however, the version of
KBattleship we examined (3.3.2) contains an information leak bug.
In responding to an opponent’s shot, a routine calls a method named
shipTypeAt to check whether a board location is occupied, and re-
turns the integer return value in the network reply to the opponent.
However, as the name suggests, this return value indicates not only
whether the location is occupied, but the type (length) of the ship
occupying it. An opponent with a modified game program could
use this fact to infer additional information about the state of adja-
cent board locations. The KBattleship developers agreed with our
judgement that this previously unrecognized leakage constituted a
bug, and our patch for it appears in version 3.5.3. Though this bug
shows up as excessive flow under our tool, we discovered it by in-
spection while considering whether to use the program as a case
study (before the tool was implemented).

Our tool can verify that the bug is eliminated in a patched
version: we mark the position and orientation of each of the player’s
ships as secret, and measure how much of this information reaches
the network. In response to a miss, the program reports one bit of
information; a non-fatal hit reveals two bits, one indicating the shot
is a hit and a second indicating it is non-fatal. These flows can be
observed in real time by running our tool in a mode that recomputes
the flow on every program output, or each second, whichever is
less frequent. Information about the ship locations is also revealed
via the program’s graphical interface, but we excluded that code
from the analysis by explicitly declassifying some data passed to
drawing routines; thus this analysis could miss leaks that occurred
through the GUI libraries.

8.2 OpenSSH

OpenSSH is the most commonly used remote-login application on
Unix systems. In one of the authentication modes supported by
the protocol, an SSH client program proves to a remote server the
identity of the host on which it is running using a machine-specific
RSA key pair. For this mode to be used, the SSH client program
must be trusted to use but not leak the private key, since if it is
revealed to the network or even to a user on the host where the
client is running, it would allow others to impersonate the host.
(We were inspired to consider this example by the discussion of
it by Smith and Thober [49].) We used our tool to measure how
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Figure 5. Image transformations vary in how much information
they preserve. Our tool verifies that pixelating (left) or blurring
(middle) the original image (top, 375120 bits), reveals only 1464 or
1720 bits respectively. By contrast, the bound our tool finds for the
information revealed by a twisting transformation (right) is 375120
bits, no less than the input size. Applying the same transformation
with the opposite direction to the twisted image gives back an
image fairly close to the original (lower right).

much information about the private key is revealed by a client
execution using this authentication mode, by marking the private
key (a number of arbitrary-precision integers) as secret as it is read
from a file.

Our tool finds that 128 bits of information about the secret key
are revealed. The cut location reveals that this is the MDS5 checksum
of a response that includes a value decrypted with the public key,
as expected under the protocol. Of course, our tool is not able to
verify that MDS is a secure one-way function, though that belief
is part of why revealing those particular 128 bits is acceptable.
Our tool demonstrates that if the 218-line MD5 implementation is
secure, the entire execution obeys the confidentiality property: no
information leaks from the rest of the program.

8.3 ImageMagick

ImageMagick is a suite of programs for converting and transform-
ing bitmap images. We evaluated some of its transformations to as-
sess how much information about the original they preserve. For in-
stance, if one tries to anonymize a photograph by obscuring the sub-
ject’s face, using a transformation that preserves very little informa-
tion would prevent the original face from being reconstructed.
Figure 5 shows an original 125-pixel square image, which is
represented by 375120 bits in an uncompressed PPM format, and
the output of three different transformations. Pixelation to a 5x5
grid uses the options -sample 5x5 -sample 125x125, while
blurring uses -resize 5x5 -resize 125x125, and the twisting
transformation uses —-swirl 720. Though all three transformed
images are visually unidentifiable, they differ greatly in the amount
of information they preserve, as our tool verifies. Pixelation and
blurring both involve shrinking the image to a small intermediate
form and then enlarging it, so the maximum flow is dominated by
the size of the intermediate form. Since ImageMagick uses 16-bit
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pixel component values internally, a 5-pixel square image is repre-
sented by 1200 bits. In addition there are some implicit flows, since
the header of the file, which includes its size and other metadata, is
also considered secret. In total our tool gives bounds of 1464 bits
revealed for pixelation and 1720 bits for blurring.

On the other hand, the twist transformation computes each out-
put pixel by finding the corresponding input image location under
a continuous transformation, and interpolating between the four in-
put pixels near it. There is no apparent bottleneck in this computa-
tion, so our tool’s bound is the same as the input and output size,
375120 bits. Though the result is only an upper bound, and does not
prove that no information is lost, it accords with the intuition that a
continuous transformation is reversible, aside from blurring caused
by the interpolation. In fact, a twist of the same magnitude in the
opposite direction gives back an image fairly close to the original
(and more sophisticated inversion techniques are possible).

8.4 OpenGroupware.org

OpenGroupware.org is a web-based system for collaboration be-
tween users in an enterprise, providing email and calendar features
similar to Microsoft Outlook or Lotus Notes. We focused specit-
ically on its appointment scheduling mechanism. Each user may
maintain a calendar listing of personal appointments, and the pro-
gram allows one user to request a meeting with a second user during
a specified time interval. The program then displays a grid that is
colored according to what times the second user is busy or free.
This grid is intended to provide enough information about the sec-
ond user’s schedule to allow choosing an appropriate appointment
time, but without revealing all the details of the schedule: for in-
stance, the boundaries of appointments are not shown, and the gran-
ularity of the display is only 30 minutes. We used our tool to mea-
sure the amount of information about the user’s calendar this grid
reveals, marking the starting and ending times of appointments as
tainted when the program reads them with a SQL query.

For instance, for a proposal for a one hour appointment between
9:00am and 6:00pm, when the target user has an appointment from
10 to noon, our tool bounds the amount of information revealed as
12 bits. In previous experiments using the tainting version of our
tool, we had discovered that a loop that computes time period in-
tersections unnecessarily considered times every minute, and fixed
it to use the same half-hour interval as the final display; the 12-bit
measurement corresponds to a cut at checks made in this loop.

This example also demonstrates the possibility of different flow
estimates that are equally correct, but differ in when they are more
precise. Later in the code, the objects created in the intersection-
checking loop are used to decide whether each of the 18 squares in
the grid should be colored beige or red; a cut there would measure
every one-day appointment search as revealing 18 bits. For the case
of a single morning appointment, a cut at the intersection loop gives
a more precise bound, but if the user had many appointments, later
in the day, an 18-bit bound from the display routine would be more
precise.

8.5 X Window System server

In the X Window System commonly used on Unix, a single pro-
gram called the X server manages the display hardware, and each
program (X client) that wishes to display windows communicates
with the server over a socket. The X server’s mediating role makes
it a significant potential source of security problems: programs can
use it to communicate with each other (including using the same
mechanisms that support cut and paste), and any information dis-
played on the screen also passes through the server. The original
design of X addressed security only with respect to access control;
more recently, the protocol has been extended with mechanisms
that can enforce information-flow policies, by dividing clients into
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trusted and untrusted classes and restricting what untrusted clients
can do [55]. However, it can be difficult in a large monolithic sys-
tem like the X server to ensure that enough permissions checks have
been added. Since the X server is written in C, there is also the dan-
ger that an attack such as a buffer overflow could allow any checks
to be subverted. As an alternate approach, we examined whether
it is possible to avoid trusting most of the server implementation,
and instead enforce our information flow goals directly. We used
our tool to measure how much information from client programs
is revealed to other clients or otherwise leaked from the server, by
marking text data as secret when it arrived in requests used for cut-
and-paste or drawing text on the screen.

Data bytes provided for cut-and-paste are uninterpreted by the
server, and cause no implicit flows. By contrast, drawing text on
the screen involves a number of computations: looking up bitmaps
from a font, computing the width of the area drawn, and drawing
each pixel according to the current rendering mode. The main effect
is to change pixels in the framebuffer, which we do not count as a
public output; but as a side effect, the server also computes a bound-
ing box for the text that was drawn, for use in later redrawing cal-
culations. The dimensions of this bounding box reveal information
about the text that was drawn, in the same way that the dimensions
of a black redaction rectangle in a declassified document would, by
constraining the sum of the widths of the characters drawn inside.

For instance, our tool estimates (somewhat imprecisely) that in
one font and drawing context, the bounding box generated from the
string Hello, world! could reveal up to 21 bits about the charac-
ters of the string. However, on examining the location of this pos-
sible leak, it was clear to us that it could be eliminated by using a
more conservative bounding box (not dependent on the contents of
string), perhaps at the expense of requiring more redrawing later.
Once the expected leaks are accounted for, either with cut anno-
tations or algorithmic changes, a dynamic checking tool can catch
any other information flows that violate the policy. For instance,
we used our tainting-based checker with a single policy to catch
both leaks caused by user errors, like pasting text from a secret ap-
plication into an untrusted one, and code injection attacks, like a
simulated exploitation of a an integer overflow vulnerability [24]
in which code supplied via a network request walks through mem-
ory, looks for strings of digits that resemble credit card numbers,
and writes them to a hidden file in /tmp.

8.6 Inferring enclosure regions

Enclosure regions, introduced in Section 2.2 (and illustrated in
Figure 2), are static program annotations that improve our tool’s
precision by directing the implicit flows from a code region to
the locations holding results used by the rest of the program. This
section discusses how they can be inferred by static analysis. We
first describe the general approach, then describe a pilot study
with a simple analysis tool. Even our very simple analysis tool
discovered most of the annotations needed in our case studies, and
the aspects it did not cover could be handled by other standard static
analysis techniques.

An enclosure region delimits particular starting and ending pro-
gram locations, and lists locations, which we call outputs, that hold
results used in the rest of the program. If no implicit flows occur
within them, enclosure regions have no effect, so an inference can
simply choose starting and ending points enclosing every possi-
ble implicit flow operation in a program. Also, there is no harm
in including extra outputs that might not be read. Therefore, the
key challenge in inferring enclosure regions is, given a fragment
of code in a program, to conservatively determine a list of data lo-
cations it might write to: essentially a kind of side-effect analysis.
As with other kinds of side-effect analysis, it is necessary to take
aliasing into account [7, 46]: in our case, the annotation requires
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pilot analysis
hand need missed found
Program annot. || length || exp’n | interproc. |
bzip2 79 17 17 13 49
OpenSSH client 2 0 0 1 1
ImageMagick 23 1 1 0 22
X server 19 2 0 2 17

Figure 6. Summary of the results of the static analysis discussed in
Section 8.6 to compute which locations a code region (containing
an implicit flow) might modify. Overall, the pilot analysis found
72% (“found” column) of the hand-verified output annotations used
in the case studies (“hand annotations” column).

an expression valid at the enclosure entrance that must-aliases the
Ivalue expression in a later assignment, similar to the interstatement
must-alias pairs used by Qian et al. [44].

For an initial assessment of the prospects for automatic infer-
ence of enclosure regions, we built a very simple pilot implemen-
tation, and compared its results to the complete hand-checked an-
notations used in the case studies above. The inference is a static
analysis for C source code, based on the CIL framework [38]. It is
intraprocedural, syntax-directed, and context-insensitive, operating
as a single pass that disregards control flow except as implied by
block structure. It does not use an alias analysis, so it only finds
locations that can be named by the same expression at the region
entrance as at the modification location.

Treating the set of output annotations used in the case studies as
our target, we measured how many of the region outputs annotated
by hand were found correctly by the pilot analysis. The results of
the comparison are shown in Figure 6. (The remaining case stud-
ies are written in C++ or Objective C, so CIL cannot parse them.)
Overall, even this very simple analysis found 72% of the required
annotations: in most cases, the implicit flow, side-effect, and anno-
tation were all close together, and no aliasing was involved.

We then further classified the remaining missed outputs, deter-
mining that more sophisticated analysis in two areas would be re-
quired to infer a full set of annotations: arrays, and interprocedural
aliasing. The column “need length” in Figure 6 counts the outputs
where the location being written to was a dynamically allocated ar-
ray, and the enclosure annotation has a bound (currently supplied
by hand) on the size of the array. These bounds would not be re-
quired in a language like Java whose arrays keep track of their own
size. Among the output annotations the tool missed, the column
“missed / expansion” counts cases where the inferred enclosure re-
gion referred to only a single element in an array, but it needed
instead to refer to the entire array, commonly because the index ex-
pression was not constant. Finally, the column “missed / interpro-
cedural” counts cases where the annotation we added by hand was
in a different function than the side-effecting operation. While we
found no cases in which an intraprocedural alias was required, in-
terprocedural annotations often required that the modified location
be referred to with a different expression in the annotation, such as
by substituting an argument expression in place of a parameter in
an lvalue expression.

Comparing the results between the various case study programs,
bzip2 is an outlier in the complexity of its annotations, because of
its sophisticated use of arrays and pointers: for instance, to conserve
space, many of its main data structures are allocated as subranges
of two large arrays.

9. Related work

Our technique combines some of the attributes of static analyses
(including type systems) that check programs for information-flow
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security ahead of time, and of dynamic tainting analyses that track
data flow in programs as they execute.

9.1 Static information-flow

Static checking aims to check the information-flow security of
programs before executing them [13]. The most common technique
uses a type system, along with a declassification mechanism to
allow certain flows. It is also possible to quantify information flows
in a static system, though this has been difficult to make practical.

Despite advances such as selective declassification [20, 36], bar-
riers remain to the adoption of information-flow type checking [53]
extensions to general purpose languages [35, 48, 27]. Static type
systems may also be too restrictive to easily apply to pre-existing
programs: for instance, we are unaware of any large Java or OCaml
applications that have been successfully ported to the Jif [35] (clos-
est are the poker game of [2] and the email client of [25]) or Flow
Caml [48] dialects. Techniques based on type safety are inappli-
cable to languages that do not guarantee type safety (such as C) or
ones with no static type system (such as many scripting languages).

Information-flow type systems generally aim to prevent all in-
formation flow. Many type systems guarantee non-interference,
the property that for any given public inputs to a program, the
public outputs will be the same no matter what the secret inputs
were [22, 53]. Because it is often necessary in practice to allow
some information flows, such systems often include a mechanism
for declassification: declaring previously secret data to be public.
Such annotations are trusted: if they are poorly placed, a program
can pass a type check but still leak arbitrary information. The mini-
mum cuts described in Section 6 could be used to choose the place-
ment of declassification annotations, since they would be a minimal
interface between secret and declassified data. However, we do not
envision them to be a trusted representation of the information flow
policy: rather, the policy is a numeric flow bound, and a cut is an
untrusted hint to assist enforcement.

Quantitative measurements based on information theory have
often been used in theoretical definitions of information-flow se-
curity [23, 16, 28]. Clark et al.’s system for a simple while lan-
guage [9] is the most complete static quantitative information flow
analysis for a conventional programming language. Any purely
static analysis is imprecise for programs that leak different amounts
of information when given different inputs. For instance, given an
example program with a loop that leaks one bit per iteration, but
without knowing how many iterations of the loop will execute,
the analysis must assume that all the available information will be
leaked. A formula giving precise per-iteration leakage bounds for
loops [29] may be difficult to automate. Our technique’s results re-
flect the number of iterations that occur on a particular execution.

9.2 Dynamic tainting

Many of the vulnerabilities that allow programs to inadvertently re-
veal information involve a sequence of calculations that transform
secret input into a different-looking output that contains some of
the same information. To catch violations of confidentiality poli-
cies, it is important to examine the flow of information through
calculations, including comparisons and branches that cause im-
plicit flows. Several recent projects dynamically track data flow for
data confidentiality and integrity, but without a precise and sound
treatment of implicit flows.

Some of the earliest proposed systems for enforcing confiden-
tiality policies on programs were based on run-time checking: Fen-
ton discovered the difficulties of implicit flows in a tainting-based
technique [19], and Gat and Saal propose reverting writes made by
secret-using code [21] to prevent flows. The general approach clos-
est to ours, in which run-time checking is supplemented with static
annotations to account for implicit flows, was first suggested by
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Denning [14]. However, these techniques are described as architec-
tures for new systems, rather than for as tools evaluating existing
software, and they do not support permitting acceptable flows or
measuring information leakage.

Many recent dynamic tools to enforce confidentiality policies
do not account for all implicit flows. Chow et al.’s whole-system
simulator TaintBochs [8] traces data flow at the instruction level
to detect copies of sensitive data such as passwords. Because it
is concerned only with accidental copies or failures to erase data,
TaintBochs does not track all implicit flows. Masri et al. [30] de-
scribe a dynamic information-flow analysis similar to dynamic slic-
ing, which recognizes some implicit flows via code transformations
similar in effect to our simple enclosure region inference. However,
it appears that other implicit flows are simply ignored, and their
case studies do not involve implicit flows. DYTAN [10], a generic
framework for tainting tools, applies a similar technique at the bi-
nary level, where the difficulties of static analysis are even more
acute. In case studies on Firefox and gzip, they found that their
partial support for implicit flows increased the number of bytes that
were tainted in a memory snapshot, but they did not evaluate how
close their tool came to a sound tainting. For instance, they mark
the input to gzip as tainted, much as we do with bzip2, but do not
measure whether the output was tainted.

Accounting for all implicit flows requires static information,
as provided by enclosure regions in our system. Several projects
have combined completely automatic static analyses with dynamic
checking: the key challenge is making such analysis scalable and
sufficiently precise. The RIFLE project [52] is an architectural ex-
tension that tracks direct and indirect information flow with com-
piler support. The authors demonstrate promising results on some
realistic small programs, but their technique’s dependence on alias
analysis leaves questions as to how it can scale to programs that
store secrets in dynamically allocated memory. Our approach also
uses a mix of static analysis and dynamic enforcement, but our
static analysis only needs to determine which locations might be
written, while RIFLE attempts to match each load with all possible
stores to the same location, which is more difficult to do precisely in
the presence of aliasing. Two recent tools [37, 6] apply to Java pro-
grams, making static analysis somewhat easier: their experimental
results show low performance overheads, but do not measure pre-
cision. None of these tools enforce a quantitative security policy.

In an earlier technical report [32], we presented a tainting-based
quantitative information-flow analysis that was the predecessor to
the implementation described here. That system had no maximum
flow or minimum cut analysis; instead it used manual annotations,
called “preemptive leakage” annotations, that played the role of
a (not necessarily minimal) cut. Enclosure regions in that system
were also manually supplied, and were unsound because they prop-
agated tainting only to locations that were dynamically accessed.
More recently, we gave a soundness proof [34] for a simple for-
malized system that can be seen as modelling our tainting based
implementation, with enclosure regions modified to be sound by
specifying outputs in the same way those in the present paper do.
The simulation proof technique used there could be extended to
the present system by treating the minimum cut corresponding to a
maximum flow as a preemptive leakage annotation. As long as all
possible information flows are captured as edges in the graph, any
cut in that graph represents a sound flow bound. (The leakage an-
notations in [34] are static; we plan to extend that result to a cut that
is dependent on the program input by formalizing of the soundness
definition of Section 3.)

Restrictions on information flow can also be enforced by an op-
erating system. Traditional mandatory access control (MAC) tech-
niques [15] at the granularity of processes and files are too coarse
for the examples we consider. A new operating system architecture
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with lightweight memory-isolated processes, such as the “event
processes” of the Asbestos system [18] or similar mechanisms in
HiStar [58], is more suitable for controlling fine-grained informa-
tion flow, but is not compatible with existing applications. Like our
technique’s enclosure regions, Asbestos event processes provide
isolation of side effects, but they are implemented using hardware
memory protection.

In attacks against program integrity, the data bytes provided by
an attacker are often used unchanged by the unsuspecting program.
Thus, many such attacks can be prevented by an analysis that sim-
ply examines how data is copied. Quantitative policies are rarely
used for integrity; one exception is recent work by Newsome and
Song [42], which measures the channel capacity between an input
and a control-flow decision to distinguish between legitimate in-
fluence and malicious subversion. Their measurement technique,
based on querying the space of possible outputs with a decision
procedure, is very different from ours.

The most active area of research is on tools that prevent
integrity-compromising attacks on network services, such as SQL
injection and cross-site scripting attacks against web applications
and code injection into programs susceptible to buffer overruns.
These tools generally ignore implicit flows or treat them incom-
pletely. Newsome and Song’s TaintCheck [41] is based on the same
Valgrind framework as our tool, while other researchers have sug-
gested using more optimized dynamic translation [26, 45], source-
level translation [56], or novel hardware support [50] to perform
such checking more quickly. The same sort of technique can also
be used in the implementation of a scripting language to detect
attacks such as the injection of malicious shell commands (as in
Perl’s “taint mode” [54]) or SQL statements [43].

10. Future directions

Directions for possible further application of these ideas include in-
teractions between different kinds of secret, replacing the dynamic
parts of the current technique to produce a completely static analy-
sis, and supporting interpreted languages without trusting the inter-
preter.

10.1 Different Kkinds of secret

If a program operates on different classes of secret information,
such as Alice’s secrets and Bob’s secrets, or “classified” secrets
and “top secret” secrets, our analysis can be used independently
for each kind of secret. This is conceptually straightforward, and
possible with our current tool just by running a program repeatedly,
but for efficiency and ease of use, it would be better for to run
the analyses together. A question is how much of the analysis can
be shared between kinds of secret without hurting precision. For
instance, would it be enough to have one set of graph capacities for
any kind of secret, or should the bit-width analysis be repeated?

There may also be a possibility of increasing precision by an-
alyzing the interactions between different types of secret, because
of crowding-out effects: for instance, a certain byte might be able
to store 8 bits of Alice’s data, or 8 bits of Bob’s data, but not both
at once. However, the obvious approach of analyzing the flows of
multiple kinds of information as multi-commodity flow would not
be sound in general, because multiple information flows can share
capacity via coding [1].

10.2 An all-static maximum-flow analysis

Since the dynamic analysis considered in the body of this paper al-
ready takes advantage of static inference, and we found that a flow
graph labelled with static identifiers was fairly precise, it is instruc-
tive to consider how the same basic idea of network maximum flow
could be applied to an entirely static version of the information-
flow task. The flow graphs we consider are similar to the program
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dependence graphs used in slicing, and the dynamic bit-width anal-
ysis of Section 2.3 has a close static analogue [5]. The key diffi-
culty is likely how to bound the number of times a static flow edge
will execute, in terms of a developer-understandable parameter of
the program input. The result of a static information flow analysis
would need to be a formula in terms of such parameters, rather than
a single number.

10.3 Supporting interpreters

In the past, information flow tracking for languages such as Perl
and PHP has been implemented by adding explicit tracking to op-
erations in an interpreter [54, 43]. However, since such interpreters
are themselves written in languages such as C, an alternative tech-
nique would be to add a small amount of additional information
about the interpreter to make its control-flow state accessible to our
tool in the same way a compiled program’s is, and then use the
rest of the tracking mechanism (for data) unchanged. This tech-
nique is analogous to Sullivan et al.’s use of an extended program
counter combining the real program counter with a representation
of the current interpreter location to automatically optimize an in-
terpreter via instruction trace caching [51]. Compared to a hand-
instrumented interpreter, this technique would exclude most of the
scripting language’s implementation from the trusted computing
base, and could also save development time.

11. Conclusion

We have presented a new approach for determining how much in-
formation a program reveals, based on the insight that maximum
flow is a more precise graph model of information propagation
than reachability (as implemented by tainting) is. Using a practi-
cal quantitative definition of leakage, the technique can measure
the information revealed by complex calculations involving im-
plicit flows. By applying that definition with an instruction-level
bit tracking analysis and optimized graph operations, it is applica-
ble to real programs written in languages such as C and C++. In a
series of case studies, our implementation checked a wide variety
of confidentiality properties in real programs, including one that
was violated by a previously unknown bug. We believe this tech-
nique points out a promising new direction for bringing the power
of language-based information-flow security to bear on the prob-
lems faced by existing applications.
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