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Abstract
This paper uses Shannon’s information theory to give a quantitative definition of information flow in systems that transform
inputs to outputs. For deterministic systems, the definition is shown to specialize to a simpler form when the information
source and the known inputs jointly determine all inputs uniquely. For this special case, the definition is related to the
classical security condition of non-interference and an equivalence is established between non-interference and independence
of random variables. Quantitative information flow for deterministic systems is then presented in relational form. With this
presentation, it is shown how relational parametricity can be used to derive upper and lower bounds on information flows
through families of functions defined in the second-order lambda calculus.
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1 Introduction

The general aim of our research is to provide a quantitative analysis of the information flows within
computational systems. The original motivation for this work lies in a security setting (specifically
issues relating to confidentiality). Much research in this area in recent years has focused onnon-
interference properties [16, 23, 17] (see [30] for a wide-ranging survey of literature in this and
related areas). Roughly speaking, non-interference is said to hold when the behaviour of a system
as observed by unauthorized users is invariant with respect to variation of the confidential inputs
and data maintained by the system. More general work uses relations (in particular, equivalence
relations) to capture different classes of observation and categories of input (see [19, 31]; see also
Section 5 below).

The need for a quantitative approach arises naturally when we consider situations in which non-
interference fails to hold between parts of a system, and we askhow much information flows between
them. This applies, for example, in the construction of programs designed to maintain access con-
trol policies. It is well known, by bankers and systems administrators among others, that acceptable
access control can be achieved in spite of allowing opportunities to guess PINs and passwords. How-
ever, such systems violate non-interference, because observation of the success or failure of a login
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attempt is clearly not invariant with respect to variations in the password database. Furthermore,
the non-interference security community is aware of limitations of non-interference [29]. Since real
programs often do leak confidential information [44] it seems sensible to try to measure that leak-
age as best we can. To date, we have shown that the idea is feasible [5], and have described an
implementable analysis for a While language which handles loops, branching, equality tests and
arithmetic expressions [6, 7].

We note two related limitations of the work presented in this paper. Relaxing these limitations is
the subject of ongoing work.

First, we ignore any intermediate states in programs and consider systems which simply transform
inputs into outputs. The definitions in Section 3 apply to any system treated in this way, irrespective
of the language in which it is written. Examples may be written in a While language, or some
functional language such as PCF or Haskell. The key thing is that the semantics of the system
considered is a transformation of inputs to outputs. We refer to such systems as transformational
systems (see Section 3.1 for the formal definition). At this level of abstraction it is clearly not
possible to talk about timing issues or to deal adequately with reactive systems.

Second, we assume that our transformational systems define total mappings on finite spaces. We
do not regard the restriction to finite primitive datatypes, such as�-bit twos-complement integers, to
be a major handicap, since these are precisely the datatypes used in many programming languages.
But the inability to deal directly with non-termination and unbounded structured types, such as lists
and trees, is obviously unsatisfactory.

1.1 Overview

Section 2 summarizes the basic definitions and notation we require from Shannon’s information
theory. In Section 3 information theory is used to give a quantitative definition of information
flow in transformational systems. The definition is shown to specialize to a simpler form for de-
terministic systems when the information source and the known inputs jointly determine all inputs
uniquely. In Section 4, quantitative information flow is related to the classical security condition of
non-interference and an equivalence is established between non-interference and independence of
random variables. In Section 5, the quantitative definition of information flow is presented in rela-
tional form for deterministic systems. With this presentation, it is shown in Section 6 how relational
parametricity can be used to derive upper and lower bounds on information flows through families
of functions defined in the second-order lambda calculus.

The remainder of the current section discusses related work.

1.2 Related work

Non-interference is a property guaranteeing the absence of unwanted information flows in a software
system. This idea was given a formal definition by Goguen and Messeguer in 1982 [16] within the
context of a discussion of security policies. Since that time the study of non-interference has been
of ongoing interest to the security and programming language design and analysis communities.

In the last decade or so there has been significant activity around the question of how to construct
programs that demonstrably have the non-interference property. Two approaches have been ana
priori one via type systems and ana posteriori one via program analysis. Volpano and Smith have
successfully applied a types based approach to a variety of systems [42, 39, 40, 34]. Examples of
work that use the program analysis approach include Bodei’s work with the Nielsens [2], Malacaria
and Hankin’s work using control flow analysis via games [21], Clark, Hankin and Hunt’s application
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of flow logic to idealized Algol [4].
Our work, in contrast, is concerned with using information theoretic quantities to measurethe

amount of the flow of information caused by interference between inputs and outputs.
What little there is of the early work in this area refers to state-based systems. One precursor is

that of Denning in the early 1980s. [11] gives examples that contain a few basic intuitions about
information theoretic measures of information flow through imperative program constructs and also
proposes an information theoretic definition for measuring interference between program variables
evaluated at two different program points� and� �:

�������������������

This formula is intended to measure the flow of information from� into � as the result of any
changes to� along the program execution from� to � �. The meaning of the formula is as follows (see
Section 2 for the formal definitions): it measures the difference between an observer’s uncertainty
about the value of� at �, given knowledge of the value of� at �, and the observer’s uncertainty
about the value which� had at�, after observing the value of� on reaching� �. As discussed in [8],
this definition is quite closely related to our definition of information flow (see Section 3.2) but is
actually incorrect.

Other, closely related work, earlier than ours, is that of McLean and Gray. McLean presented a
very general flow model in [23], related to Sutcliffe’s approach to information flow in [36]. On the
basis of this flow model, McLean gave a probabilistic definition of security (with respect to flows)
of a system. Gray presented a less general and more detailed elaboration of McLean’s flow model
in [17], making an explicit connection with information theory through his definition of the channel
capacity of flows between confidential and non-confidential variables.

Although our work is the only such that measures the amount of information (in an informa-
tion theoretic sense) that flows along channels of interference in a program, other researchers have
recently taken quantitative approaches to information flow.

In [26] Di Pierro, Hankin and Wiklicky define probabilistic measures on flows in a probabilistic
concurrent constraint setting where the interference comes via probabilistic operators. They use
this to derive a quantitative measure of the similarity between agents written in this probabilistic
concurrent constraint language, however in contrast to our work they do not measure quantities of
information. Gavin Lowe has measured information flow in CSP by counting refusals [20] and
Volpano and Smith have relaxed strict non-interference and developed type systems in which a well
typed program will not leak its secret in polynomial time [41].

2 Information and conditional information

In this section we introduce the quantity we intend to measure: the amount of information that
flows from (part of) the input to (part of) the output and we show how this flow is dependent on the
likelihood of a particular input occurring, i.e. on the probability distribution on the inputs. To do this
we use Shannon’s information theory [33]. Shannon’s measures are based on a logarithmic measure
of the unexpectedness, or surprise, inherent in a probabilistic event. An event which occurs with
some non-zero probability� is regarded as having a ‘surprisal value’ of��� �

�
. Intuitively, surprise

is inversely proportional to likelihood. The base for��� may be chosen freely but it is conventional
to use base 2 (the rationale for using a logarithmic measure is given in [33]). The total information
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carried by a set of� events is then taken as the weighted sum of their surprisal values:

� �

��

���

�� ���
�

��
(2.1)

(if �� � � then�� ��� �
��

is defined to be 0). This quantity is variously known as theself-information
or entropy of the set of events.

It is not easy to give reliable intuitions about the meaning of this definition. Ultimately, this formal
notion of information is properly understood through Shannon’s coding theorems. The basic idea
of coding is a follows. Suppose we wish to record or transmit a message specifying which of the
� events has occurred. By clever choice of representation we wish to minimize the average space
consumed by the message: this minimum is�. In the simplest case, if we have�� events, each
equally likely, it is clear that we will require� bits, and it is easily verified that indeed� � � in this
case. This case actually turns out to be the worst case: for any other distribution,� � �. The reason
is that we can optimize our representation so that it generates longer messages for less likely events
and shorter ones for more likely events. When this idea is properly formalized it turns out that� is,
in fact, the expected length in bits for any optimal encoding. A very clear account of these ideas is
given in [37].

In what follows we generally use the language of random variables rather than talk directly about
distributions. For our purposes, a random variable is a surjective map� 	 	 � ����, where	
is a finite set with a specified probability distribution and���� is the (necessarily finite) range of
� . (We note that the termrandom variable is more conventionally reserved for maps into the reals,
with maps of our form being known asdiscrete random elements.) For the remainder of this section,
let 	 and its probability distribution be fixed, identically for all random variables under discussion.
For each
 � 	, we write��
� for its probability. We adopt the following conventions for random
variables:

1. If � is a random variable we let� range over���� and we write���� to mean the probability
that� yields the value�, that is����

���

�
�

�������� ��
�; where any confusion might otherwise
arise, we write this more verbosely as� �� � ��.

2. For a vector of (possibly dependent) random variables�� �� � � � � ���, we write����� � � � � ��� for
the probability that the joint random variable���� � � � � ��� 	 
 �� ����
�� � � � � ���
�� takes
the value���� � � � � ���.

3. When summing over the range of a random variable, we write
�

� 
��� to mean
�

������ 
���;
again, we use the more verbose form where necessary to avoid confusion.

The entropy of a random variable� is denoted���� and is defined, in accordance with (2.1),
as:

���� �
�

�

���� ���
�

����
� (2.2)

Note that, for the purposes of calculating entropy, the only relevant characteristic of� is its set of
inverse images, since���� is just the sum in	 of the probabilities of the elements of� �����. If
two maps� and� are similar in this respect, we write� 	 � ; formally:

� 	 � iff 
������ 	 � � ����� � 
� ����� 	 � � ��� ���

It is easily verified that if� 	 � then���� � ��� �.
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Another basic definition which will be used is that ofconditional entropy��� �� � measuring the
uncertainty in� given knowledge of� . It is defined as

��� �� � � ����� ����� �� (2.3)

(We follow standard practice in suppressing the pairing brackets within information measures; thus
����� � is shorthand for������ ��, etc.)

Information theory provides a more general way of measuring the extent to which information
may be shared between two sets of observations. Given two random variables� and� , the mutual
information between� and� , written��� 
� � is defined as follows:

��� 
� � � ���� ���� ������� �� (2.4)

This quantity is a direct measure of the amount of information carried by� which can be learned by
observing� (or vice versa). As with entropy, there are conditional versions of mutual information.
The mutual information between� and� given knowledge of�, written ��� 
� ���, may be
defined as

��� 
� ��� � ��� ��� ���� ��������� ���� (2.5)

For more detail on the above fundamental definitions of information theory, see [33, 9].

3 Quantifying information flow

In this section we start by defining a measure of information flow appropriate in a quite general
computational setting. We go on to consider the special case of flows in deterministic systems (al-
lowing a purely functional semantics) where all inputs are accounted for, and show how the general
definition simplifies in this case.

3.1 Transformational systems

A transformational system 
 is specified by the following:

1. 	� - a finite set;

2. a probability distribution on	� ;

3. a random variable�� 	 	� � ����� which defines the inputs of the system;

4. a random variable�� 	 	� � ����� which defines the outputs of the system.

Note that, in any real system of interest, we would expect the outputs of the system to be determined,
to some extent, by the inputs, and so�� and�� will not normally be independent. Note also that
we could, without loss of generality, fix	� as���� � � �����, taking�� and�� to be the first
and second projections, respectively. However, it is technically convenient not to do this, especially
in the case of purely deterministic systems.

Given a transformational system
, we are concerned with two classes of observation:

� An input observation is a surjective map� 	 ������ ����.

� An output observation is a surjective map� 	 ������ ��� �.

Observations induce random variables� �� 	 	� � ���� and� ��� 	 	� � ��� � by composition
with the relevant component of
:

� � �� ���

� � Æ �� .

� � ��� ���

� � Æ�� .
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3.1.1 Examples
In the following, let� be some finite subset of the integers, such as those representable in a�-bit
twos-complement representation.

1. Consider the system defined by the swap function���� ������ �� restricted to��� . In this case
it is natural to take	� to be� �� and�� to be the identity. Given a probability distribution
on� �� , we then have a transformational system where�� is the identity and�� is just swap.
In this case we also have����� � � �� � �����. Possible input and output observations
include the projections��� �	.

2. Consider terminating programs written in a simple imperative language defined over a finite set
of variables Var and containing a���� operator, which evaluates randomly to 0 or 1 with equal
probability. Let�

���

� Var� � . Assume given a probability distribution on input states� � �,
writing ���� for the probability that the input state is�.

Any such program� can be viewed as a transformational system taking	�
���

� ��� to be the
space of input/output pairs,����� ��� � � and����� �

�� � ��. The probability distribution on
	� is induced by the standard semantics of� . For example, if� is the program� �� ����

then we have:

���� ��� � ������ if �� � �
� �� �� or �� � �
� �� ��
���� ��� � � otherwise�

The obvious input and output observations to consider in this setting are projections on the state,
that is, observations of the values of one or more program variables. For any program variable
�, the corresponding observation is given by� 	 � �� ����.

3.2 Information flow

We are interested in flows of information from system inputs to system outputs. We use some input
observation� 	 ����� � ���� and output observation� 	 ����� � ��� �, as defined in
Section 3.1, to pick out the parts of the input and output we wish to focus on. In this context, we
refer to� as theinformation source. In the rest of this section, assume given some transformational
system
.

A natural information-theoretic quantity to view as the flow from� to� is the mutual information
between the two corresponding random variables:��� ��
� ����. We say this seems natural because
it is a direct formalization of the idea that the quantity of information flowing from� to � is the
amount of information given by input observation� which is shared with output observation� .

However, despite its intuitive appeal, this formalisation is flawed as it stands. To see why, consider
the following case:� � � ��� � (true when exactly one of the arguments is true) with� and
� independent random variables uniformly distributed over the Booleans. Since� is the value of
a function with argument� , and since variation in� clearly can cause variation in� , we might
expect the presence of an information flow from� to � , But this is not shown in��� 
� �; indeed
we have

��� 
� � � ���� ���� ������� � � � � �� � � ��

At first sight this is surprising but the explanation is straightforward:��� is here providing perfect
encryption of� , with � as the key. An observer can learn nothing about� from � provided the
observer does not know �. This shows very clearly that a satisfactory definition of flow must take
account of the observer’s prior knowledge of the context. The right way to do this is viaconditional
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mutual information. In the��� example, if we assume knowledge of� and account for this by
conditioning on�, we find

��� 
� ��� � ��� ��� ���� ��������� ����

By applying standard information theory equalities, we find that the rhs is���� ���� ��� � � �
�� � � �.

Prior knowledge may alsodecrease the flow of information as measured by an observer. For
example, an observer of the swap system who already knows� learns nothing new about����� by
observing���swap������, whereas an observer who knew nothing to start with would measure a
flow of���� bits.

We therefore modify our definition of information flow thus. Let� and� be input observations,
let � be an output observation. Then we define the information flow from� to � given knowledge
of � as

���� � � �
���

� ��� ��
� ����� ���� (3.1)

There are two natural questions arising from this basic definition:

� What is the meaning of���� � � � � �? This captures the special case whenno information
flows from� to � . In Corollary 1 we show that, in the deterministic case, this is equivalent to
the standard notion of non-interference between� and� (provided� ,� constitute the whole
input).

� What is the meaning of���� � � � � � for � � �? First, what is the maximum value�
can take, i.e. how much information is initially ‘undiscovered’? One of the basic information
theoretic inequalities is��� 
� �� � � ������� �� ����� �� ��. So we know that, whatever
the details of how the system transforms inputs to outputs, and whatever the choice of output
observation,� � ��� ���� ���. When� achieves this maximum, the observation is revealing
everything:all the undiscovered information in� is flowing to� . When� falls short of the
maximum, the observation is incomplete, leaving���� ���� ��� � �� bits of information still
unknown. One possible operational interpretation of this ‘gap’ is that it provides a measure of
how hard it remains to guess the actual value of� once� is known. This is formalized in
[22] (note, however, that this ‘guessing game’ is an idealized one in which it is assumed that the
encoding of information about� in � is invertible in constant time; it has nothing to say about
the computational difficulty of recovering knowledge of� from � when this does not hold).

3.3 Deterministic information flow

We now restrict attention to the case ofdeterministic systems, by which we mean systems for which
there exists a function
 such that�� � 
 Æ �� . This will be the case, for example, in systems
defined by programs written in a simple imperative language (without non-deterministic constructs)
or in a functional language (see Section 6). Now consider flows of the form� ��� � � � in the
special case that observations� and� jointly determine the inputs, i.e.����� is injective on
inputs, or, equivalently,�����

��
	 �� . For example, in a security setting we may be interested in

flows of the form�	�� � �� where program variables are partitioned into the high-security set
(input observation�) and the low-security set (input observation�). Such a flow measures what a
low-security observer (who can only observe low-security variables) can learn about high-security
inputs as a result of information flow into the low-security outputs. Since��� partition the set of
all program variables they jointly provide a complete observation of the input.

As shown by the following proposition, this special case allows a simplified definition of flow:
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PROPOSITION3.1
Assume a deterministic system
. Let � and� be input observations and let� be an output
observation. If����� is injective on����� then:

���� � � � � ��� ����� ���� (3.2)

PROOF. By determinism and injectivity of�����, we have� ��� � 
 Æ �� ��� � ���, for some
 . In
what follows, let� � � ��� � � � ���� � � � ��. By the definitions (see (3.1) and Section 2), we
must show������ � ������ � �������� � ������, that is, we must show������ �
��������. Expanding both sides according to the definitions, we must show�������� �
���� � �����������. But� � 
 Æ ����� implies������� 	 �����, so we are done.

Given its relative simplicity, it may be tempting to consider (3.2) as an alternativegeneral def-
inition of flow. However, in general, it is not adequate. Consider again the example program
� �� ���� from Section 3.1.1. Consider some other program variable� (the choice is arbitrary)
and define� 	 � �� ���� and� 	 � �� ���� and let� be any input observation. Clearly, no
information flows from� to � , since the value assigned to� does not depend on any part of the
store. This is confirmed using (3.1), which gives a flow of��� ��
� ����� ��� � � (one of the basic
identities of information theory, since� �� and� ��� are independent). By contrast, applying (3.2)
would give a flow of��� ����� ��� � ��� ���� � �

	 ��� � �
�
	 ��� � � �.

Another striking difference between the specialized setting and the more general probabilistic
setting, is that in the specialized case an upper bound on the flow into a collection of outputs can be
determined by considering the outputs separately.

PROPOSITION3.2
Let 
 be a deterministic system. Let� and� be input observations. Let�� and�	 be output
observations and let� � ���� �	� (thus� is also an output observation). If����� is injective on
inputs then���� � � � � ���� � ��� ����� � �	�.

PROOF. By Proposition 3.1, it suffices to establish the general inequality

�������� � ������ �������� (3.3)

It is easy to show (for example, by Venn diagram, see [45]) that�������� � ��������������
���
����. Since all of the Shannon measures are non-negative, the inequality follows.

But the conclusion of this proposition doesnot hold in general when the injectiveness condition is
dropped. The reason is essentially the one used to motivate the use of conditional mutual information
in the definition of flow in Section 3.2: knowledge of one input canincrease the apparent flow from
another. Consider the program����  ���� ���  �  � defining a deterministic system with����� �
����� � bool� bool. Let � and� be the input observations�� and�	, respectively. Similarly,
let ��� �	 be the output observations��� �	. Now suppose the distribution for
 is such that� ��

and� �� are independent and uniform. We are concerned with flows having� as the information
source. Instead of taking� as the observer’s prior knowledge (which would satisfy the injectiveness
condition of the proposition) take someconstant function� (representing ignorance), in which
case, injectiveness clearly fails. Conditioning on a constant has no effect, thus��� ��
� ���

� �� ��� �
��� ��
� ���

� �, hence�
 �� � ��� � ���
��
� ���

� �. Simple calculations then give the following:

� �
 �� � ��� � �

� �
 �� � �	� � �
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� �
 �� � ���� �	�� � �.

So in this case it isnot sufficient to calculate the flows to the outputs separately. The reason is clear:
the two outputs are, respectively, a perfect encryption of� and its key. Observing either one by
itself reveals nothing about� but observing both reveals everything.

4 Non-interference

In this section we consider only deterministic systems
 and we assume that the inputs and outputs
are structured as vectors, whose elements we refer to as thecomponents (equivalently, we may take
inputs and outputs to be finite maps whose domains index the components, as in the case of the store
for a simple imperative language). Thus we are assuming the existence of a set of input observations

��� � � � � ��� such that�� � ���� � � � � ���

�� and a set of output observations
��� � � � � ��� such
that�� � ���� � � � � ���

���
� 
 Æ ���� � � � � ���

��, for some
 . Note: it is a simple consequence of
the definitions that���� � � � � ���

��
� �� ��

� � � � � � � ��
� �, and similarly for output observations.

In the setting of security, information flow is of particular relevance when considering confiden-
tiality properties. Leakage of confidential information is a particular case of information flow where
the source of information is a high-security part of the input and the target a low-security part of
the output. In general when there is information flow from inputs to outputs, the inputs are said
to interfere with the outputs, whereas the absence of any such flow is known asnon-interference.
One attraction of non-interference is its relative simplicity, since it is a binary property which can be
defined without any explicit recourse to information theory [16]. Roughly speaking, a deterministic
program is said to satisfy non-interference if its low-security outputs depend only on its low-security
inputs (hencenot on its high-security inputs).

More formally, in the deterministic case, a generalized definition of non-interference can be for-
malized by modelling different categories of observation (e.g. high-security, low-security) by equiv-
alence relations. Given relations! and", a function
 is said tomap ! into ", written
 	 !� ",
iff ��� ������ ��� � ! � �
���� 
����� � ". In what follows,! and" will always be equivalence
relations, though the general construction (known as logical relations [35, 27]) does not require this.
Given a set of components� , let�� be the equivalence relation which relates two inputs just when
they agree on all components in� . Suppose that the input (resp. output) components are parti-
tioned into the low security components� (resp. � �) and the high-security components� (resp.
� �). Then non-interference is defined as
 	 ��	� � ��	�� (‘low-equivalence’ is mapped into
‘low-equivalence’). More generally, a collection of input components� interferes with an output
component� iff 
 	 ���� �� ��
�, where� is thecomplement of �, i.e. all those input components
not in �. (So� � � and� interferes with� precisely when
 	 ��	� �� ��	��.)

In Section 5 we show how our quantitative approach to information flow can also be expressed
in this relational form. Here we go on to explore the relationship between non-interference and
information theory.

4.1 Non-interference and independence

First recall that two random variables� and� are independent iff for all�� �� � �� � �� � �
�� � � �� � ��� �� � ��. An immediate consequence of the definition is that for two independent
random variables� and� ,������ � ��� � �����, which provides a proof for the following:

PROPOSITION4.1
Random variables� and� are independent iff��� 
�� � �.
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As the��� example suggests, simple random variable independence is not enough to capture the
absence of information flows. The correct probabilistic characterization of non-interference is via
conditional independence.

PROPOSITION4.2
Let � be an output component, hence (given the assumptions of this section)� ��� � 
 Æ ���� � � � �

���
�� for some
 . Assume a probability distribution such that1, for all ���� � � � � ���, � �� ��

� �
��� � � � � �

��
� � ��� �� �. Let # � �. Then��� � � � � �� are non-interfering with� iff

��� ���
� ��
� � � � � � � ��

� ��
��
�
�� � � � � �

��
� � � ��

PROOF. Note: this proof uses notation and results from Section 5.
In the following we use� for 
��� � � � � ��� and� for 
��
�� � � � � ���. Note that� � �. From

Proposition 3.1 we know that��� ���
����� ��� � ��� ����� ��� so all we have to prove is that�
does not interfere with� iff ��� ����� ��� � �

��� 	 Assume� does not interfere with� , i.e. 
 	 ����� ��� �. Thus, by Lemma 5.3,
���� � ����� ���� and so, by Lemma 5.2,�����������

��� � ��� ����� ���. But ������� 	 � ��,
hence�����������

��� � ��� ���� ��� � �, hence��� ����� ��� � �.
��� 	 Assume� interferes with� , i.e. there exist�� ���  such that
���  � �� 
����  �. Then

given only the� components we will not know the value� ��� will yield, i.e. we will have uncer-
tainty in� ��� given� ��, i.e.��� ����� ��� � �.

COROLLARY 4.3

1.����� � � � � iff � does not interfere with� .

2. When� � � we have non-interference iff��� ��
� ���� � �, that is, iff � �� and� ��� are
independent random variables.

5 Relational information flow

In this section we begin by observing the (standard) correspondence between equivalence relations
and surjective maps. We go on to explore how this correspondence can be used to derive a relational
presentation of information for deterministic transformational systems.

5.1 Equivalence relations and surjective maps

As observed in Section 2, random variables with identical sets of inverse images necessarily have
the same entropy. Intuitively, the reason� 	 � implies���� � ��� � is that, in this case,�
and� capture exactly the sameobservation, modulo some possible encoding differences: when we
observe� � �, what we ‘really’ discover is just that the input (in	) belongs to� �����. Thus�
effectively partitions the underlying space	 into sets whose elements are indistinguishable by an
observer who only sees the value of� . We can state this relationally. Given� 	 	 � ����, the
kernel of � is defined to be the equivalence relation������ on	, defined thus:


 ������ 
� iff ��
� � ��
��

The inverse images of� are the equivalence classes of������, hence:

1This constraint is to avoid� being a ‘constant in disguise’ i.e.� could assume theoretically more than one value but in
practice only one value is possible as the inputs for the other values have probability 0.
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LEMMA 5.1
� 	 � iff ������ � ����� �.

Conversely, any equivalence relation! on a set	 induces an obvious surjective map from	 onto its
quotient by!. We write	�! for the set of equivalence classes of	 wrt ! and we write

�� for the
!-equivalence class

� � 	��
� 
�� � !�. We write the quotient map for! as
 �� 	 	 � 	�!.
Clearly,����
 ��� � !.

We note that the above correspondences form the basis of the work presented in [19], which
explicitly identifies the informal notion of information with the formal one of equivalence relations.
However, that work is not quantitative and makes no use of information theory.

5.2 Equivalence relations and information flow

For the rest of this section assume given a deterministic transformational system
 in which�� �

 Æ �� . Let	 � �����, thus
 	 	 � ��
�, with 	 finite. Now, given an equivalence relation!
on	, we may define a corresponding random variable:

������!�
���

� 
 �
��
� �

Similarly, given" on��
�, we define:

�������"�
���

� 
 �
���
� �

Where the domain of a relation! (either	 or ��
�) is clear from the context, we will drop the
superscript and write just����!�.

Since equivalence relations are naturally combined by intersection and compared by inclusion, we
may ask what this means for the corresponding random variables.

LEMMA 5.2
Let !�� !	 be equivalence relations, either both on	 or both on��
�. Let ��� be random
variables (on	�). Then:

1. ����!� � !	� 	 �����!��� ����!	��.

2. !� � !	 � ������!��� � ������!	��.

3. !� � !	 � ������!���� � � ������!	��� �.

4. !� � !	 � ������!��
� �� � � ������!	�
� �� �.

PROOF. Part 1 is more or less immediate from the definitions. Since!� � !	 implies!��!	 � !�,
we have (by Part 1)��!�� � ������!��� ����!	�� and Part 2 follows from the standard inequality
����� � � ��� �. Parts 1 and 2 entail������!�� � ������!��� ����!��� from which Part 3
follows, using��� �� � � ����� ����� �.

Return now to the relational definition of non-interference in Section 4. Given any equivalence
relation" on��
�, it is easily seen that there is acoarsest possible equivalence relation on	 with
respect to which
 satisfies non-interference. We denote this relation
 ���"�, defined thus:


 
���"� 
� iff 
�
� " 
�
���

The following lemma confirms that this is indeed the coarsest equivalence relation with the property
we seek:



192 Quantitative Information Flow, Relations and Polymorphic Types

{(x,y) | y = 2} {n | n is even}
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(123,1)

{(x,y) | y = 1}

FIGURE 1. Equivalence relation and its inverse image

LEMMA 5.3
Let 
 	 	 � ��
� with ! and" equivalence relations on� and�, respectively. Then
 	 ! �
" iff ! � 
���"�.

Figure 1 illustrates the idea. Here	 is a small set of pairs of integers in which the second component
is always either 1 or 2. The function
 is ���� ���� � � � � and" (illustrated on the right) relates
integers with equal parity. The inverse image of" (illustrated on the left) relates pairs whose second
components are equal and it is easily seen that this is the coarsest! such that
 	 !� ".

It is a straightforward consequence of the above correspondences and definitions that random
variable�������"� captures exactly the same information as������
���"��:

LEMMA 5.4
������
���"�� 	 �������"��

We can now present quantitative flow in relational form for deterministic systems. The following
theorem tells us that, to calculate an upper bound on the information flow through a function
 , it
suffices to approximate an output observation with kernel" by aninput observation with kernel!
provided we can establish
 	 ! � ". In the next section we see how this can be applied in a
concrete example in the second-order lambda calculus.

THEOREM 5.5
Let !, " be equivalence relations such that
 	 ! � ". Let ��� be random variables (on	�).
Then

��� 
 ������!��� � � ��� 
 �������"��� ��

PROOF. By Lemmas 5.2, 5.3 and 5.4.

COROLLARY 5.6
Let ��� be input observations and let� be an output observation. If
 	 ! � ����� � then
���� � � � � ��� ��
 ������!��� ���.

6 Information flow and polymorphic types

In this section we illustrate how, combining Theorem 5.5 with the principle of parametricity, poly-
morphic types can be used to derive bounds on information flow which are valid for all lambda terms
sharing the type.

The second-order lambda calculus [14, 15, 28] (also known as System F) extends the type lan-
guage of the simply typed calculus with type variables and a universal quantifier and extends the
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term language with abstraction over type variables and application to types. The syntax is stan-
dard and we do not reproduce it here. For convenience, we use a syntax extended with useful base
types (such as the integers��� and Booleans	��
) and list types�$� for each type$ (no new
theory is required as all these types are definable in the calculus). In examples, we omit explicit
types from terms and elide the application of terms to types (in fact, our examples all stay within the
Hindley–Milner fragment [18, 24, 10], for which principal types may always be inferred). We refer
to functions definable in the second-order lambda calculus as�2 functions.

6.1 Parametricity

The key to the results of this section is Reynolds’ relational treatment of parametric polymorphism
[28], as applied to specific functions [43]. In Reynolds’ treatment, each term% is given an essentially
standard funtional semantics

%�� whereas each type$ is given arelational interpretation

$ ��.

Reynolds shows that, in such models (e.g. Frame models [3, 25]),% 	 $ implies�

%��� 

%��� � 

$ ��.
This is known asrelational parametricity. In the following we give a quick summary of Wadler’s
presentation [43].

The relational interpretation of basic types is the identity relation on the semantics of those types;
	��
 is for example interpreted by����� � 

	��
��� 

	��
��.

The relational interpretation of� is that functions are related if they map related arguments to
related values. Thus�
� &� � �! � "� iff ���� ��� � !� �
 �� & ��� � ". (Note that
 	 ! � "
(Section 4) iff�
� 
� � ! � ".) The (derived) relational interpretation of list types is that�'� ' �� �
�!� iff there exists� such that' � ���� � � � � ��� and'� � ����� � � � � �

�
�� and�#����� ���� � !

(viewing a list as a map from
�� � � � � �� to a set of values, the above definition�'� ' �� � �!� is
hence the same as�'� '�� � ��
��������� � !� ).

To give a relational interpretation of�we start by considering a function from relations to relations
(these are intended as relations over the universe of types in a frame model)��� �, i.e. for any
relation� � � � ��, ���� � ( ��� � ( ���� is a relation (( ��� � ( ���� is the support of
the relation image of� under�). Then�
� &� � �� ���� � iff for any relation� � � � � �,
�
�� &��� � ���� . You can see�
� &� as a map,�
� &���� � �
�� &��� � ����. The meaning of
the definition is that ‘type abstractions are related if they map related types into related results’.

Consider the�2 functiondouble 	 �)��) � )� � ) � ), defined as2 �
����
 �
 ��. Now
suppose
 	 $ � $ and! are such that
 	 ! � !. We have then�double
� 	 ! � !, since
��� ��� � ! implies�
 �� 
 ��� � ! implies�
 �
 ��� 
 �
 ���� � ! . However, parametricity allows
us to derive this property solely from the type, thus extending it toall �2 functionsÆ with type
�)��)� )�� )� ). The proof is straightforward. Substitute! for ), giving.

�Æ� Æ� � �!� !�� !� !� (6.1)

Assume
 	 ! � ! (that is,�
� 
� � ! � !). We need to show�Æ 
� Æ 
� � ! � !; this is
immediate from (6.1) and the definition of� on relations. By reiterating this style of argument it
is possible to show that all elements of type�)��) � )� � ) � ) are iterators, i.e. Church
numerals.

2In order to keep notation light here and elsewhere we will ignore type quantifiers and type applications, i.e.
������� �� �� stands really for��������� �� ��. Similarly �double �� stands for�double�� ���.
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6.2 Calculating bounds on flows

In the remainder of this section we present two examples showing how the relational interpretation
of types can be exploited to derive both upper and lower bounds on information flow through func-
tions with polymorphic types. In both examples, bounds are derived which hold forall functions
with the given polymorphic type. In the examples we implicitly treat each function
 of interest
as a deterministic transformational system. This involves restricting the functions (which, in full
generality, are defined over infinite domains) to some finite input set	 of interest and then spec-
ifying a distribution on that set in the form of a random variable� with range	. For simplicity,
we consider only observers with no prior knowledge of the inputs and we assume the input and
output observations to be the identity, i.e. the observer can see the whole output and we measure
the total flow of information from the whole input. Formally then, the flows we consider have the
form���id� id�, with � a constant function. Applying Proposition 3.1 shows that this reduces to
��
 Æ��. We slightly abuse the notation, writing this more suggestively as��� � 
����.

6.2.1 Example: themap family
Recall themap function with type

�)��*��)� *�� �)�� �*��

By the map family we mean the set of all�2 functions sharing this type. Themap function itself
maps a function
 over a list, thus:

map 
 �+�� � � � � +�� � �
 +�� � � � � 
 +���

Consider that we have a secret, of some primitive type and a program which attempts to guess
its value by evaluating- � , for some value-. Note that even the outcome��

� revealssome
information about the secret, since it narrows down the possibilities. However, if the possible values
of , form a large, uniformly distributed set, a single guess reveals only a small amount of information.
This is essentially the example of attempting to guess a PIN number: if there are sufficient digits and
PIN numbers are well distributed, a guess is highly unlikely to succeed and leaves the set of possible
values almost (but not quite) unchanged.

We can usemap in two ways to iterate the basic guessing program:

1. Given a list of secrets' as input, we can try a given guess- on all of them by mapping�� -� over
': �'�map �� -� '.

2. Given a secret, as input, we can test it against a fixed list of guesses by mapping�� ,� over the
list: �,�map �� ,� �-�� � � � � -��.

Here we consider just the first iteration (though the second gives essentially the same results, the
form of reasoning is closer to that used in thefold example - see below). In what follows we derive
results which allow us to place an upper bound on the amount of information revealed. Concretely,
for secrets drawn from a set of��	 possibilities, each with equal probability, and for lists of one
million elements, the information flowing through�'�map �� -� ' is less than���� bits. Moreover,
parametricity immediately generalizes this result toall similar programs�'�. �� -� ' using other
members. of themap family.

For the remainder of this section, let. be any member of themap family.
We assume all lists of secrets input to the program to have the same length,� and we assume

their elements to be chosen independently from a finite set. We may thus assume�� to have the
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form � � ���� � � � � ���. It is easily seen that, for all-, �� -� 	 !�� � Id, where!��
���

�

�-� -�� � 
�+� +���+ �� - �� +��. Thus, instantiating the type of. and noting that�Id� is just Id (on
lists), we have

. �� -� 	 �!���� Id�

Note that!�� has just two equivalence classes, which we will denote
-�
���

� 
-� and
-�
���

� 
+ �
$ �+ �� -�.

Theorem 5.5 then tells us that the total flow is bounded above by the entropy of the input distribu-
tion quotiented by�!���. Quotienting by�!��� gives�� �

�� � � � � �
�
�� where each� �

� is derived
from �� by quotienting its range by!��. Theorem 5.5, together with the fundamental inequality
���� �� � ��� � �����, then yields

��� � �. �� -������ �
�

�����

��� �
��� (6.2)

As shown in [5], we may calculate bounds on��� �
�� knowing only����� and the cardinality of$ .

Specifically:
����� � ��� �

�� � � �� �
� � 
-�� �����$ � � ��� (6.3)

(A derivation is given in [5] but, in fact, it turns out to be just a special case of Fano’s inequality [9].)
At first sight, this seems to promise a lower bound, rather than an upper bound, on��� �

��. However,
let /�

���

� � �� �
� � 
-�� and note that��� �

�� � ��/�� �� /��; thus (6.3) may be rewritten

����� � ��/��� (6.4)

where��/��
���

� ��/�� ��/������/�� �����$ ����. Now we obtain an upper bound by maximizing
��/�� �� /�� over all/� for which (6.4) holds.

For an example of how this works, see Figure 2. The figure plots��� �
�� and��/�� against/� for

the case�$ � � �
. As shown, if����� � ����, then/� � ����. Furthermore, for/� � ����,��� �
��

takes its maximum value (� ����) when/� � ����.
Return now to the concrete instance described at the start of this section. We suppose our inputs

to be lists of length��� with each element a secret chosen uniformly from a set of��	 possibilities.
Then�$ � � ��	 and����� � �� for each��. Some simple numerical approximations then derive
��� �

�� � ����� ����, hence, by (6.2),��� � �. �� -������ � ������.

6.2.2 Example: thefold family
In the previous example, note that we needed alower bound on��� �� to derive an upper bound on
��� �

��. Thus, when analysing quantitative flows, we may need to be able to derive lower bounds for
flows through sub-programs, even if we are interested overall only in upper bounds (as in the case
of security, for example).

In this example we show how parametricity can be used to establish that all members of thefold
family (see below) preserve a lower-bound information flow property of addition. Recall the function
foldr with type

�)�*��)� * � *�� �)�� * � *�

By the fold family we mean the set of all�2 functions sharing this type. Thefoldr function itself is
defined such that, for any�:

foldr ����+�� � � � � +��� � +� � �+	 � �� � � �+� � �� � � ����
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FIGURE 2. deriving an upper bound on��� �
��

We will use the specific properties offoldr to derive a property which holds forall members of the
fold family. In the remainder of this section let0 be any such function.

Consider an application such as0 ��� ', where' is a constant list of integers. What can we say
about the flow��� � 0 ��� ' � �? The Data Processing theorem [9] states that the information
obtainable from the outputs of a deterministic system cannot exceed that obtainable from its inputs.
Thus we know that

��� � 0 ��� ' � � � ��� �� (6.5)

where� is the random variable corresponding to the integer input. This leaves open the possibility
that entropy is lost; we will show that it is not.

As shown by Theorem 5.5, properties of the form
 	 ! � " allow us to derive upper bounds
on the amount of information which flows through
 . However, such properties donot allow us to
place lower bounds on the information flow. Lemma 5.3 shows that
 	 ! � " is equivalent to
! � 
���"�. To derive lower bounds on entropy we need properties of the dual form,!  
 ���"�.
This is the route we take to showing that (6.5) can be strengthened to an equality.

First we show thatfoldr in particular preserves ‘post fixpoint’ properties of the form!  
 ���!�.

LEMMA 6.1
Let�, ! be such that, for all+, !  �� +����!�. Then for all', !  �foldr ��� '����!�.

PROOF. By induction on the length of'. When' is empty we havefoldr ��� 
 � � id and clearly
!  id���!�. For the inductive step, observe thatfoldr ��� �� 	 '� � ���� Æ �foldr ��� '� and then
use the (easily verified) fact that!  
���!� and!  &���!� implies!  �
 Æ &����!�.

Now we use parametricity to lift this result to all members of thefold family.3

3In fact the result can be extended further, since it relies only on polymorphism in type� (see [13]).
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PROPOSITION6.2
Let�, ! be such that, for all+, !  �� +����!�. Then, for all', !  �0 ��� '����!�.

PROOF. As shown in [43] (Section 3.6), parametricity ensures the following equation, for arbitrary
�, ':

0 ��� ' � foldr ��� �0 �	� ' 
 ���

where�	� and 
 � are the list ‘cons’ operator and empty list, respectively. Since0 �	� ' 
 � is a list
uniquely determined by', the result follows immediately from the lemma.

From the proposition it follows easily that��� � 0 ��� ' � � � ��� �. The key observation is that
��� � 0 ��� ' � � � ��� � if �0 ��� '� is injective. But�� +� is injective, for all+, and, in general,

 is injective iff Id 
���Id�, so the proposition applies.

7 Conclusions

We have defined a quantitative measure of information flow,���� � � � as the information the-
oretic quantity��� ��
� ����� ���, sufficiently general to account for flows in finite-domain sys-
tems featuring probabilistic non-determinism. For deterministic systems we have proved that, in
the special case when��� completely determine the input, this quantity is the same as the simpler
��� ����� ��� and that in this context the flow into separate components of the output can safely be
calculated one component at a time.

We have shown how equivalence relations can be interpreted as random variables when calculating
Shannon’s information measures and that this simple insight reveals strong relationships between our
approach and non-interference. In particular, we have shown that, in the above-mentioned special
case, non-interference is equivalent to a form of conditional probabilistic independence.

Finally, we have shown how Reynolds’ notion of relational parametricity can be used to derive
upper and lower bounds on information flows for families of functions sharing the same polymorphic
type in the second order lambda calculus.

Future work along the lines of this paper will develop the relational approach in an effort to
quantify information flows for richer languages and more sophisticated models of observation (for
example, the threads-based language and the use of probabilistic bisimulation described in [32]). In
view of the use of parametricity in Section 6, recent work by Tse and Zdancewic [38] suggests that
there may be interesting connections with Abadiet al.’s dependency calculus [1].

Although security was the original motivation for this work, it may not be the only application of
interest for quantitative analysis of information flow. Other possibilities may appear, such as mea-
suring propagation of meaning in models of natural language, measuring the tightness of coupling
between parallel components of a system, or even as a guide to computing optimal fixed points in
security related program analyses [12].
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