
Information and Computation 209 (2011) 822–849

Contents lists available at ScienceDirect

Information and Computation

j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / i c

Quantitative Kleene coalgebras
Alexandra Silva b,∗, Filippo Bonchi a, Marcello Bonsangue c,b, Jan Rutten b,e,d

a
CNRS, ENS-Lyon, 7 Passage Vercors, 69007 Lyon, France

b
Centrum Wiskunde & Informatica, Science Park 123, 1098 XG Amsterdam, The Netherlands

c
Leiden Institute Advanced Computer Science, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands

d
Radboud Universiteit Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands

e
Vrije Universiteit Amsterdam, De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

A R T I C L E I N F O A B S T R A C T

Article history:

Received 29 January 2010
Revised 3 August 2010
Available online 21 December 2010

We present a systematic way to generate (1) languages of (generalized) regular expressions,
and (2) sound and complete axiomatizations thereof, for a wide variety of quantitative sys-
tems. Our quantitative systems include weighted versions of automata and transition sys-
tems, in which transitions are assigned a value in a monoid that represents cost, duration,
probability, etc. Such systems are represented as coalgebras and (1) and (2) above are derived
in a modular fashion from the underlying (functor) type of these coalgebras.

In previous work, we applied a similar approach to a class of systems (without weights)
that generalizes both the results of Kleene (on rational languages and DFA’s) andMilner (on
regular behaviours and finite LTS’s), and includes many other systems such as Mealy and
Moore machines.

In the present paper, we extend this framework to deal with quantitative systems. As
a consequence, our results now include languages and axiomatizations, both existing and
new ones, for many different kinds of probabilistic systems.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Kleene’s Theorem [25] gives a fundamental correspondence between regular expressions and deterministic finite automata

(DFA’s): each regular expression denotes a language that can be recognized by a DFA and, vice-versa, the language accepted
by a DFA can be specified by a regular expression. Languages denoted by regular expressions are called regular. Two regular
expressions are called (language) equivalent if they denote the same regular language. Salomaa [37] presented a sound and
complete axiomatization for proving the equivalence of regular expressions, which was later refined by Kozen [27].

The above programme was applied by Milner [31] to process behaviours and labelled transition systems (LTS’s). Milner
introduced a set of expressions for finite LTS’s and proved an analogue of Kleene’s Theorem: each expression denotes the
behaviour of a finite LTS and, conversely, the behaviour of a finite LTS can be specified by an expression (modulo bisimilarity).
Milner also provided an axiomatization for his expressions, with the property that two expressions are provably equivalent
if and only if they are bisimilar.

Coalgebras provide a general framework for the study of dynamical systems such as DFA’s and LTS’s. For a functor
F: Set → Set, an F-coalgebra or F-system is a pair (S, f), consisting of a set S of states and a function f : S → F(S)
defining the “transitions” of the states. We call the functor F the type of the system. For instance, DFA’s can be readily seen
to correspond to coalgebras of the functor F(S) = 2 × SA and image-finite LTS’s are obtained by F(S) = Pω(S)A, where Pω

is finite powerset.

∗ Corresponding author. Fax: +31 205924199.
E-mail address: ams@cwi.nl (A. Silva).

0890-5401/$ - see front matter © 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.ic.2010.09.007

http://dx.doi.org/10.1016/j.ic.2010.09.007
http://www.sciencedirect.com/science/journal/08905401
www.elsevier.com/locate/ic
http://dx.doi.org/10.1016/j.ic.2010.09.007

A. Silva et al. / Information and Computation 209 (2011) 822–849 823

Under mild conditions, functors F have a final coalgebra (unique up to isomorphism) into which every F-coalgebra
can be mapped via a unique so-called F-homomorphism. The final coalgebra can be viewed as the universe of all possible
F-behaviours: the unique homomorphism into the final coalgebra maps every state of a coalgebra to a canonical representa-
tive of its behaviour. This gives a general notion of behavioural equivalence: two states are equivalent iff they are mapped to
the same element of the final coalgebra. In the case of DFA’s, two states are equivalent when they accept the same language;
for LTS’s, behavioural equivalence coincides with the ordinary notion of bisimilarity.

In a previous paper [8], we introduced for coalgebras of a large but restricted class of functors, a language of regular
expressions; a corresponding generalization of Kleene’s Theorem; and a sound and complete axiomatizationwith respect to
bisimilarity. We derived both the language of expressions and their axiomatization, in a modular fashion, from the functor
defining the type of the system, by induction on the structure of the functors.

In recent years, much attention has been devoted to the analysis of probabilistic behaviours, which occur for instance
in randomized, fault-tolerant systems. Several different types of systems were proposed: reactive [28,34], generative [19],
stratified [41,45], alternating [23,46], (simple) Segala systems [39,40], bundle [15] and Pnueli–Zuck [33], amongst others.
For some of these systems, expressions were defined for the specification of their behaviours, as well as axioms to reason
about their behavioural equivalence. Examples include [1,2,4,16,17,24,29,32,42].

The results in [8] apply to the class of non-deterministic functors, which is general enough to include the examples of
deterministic automata and labelled transition systems, as well as many other systems such as Mealy and Moore machines.
However, probabilistic systems, weighted automata [18,38], etc. cannot be described by non-deterministic functors. It is aim
of the present paper to identify a class of functors (a) that is general enough to include these andmore generally a large class
of quantitative systems; and (b) to which the methodology developed in [8] can be extended.

To this end, we give a non-trivial extension of the class of non-deterministic functors by adding a functor type that allows
the transitions of our systems to take values in amonoid structure of quantitative values. This new class, which we shall call
quantitative functors, now includes all the types of probabilistic systems mentioned above.

At the same time, we show how to extend our earlier approach to the new setting. As it turns out, the main technical
challenge is due to the fact that the behaviour of quantitative systems is inherently non-idempotent. As an example consider
the expression 1/2 · ε⊕1/2 · ε′ representing a probabilistic system that either behaves as ε with probability 1/2 or behaves
as ε′ with the same probability. When ε is equivalent to ε′, then the system is equivalent to 1 · ε rather than 1/2 · ε. This is
problematic because idempotency played a crucial role in our previous results to ensure that expressions denote finite-state
behaviours.

We will show how the lack of idempotency in the extended class of functors can be circumvented by a clever use of
the monoid structure. This will allow us to derive for each functor in our new extended class everything we were after:
a language of regular expressions; a corresponding Kleene’s Theorem; and a sound and complete axiomatization for the
corresponding notion of behavioural equivalence.

In order to show the effectiveness and the generality of our approach, we apply it to four types of systems: weighted
automata; simple Segala, stratified and Pnueli–Zuck systems. For simple Segala systems, we recover the language and
axiomatization presented in [17]. Forweighted automata and stratified systems, languages have beendefined in [12] and [45]
but, to the best of our knowledge, no axiomatization was ever given. Applying our method, we obtain the same languages
and, more interestingly, we obtain novel axiomatizations. We also present a completely new framework to reason about
Pnueli–Zuck systems. Table 1 summarizes the main results of this paper: the languages and axiomatizations derived for
several quantitative systems.

This paper is an extended version of our CONCUR paper [6]. In comparison to [6], this paper includes more details in
the examples, contains all the proofs of new results, provides a detailed explanation of the soundness and completeness of
the axiomatization and it includes the description of an alternative definition of a functor to model quantitative systems
(Section 7).

Organization of the paper. Section 2 gives preliminaries on coalgebras and non-deterministic functors and recalls the main
results of [8]. In Section 3, we introduce the functor that will allow us to model quantitative systems: the monoidal expo-
nentiation functor. Section 4 shows how to extend the framework presented in the previous chapter to quantitative systems:
we associate with every quantitative functor H a language of expressions ExpH , we prove a Kleene like theorem and we
introduce a sound and complete axiomatization with respect to behavioural equivalence of H. Section 5 paves the way
for the derivation of expressions and axioms for probabilistic systems, which we present in Section 6. Section 7 shows a
variation on the definition of the monoidal exponentiation functor and the consequences it would have in the framework.
We conclude and present pointers for future work in Section 8.

2. Preliminaries

We give the basic definitions on non-deterministic functors and coalgebras and introduce the notion of bisimulation.
First we fix notation on sets and operations on them. Let Set be the category of sets and functions. Sets are denoted by

capital letters X, Y, . . . and functions by lower case f , g, . . . We write {} for the empty set and the collection of all finite
subsets of a set X is defined as Pω(X) = {Y ⊆ X | Y finite}. The collection of functions from a set X to a set Y is denoted by

824 A. Silva et al. / Information and Computation 209 (2011) 822–849

Table 1

All the (valid) expressions are closed and guarded. The congruence and the α-equivalence axioms are implicitly as-
sumed for all the systems. The symbols 0 and+ denote, in the case of weighted automata, the empty element and the
binary operator of the commutative monoid S whilst, for the other systems, they denote the ordinary 0 and sum of
real numbers. We write

⊕

i∈1,...,n
pi · εi for p1 · ε1 ⊕ · · · ⊕ pn · εn .

Weighted automata – H(S) = S × (SS)A

ε:: = ∅ | ε ⊕ ε | µx.ε | x | s | a(s · ε) where s ∈ S and a ∈ A

(ε1 ⊕ ε2) ⊕ ε3 ≡ ε1 ⊕ (ε2 ⊕ ε3) ε1 ⊕ ε2 ≡ ε2 ⊕ ε1 ε ⊕ ∅ ≡ ε

a(s · ε) ⊕ a(s′ · ε) ≡ a((s + s′) · ε) s ⊕ s′ ≡ s + s′ a(0 · ε) ≡ ∅ 0 ≡ ∅
ε[µx.ε/x] ≡ µx.ε γ [ε/x] ≡ ε ⇒ µx.γ ≡ ε

Segala systems – H(S) = Pω(Dω(S))A

ε:: = ∅ | ε � ε | µx.ε | x | a({ε′}) where a ∈ A, pi ∈ (0, 1] and
∑

i∈1,...,n
pi = 1

ε′:: =
⊕

i∈1,...,n
pi · εi

(ε1 � ε2) � ε3 ≡ ε1 � (ε2 � ε3) ε1 � ε2 ≡ ε2 � ε1 ε � ∅ ≡ ε ε � ε ≡ ε

(ε′1 ⊕ ε′2) ⊕ ε′3 ≡ ε′1 ⊕ (ε′2 ⊕ ε′3) ε′1 ⊕ ε′2 ≡ ε′2 ⊕ ε′1 (p1 · ε) ⊕ (p2 · ε) ≡ (p1 + p2) · ε
ε[µx.ε/x] ≡ µx.ε γ [ε/x] ≡ ε ⇒ µx.γ ≡ ε

Stratified systems – H(S) = Dω(S) + (B × S) + 1

ε:: = µx.ε | x | 〈b, ε〉 |
⊕

i∈1,...,n
pi · εi | ↓ where b ∈ B, pi ∈ (0, 1] and

∑

i∈1,...,n
pi = 1

(ε1 ⊕ ε2) ⊕ ε3 ≡ ε1 ⊕ (ε2 ⊕ ε3) ε1 ⊕ ε2 ≡ ε2 ⊕ ε1 (p1 · ε) ⊕ (p2 · ε) ≡ (p1 + p2) · ε
ε[µx.ε/x] ≡ µx.ε γ [ε/x] ≡ ε ⇒ µx.γ ≡ ε

Pnueli–Zuck systems – H(S) = PωDω(Pω(S)A)

ε:: = ∅ | ε � ε | µx.ε | x | {ε′} where a ∈ A, pi ∈ (0, 1] and
∑

i∈1,...,n
pi = 1

ε′:: =
⊕

i∈1,...,n
pi · ε

′′
i

ε′′:: = ∅ | ε′′ � ε′′ | a({ε})

(ε1 � ε2) � ε3 ≡ ε1 � (ε2 � ε3) ε1 � ε2 ≡ ε2 � ε1 ε � ∅ ≡ ε ε � ε ≡ ε

(ε′1 ⊕ ε′2) ⊕ ε′3 ≡ ε′1 ⊕ (ε′2 ⊕ ε′3) ε′1 ⊕ ε′2 ≡ ε′2 ⊕ ε′1 (p1 · ε′′) ⊕ (p2 · ε′′) ≡ (p1 + p2) · ε
′′

(ε′′1 � ε′′2) � ε′′3 ≡ ε′′1 � (ε′′2 � ε′′3) ε′′1 � ε′′2 ≡ ε′′2 � ε′′1 ε′′ � ∅ ≡ ε′′ ε′′ � ε′′ ≡ ε′′

ε[µx.ε/x] ≡ µx.ε γ [ε/x] ≡ ε ⇒ µx.γ ≡ ε

YX . We write idX for the identity function on set X . Given functions f : X → Y and g : Y → Z we write their composition

as g ◦ f . The product of two sets X, Y is written as X × Y , with projection functions X X × Y
π1 π2

Y . The set 1 is a
singleton set typically written as 1 = {∗} and it can be regarded as the empty product. We define

X ✸+ Y = X ⊎ Y ⊎ {⊥,⊤}

where ⊎ is the disjoint union of sets, with injections X
κ1

X ⊎ Y Y
κ2 . Note that the set X ✸+ Y is different from the

classical coproduct of X and Y (which we shall denote by X + Y), because of the two extra elements ⊥ and ⊤. These extra
elements will later be used to represent, respectively, underspecification and inconsistency in the specification of some
systems.

For each of the operations defined above on sets, there are analogous ones on functions. Let f1 : X → Y and f2 : Z → W .
We define the following operations:

f1 × f2 : X × Z → Y × W f1 ✸+ f2 : X ✸+ Z → Y ✸+ W

(f1 × f2)(〈x, z〉) = 〈f1(x), f2(z)〉 (f ✸+ f2)(c) = c, c ∈ {⊥,⊤}

(f1 ✸+ f2)(κi(x)) = κi(fi(x)), i ∈ {1, 2}

f A1 : XA → YA
Pω(f1) : Pω(X) → Pω(Y)

f A1 (g) = λa.f1(g(a)) Pω(f1)(S) = {f1(x) | x ∈ S}

A. Silva et al. / Information and Computation 209 (2011) 822–849 825

Note that here we are using the same symbols that we defined above for the operations on sets. It will always be clear from
the context which operation is being used.

A functor F: Set → Set is a mapping of sets to sets and functions to functions satisfying:

1. F(g ◦ f) = F(g) ◦ F(f)
2. F(idX) = idF(X)

The operationswedefined above on sets and functions actually form functors, aswewill use later in this paperwhendefining
the class of quantitative functors.

In our definition of quantitative functors we will use constant sets equipped with an information order. In particular,
we will use join-semilattices. A (bounded) join-semilattice is a set B equipped with a binary operation ∨B and a constant
⊥B ∈ B, such that ∨B is commutative, associative and idempotent. The element ⊥B is neutral w.r.t. ∨B. As usual, ∨B gives
rise to a partial ordering ≤B on the elements of B: b1 ≤B b2 ⇔ b1 ∨B b2 = b2. Every set S can be mapped into a join-
semilattice by taking B to be the set of all finite subsets of S with union as join.

Coalgebras. A coalgebra is a pair (S, f : S → F(S)), where S is a set of states and F: Set → Set is a functor. The functor
F, together with the function f , determines the transition structure (or dynamics) of the F-coalgebra [35].

AnF-homomorphism from anF-coalgebra (S, f) to anF-coalgebra (T, g) is a function h : S → T preserving the transition
structure, i.e., such that g ◦ h = F(h) ◦ f .

Definition 2.1. AnF-coalgebra (, ω) is said to be final if for anyF-coalgebra (S, f) there exists a uniqueF-homomorphism
behS : S → 	.

The notion of finality will play a key role later in providing a semantics to expressions.
For every bounded functor there exists a finalF-coalgebra (F , ωF) [22,35]. A functor is said to be bounded [22, Theorem

4.7] if there exists a natural surjection η from a functor B × (−)A to F, for some sets B and A.
Given an F-coalgebra (S, f) and a subset V of S with inclusion map i : V → S we say that V is a subcoalgebra of S if

there exists g : V → F(V) such that i is an F-homomorphism. Given s ∈ S, 〈s〉 = (T, t) denotes the smallest subcoalgebra
generated by s, with T given by

T =
⋂

{V | V is a subcoalgebra of S and s ∈ V} (1)

If the functor F preserves arbitrary intersections, then the subcoalgebra 〈s〉 exists. This will be the case for every functor
considered in this paper.

We will write Coalg(F) for the category of F-coalgebras together with coalgebra homomorphisms. We also write
CoalgLF(F) for the category of F-coalgebras that are locally finite: F-coalgebras (S, f) such that for each state s ∈ S the
generated subcoalgebra 〈s〉 is finite.

Let (S, f) and (T, g) be two F-coalgebras. We call a relation R ⊆ S × T a bisimulation iff

〈s, t〉 ∈ R ⇒ 〈f (s), g(t)〉 ∈ F(R)

where F(R) is defined as F(R) = {〈F(π1)(x), F(π2)(x)〉 | x ∈ F(R)}.
We write s ∼F t whenever there exists a bisimulation relation containing (s, t) and we call∼F the bisimilarity relation.

We shall drop the subscript Fwhenever the functor F is clear from the context.
We say that the states s ∈ S and t ∈ T are behaviourally equivalent, written s ∼b t, if and only if they are mapped into

the same element in the final coalgebra, that is behS(s) = behT (t).
If twostatesarebisimilar then theyarealwaysbehaviourallyequivalent (s ∼ t ⇒ s ∼b t). Theconverse implication isonly

true for certain classes of functors. For instance, if the functorFpreservesweak-pullbacks thenwe also have s ∼b t ⇒ s ∼ t.
The class of non-deterministic functors, which we will recall next, satisfies this property, whereas the class of quantitative
functors, which we shall introduce later in this paper does not.

Non-deterministic functors.Non-deterministic functors are functorsG: Set → Set, built inductively from the identity and
constants, using×, ✸+, (−)A and Pω .

Definition 2.2. The class NDF of non-deterministic functors on Set is inductively defined by:

NDF ∋ G:: = Id | B | G× G | G✸+ G | G
A | PωG

where B is a finite join-semilattice and A is a finite set.

Since we only consider finite exponents A = {a1, . . . , an}, the functor (−)A is not really needed, since it is subsumed by
a product with n components. However, to simplify the presentation, we decided to include it.

We now show the explicit definition of the functors above on a set X and on a morphism f : X → Y (note that
G(f) : G(X) → G(Y)).

826 A. Silva et al. / Information and Computation 209 (2011) 822–849

Id(X) = X B(X) = B (G1 ✸+ G2)(X) = G1(X) ✸+ G2(X)

Id(f) = f B(f) = idB (G1 ✸+ G2)(f) = G1(f) ✸+ G2(f)

(GA)(X) = G(X)A (PωG)(X) = Pω(G(X)) (G1 × G2)(X) = G1(X) × G2(X)

(GA)(f) = G(f)A (PωG)(f) = Pω(G(f)) (G1 × G2)(f) = G1(f) × G2(f)

Typical examples of non-deterministic functors includeM = (B× Id)A,D = 2× IdA,Q = (1✸+ Id)A andN = 2× (Pω(Id))A.
These functors represent, respectively, the type of Mealy, deterministic, partial deterministic and non-deterministic au-
tomata. In [7], we have studied in detail regular expressions for Mealy automata. Similarly to what happened there, we
impose a join-semilattice structure on the constant functor G(X) = B. The product, exponentiation and powerset functors
preserve the join-semilattice structure and thus need not to be changed. This is not the case for the classical coproduct and
thus we use ✸+ instead, which also guarantees that the join semilattice structure is preserved.

We remark that every non-deterministic functor is bounded (and thus has a final coalgebra).
Next, we give the definition of the ingredient relation, which relates a non-deterministic functor Gwith its ingredients,

i.e., the functors used in its inductive construction. We shall use this relation later for typing our expressions.

Definition 2.3. Let ⊳ ⊆ NDF × NDF be the least reflexive and transitive relation on non-deterministic functors such that

G1 ⊳ G1 × G2, G2 ⊳ G1 × G2, G1 ⊳ G1 ✸+ G2, G2 ⊳ G1 ✸+ G2, G⊳ G
A, G⊳ PωG

Here and throughout this paper we use F ⊳ G as a shorthand for 〈F, G〉 ∈ ⊳. If F ⊳ G, then F is said to be an ingredient of
G. For example, 2, Id, IdA and D itself are all the ingredients of the deterministic automata functor D.

2.1. A language of expressions for non-deterministic coalgebras

In this section, we recall the main definitions and results concerning the language of expressions associated with a non-
deterministic functor [8].We start by introducing an untyped language of expressions and thenwe single out thewell-typed
ones via an appropriate typing system, thereby associating expressions to non-deterministic functors.

Definition 2.4 (Expressions). Let A be a finite set, B a finite join-semilattice and X a set of fixed-point variables. The set Exp
of all expressions is given by the following grammar, where a ∈ A, b ∈ B and x ∈ X:

ε :: = ∅ | x | ε ⊕ ε | µx.γ | b | l〈ε〉 | r〈ε〉 | l[ε] | r[ε] | a(ε) | {ε}

where γ is a guarded expression given by:

γ :: = ∅ | γ ⊕ γ | µx.γ | b | l〈ε〉 | r〈ε〉 | l[ε] | r[ε] | a(ε) | {ε}

In the expression µx.γ , µ is a binder for all the occurrences of x in γ . Variables that are not bound are free. A closed ex-

pression is an expressionwithout free occurrences of fixed-point variables x.We denote the set of closed expressions by Expc .
Intuitively, expressions denote elements of the final coalgebra. The expressions ∅, ε1 ⊕ ε2 and µx. ε will play a similar

role to, respectively, the empty language, the union of languages and the Kleene star in classical regular expressions for
deterministic automata. The expressions l〈ε〉 and r〈ε〉 refer to the left and right-hand side of products. Similarly, l[ε] and
r[ε] refer to the left and right hand-side of sums. The expressions a(ε) and {ε} denote function application and a singleton
set, respectively.

Next,wepresent a typing assignment system for associating expressions to non-deterministic functors. Thiswill associate
with each functor G the expressions ε ∈ Exp that are valid specifications of G-coalgebras. The typing proceeds following the
structure of the expressions and the ingredients of the functors.

Definition 2.5 (Type system). We now define a typing relation ⊢⊆ Exp × NDF × NDF that will associate an expression ε
with two non-deterministic functors F and G, which are related by the ingredient relation (F is an ingredient of G). We shall
write ⊢ ε : F ⊳ G for 〈ε, F, G〉 ∈ ⊢. The rules that define ⊢ are the following:

⊢ ∅ : F ⊳ G ⊢ b : B ⊳ G ⊢ x : G ⊳ G

⊢ ε : G ⊳ G

⊢ µx.ε : G ⊳ G

⊢ ε1 : F ⊳ G ⊢ ε2 : F ⊳ G

⊢ ε1 ⊕ ε2 : F ⊳ G

⊢ ε : G ⊳ G

⊢ ε : Id ⊳ G

⊢ ε : F ⊳ G

⊢ {ε} : PωF ⊳ G

⊢ ε : F ⊳ G

⊢ a(ε) : F
A ⊳ G

A. Silva et al. / Information and Computation 209 (2011) 822–849 827

⊢ ε : F1 ⊳ G

⊢ l〈ε〉 : F1 × F2 ⊳ G

⊢ ε : F2 ⊳ G

⊢ r〈ε〉 : F1 × F2 ⊳ G

⊢ ε : F1 ⊳ G

⊢ l[ε] : F1 ✸+ F2 ⊳ G

⊢ ε : F2 ⊳ G

⊢ r[ε] : F1 ✸+ F2 ⊳ G

Intuitively, ⊢ ε : F ⊳ G (for a closed expression ε) means that ε denotes an element of F(G), where 	G is the final
coalgebra of G. As expected, there is a rule for each expression construct. The extra rule involving Id ⊳ G reflects the isomor-
phism between the final coalgebra 	G and G(G) (Lambek’s lemma, cf. [35]). Only fixed-points at the outermost level of
the functor are allowed. This does not mean however that we disallow nested fixed-points. For instance,µx. a(x⊕µy. a(y))
would be a well-typed expression for the functor Dof deterministic automata, as it will become clear below, when we will
presentmore examples of well-typed and non-well-typed expressions. The presented type system is decidable (expressions
are of finite length and the system is inductive on the structure of ε ∈ Exp).

We can now formally define the set of G-expressions: well-typed expressions associated with a non-deterministic func-
tor G.

Definition 2.6 (G-expressions). Let Gbe a non-deterministic functor and F an ingredient of G. We define ExpF⊳G by:

ExpF⊳G = {ε ∈ Expc | ⊢ ε : F ⊳ G} .

We define the set ExpG of well-typed G-expressions by ExpG⊳G .

Examples of well-typed expressions for the functor D = 2 × IdA (with 2 = {0, 1}; recall that the ingredients of D are
2, IdA and D itself) include r〈a(∅)〉, l〈1〉 ⊕ r〈a(l〈0〉)〉 and µx.r〈a(x)〉 ⊕ l〈1〉. The expressions l[1], l〈1〉 ⊕ 1 and µx.1 are
examples of non well-typed expressions, because the functor D does not involve ✸+, the subexpressions in the sum have
different types, and recursion is not at the outermost level (1 has type 2 ⊳ D), respectively.

Let us instantiate the definition of G-expressions to the functors of deterministic automata D = 2 × IdA.

Example 2.7 (Deterministic expressions). Let A be a finite set of input actions and let X be a set of (recursion or) fixed-point
variables. The set ExpD of deterministic expressions is given by the set of closed and guarded expressions generated by the
following BNF grammar. For a ∈ A and x ∈ X:

ε:: = ∅ | ε ⊕ ε | µx.ε | x | l〈ε1〉 | r〈ε2〉

ε1:: = ∅ | 0 | 1 | ε1 ⊕ ε1

ε2:: = ∅ | a(ε) | ε2 ⊕ ε2

At this point, we should remark that the syntax of our expressions differs from the classical regular expressions in the use of
µ and action prefixing a(ε) instead of star and full concatenation. We shall show later that these two syntactically different
formalisms are equally expressive (Theorem 2.12).

We have now defined a language of expressions which gives us an algebraic description of systems. The goal is now
to present a generalization of Kleene’s theorem for non-deterministic coalgebras (Theorem 2.12). Recall that, for regular
languages, the theorem states that a language is regular if and only if it is recognized by a finite automaton. In order to
achieve our goal wewill first show that the set ExpG of G-expressions carries a G-coalgebra structure. More precisely, we are
going to define a function

δF⊳G : ExpF⊳G → F(ExpG)

for every ingredient F of G, and then set δG = δG⊳G . Our definition of the function δF⊳G will make use of the following.

Definition 2.8. For every G ∈ NDF and for every Fwith F ⊳ G:

(i) we define a constant EmptyF⊳G ∈ F(ExpG) by induction on the syntactic structure of F:

EmptyId⊳G = ∅

EmptyB⊳G = ⊥B

EmptyF1×F2⊳G = 〈EmptyF1⊳G, EmptyF2⊳G〉

Empty
F1✸+F2⊳G

= ⊥

EmptyFA⊳G = λa.EmptyF⊳G

EmptyPωF⊳G = {}

(ii) we define a function PlusF⊳G : F(ExpG) × F(ExpG) → F(ExpG) by induction on the syntactic structure of F:

PlusId⊳G(ε1, ε2) = ε1 ⊕ ε2

PlusB⊳G(b1, b2) = b1 ∨B b2

828 A. Silva et al. / Information and Computation 209 (2011) 822–849

PlusF1×F2⊳G(〈ε1, ε2〉, 〈ε3, ε4〉) = 〈PlusF1⊳G(ε1, ε3), PlusF2⊳G(ε2, ε4)〉

Plus
F1✸+F2⊳G

(κi(ε1), κi(ε2)) = κi(PlusFi⊳G(ε1, ε2)), i ∈ {1, 2}

Plus
F1✸+F2⊳G

(κi(ε1), κj(ε2)) = ⊤ i, j ∈ {1, 2} and i �= j

Plus
F1✸+F2⊳G

(x,⊤) = Plus
F1✸+F2⊳G

(⊤, x) = ⊤

Plus
F1✸+F2⊳G

(x,⊥) = Plus
F1✸+F2⊳G

(⊥, x) = x

PlusFA⊳G(f , g) = λa. PlusF⊳G(f (a), g(a))

PlusPωF⊳G(s1, s2) = s1 ∪ s2

Intuitively, one can think of the constant EmptyF⊳G and the function PlusF⊳G as liftings of∅ and⊕ to the level ofF(ExpG).
We need two more things to define δF⊳G . First, we define an order � on the types of expressions. For F1, F2 and G

non-deterministic functors such that F1 ⊳ G and F2 ⊳ G, we define

(F1 ⊳ G) � (F2 ⊳ G) ⇔ F1 ⊳ F2

The order� is a partial order (structure inherited from ⊳). Note also that (F1 ⊳G) = (F2 ⊳G) ⇔ F1 = F2. Second, we define
a measure N(ε) based on the maximum number of nested unguarded occurrences of µ-expressions in ε and unguarded
occurrences of ⊕. We say that a subexpression µx.ε1 of ε occurs unguarded if it is not in the scope of one of the operators
l〈−〉, r〈−〉, l[−], r[−], a(−) or {−}.

Definition 2.9. For every guarded expression ε, we define N(ε) as follows:

N(∅) = N(b) = N(a(ε)) = N(l〈ε〉) = N(r〈ε〉) = N(l[ε]) = N(r[ε]) = N({ε}) = 0

N(ε1 ⊕ ε2) = 1 + max{N(ε1), N(ε2)}

N(µx.ε) = 1 + N(ε)

The measure N induces a partial order on the set of expressions: ε1 ≪ ε2 ⇔ N(ε1) ≤ N(ε2), where≤ is just the ordinary
inequality of natural numbers.

Now we have all we need to define δF⊳G : ExpF⊳G → F(ExpG).

Definition 2.10. For every ingredient F of a non-deterministic functor Gand an expression ε ∈ ExpF⊳G , we define δF⊳G(ε)
as follows:

δF⊳G(∅) = EmptyF⊳G

δF⊳G(ε1 ⊕ ε2) = PlusF⊳G(δF⊳G(ε1), δF⊳G(ε2))

δG⊳G(µx.ε) = δG⊳G(ε[µx.ε/x])

δId⊳G(ε) = ε for G �= Id

δB⊳G(b) = b

δF1×F2⊳G(l〈ε〉) = 〈δF1⊳G(ε), EmptyF2⊳G〉

δF1×F2⊳G(r〈ε〉) = 〈EmptyF1⊳G, δF2⊳G(ε)〉

δ
F1✸+F2⊳G

(l[ε]) = κ1(δF1⊳G(ε))

δ
F1✸+F2⊳G

(r[ε]) = κ2(δF2⊳G(ε))

δFA⊳G(a(ε)) = λa′.

⎧

⎨

⎩

δF⊳G(ε) if a = a′

EmptyF⊳G otherwise

δPωF⊳G({ε}) = { δF⊳G(ε) }

Here, ε[µx.ε/x] denotes syntactic substitution, replacing every free occurrence of x in ε by µx.ε.

In order to see that the definition of δF⊳G is well-formed, we have to observe that δF⊳G can be seen as a function having
twoarguments: the typeF⊳Gand the expression ε. Then,weuse induction on theCartesian product of types and expressions
with orders� and≪, respectively. More precisely, given two pairs 〈F1 ⊳ G, ε1〉 and 〈F2 ⊳ G, ε2〉we have an order

〈F1 ⊳ G, ε1〉 ≤ 〈F2 ⊳ G, ε2〉 ⇔ (i) (F1 ⊳ G) � (F2 ⊳ G)

or (ii) (F1 ⊳ G) = (F2 ⊳ G) and ε1 ≪ ε2
(2)

A. Silva et al. / Information and Computation 209 (2011) 822–849 829

Observe that in the definition above it is always true that 〈F′ ⊳G, ε′〉 ≤ 〈F⊳G, ε〉, for all occurrences of δF ′⊳G(ε′) occurring
in the right-hand side of the equation defining δF⊳G(ε). In all cases, but the ones that ε is a fixed point or a sum expression,
the inequality comes from point (i) above. For the case of the sum, note that 〈F⊳G, ε1〉 ≤ 〈F⊳G, ε1⊕ ε2〉 and 〈F⊳G, ε2〉 ≤
〈F⊳ G, ε1 ⊕ ε2〉 by point (ii), since N(ε1) < N(ε1 ⊕ ε2) and N(ε2) < N(ε1 ⊕ ε2). Similarly, in the case of µx.ε we have that
N(ε) = N(ε[µx.ε/x]), which can easily be proved by (standard) induction on the syntactic structure of ε, since ε is guarded
(in x), and this guarantees that N(ε[µx.ε/x]) < N(µx.ε). Hence, 〈G ⊳ G, ε〉 ≤ 〈G ⊳ G, µx.ε〉. Also note that clause 4 of the
above definition overlaps with clauses 1 and 2 (by taking F = Id). However, they give the same result and thus the function
δF⊳G is well-defined.

Definition 2.11. We can now define, for each non-deterministic functor G, a G-coalgebra

δG : ExpG → G(ExpG)

by putting δG = δG⊳G .

We remark that δG is the generalization of the well-known notion of Brzozowski derivative [11] for regular expressions
and,moreover, it provides an operational semantics for expressions.We nowpresent the generalization of Kleene’s theorem.

Theorem 2.12 ([8, Theorem 4]). Let G be a non-deterministic functor.

1. For every locally finite G-coalgebra (S, g) and for any s ∈ S there exists an expression εs ∈ ExpG such that εs ∼b s.

2. For every ε ∈ ExpG , we can construct a coalgebra (S, g) such that S is finite and there exists sε ∈ S with ε ∼b sε .

Note that εs ∼b smeans that the expression εs and the (systemwith initial) state s have the same behaviour. For instance,
for DFA’s, this would mean that they denote and accept the same regular language. Similarly for ε and sε in item 2, above.

In [8], we presented a sound and complete axiomatization with respect to bisimilarity for ExpG . We will not recall it here
because this axiomatization can be recovered as an instance of the one presented in Section 4.

3. Monoidal exponentiation functor

In theprevious section,we introducednon-deterministic functors anda languageof expressions for specifying coalgebras.
Coalgebras fornon-deterministic functors covermany interesting typesof systems, suchasdeterministic automataandMealy
machines, but not quantitative systems. For this reason, we recall the definition of themonoidal exponentiation functor [20],
which will allow us to define coalgebras representing quantitative systems. In the next section, we will provide expressions
and an axiomatization for these.

A monoid 〈M,+, 0〉 is an algebraic structure consisting of a set with an associative binary operation + and a neutral
element 0 for that operation.Wewill frequently refer to amonoid using the carrier setM. A commutativemonoid is amonoid
where + is also commutative. Examples of commutative monoids include 2, the two-element {0, 1} Boolean algebra with
logical “or”, and the set R of real numbers with addition.

A property that will play a crucial role in the rest of the paper is idempotency: a monoid is idempotent, if the associated
binary operation + is idempotent. For example, the monoid 2 is idempotent, whilst R is not. Note that an idempotent
commutative monoid is a join-semilattice.

For a function ϕ from a set S to a monoid M, we define support of ϕ as the set {s ∈ S | ϕ(s) �= 0}.

Definition 3.1 (Monoidal exponentiation functor). Let 〈M,+, 0〉 be a commutative monoid. The monoidal exponentiation
functor M

−
ω : Set → Set is defined as follows. For each set S, MS

ω is the set of functions from S to M with finite support.
For each function h : S → T , Mh

ω : M
S
ω → M

T
ω is the function mapping each ϕ ∈ M

S
ω into ϕh ∈ M

T
ω defined, for every

t ∈ T , as

ϕh(t) =
∑

s′∈h−1(t)

ϕ(s′)

Throughout this paper we will omit the subscript ω and use M
− to denote the monoidal exponentiation functor. Note

that the (finite) powerset functor Pω(−) coincides with 2−ω . This is often used to represent non-deterministic systems. For
example, LTS’s (with labels over A) are coalgebras of the functor Pω(−)A.

Proposition 3.2. The functor M
− is bounded.

Proof. Using [22, Theorem 4.7] it is enough to prove that there exists a natural surjection η from a functor B× (−)A to M
−,

for some sets B and A.

830 A. Silva et al. / Information and Computation 209 (2011) 822–849

We take A = N and B = M
N, where N denotes the set of all natural numbers and we define for every set X the function

ηX : M
N × XN → M

X as

ηX(ϕ, f)(x) =
∑

n∈f−1(x)

ϕ(n)

The function ηX is surjective. It remains to prove that it is natural. Take h : X → Y . We shall prove that the following diagram
commutes

M
N × XN

ηX

id×hN

M
N × YN

ηY

M
X

M
h M

Y

that is M
h ◦ ηX = ηY ◦ (id × hN).

(Mh ◦ ηX)(ϕ, f) =
∑

x∈h−1(y) ηX(ϕ, f)(x) (def. Mh applied to ηX(ϕ, f))

=
∑

x∈h−1(y)

∑

n∈f−1(x) ϕ(n) (def. ηX)

=
∑

n∈(h◦f)−1(y) ϕ(n) (f and h are functions)

= ηY (ϕ, h ◦ f) (def. ηY)

= (ηY ◦ (id × hN))(ϕ, f) �

Corollary 3.3. The functor M
− has a final coalgebra.

Proof. By [21, Theorem 7.2], the fact that M
− is bounded is enough to guarantee the existence of a final coalgebra. �

Recall that M
− does not preserve weak-pullbacks [20], but it preserves arbitrary intersections [20, Corollary 5.4], which

we need to define smallest subcoalgebras.
Wefinish this sectionwith an example of quantitative systems –weighted automata –modelled as coalgebras of a functor

which contains the monoidal exponentiation as a subfunctor.
Weighted automata.Weighted automata [18,38] are transition systems labelled over a setA andwithweights in a semiring

S. Moreover, each state is equipped with an output value 1 in S. A semiring S is a tuple 〈S,+,×, 0, 1〉where 〈S,+, 0〉 is a
commutative monoid and 〈S,×, 1〉 is a monoid satisfying certain distributive laws. Examples of semirings include the real
numbers R, with usual addition and multiplication, and the Boolean semiring 2 with disjunction and conjunction.

From a coalgebraic perspective, weighted automata are coalgebras of the functor W = S× (SId)A, where we write again
S to denote the commutative monoid of the semiring S. More concretely, a coalgebra for S × (SId)A is a pair (S, 〈o, T〉),
where S is a set of states, o : S → S is the function that associates an output weight to each state s ∈ S and T : S → (SS)A is
the transition relation that associates a weight to each transition. We will use the following notation in the representation
of weighted automata:

s
a,w

s′

os os′

⇔ T(s)(a)(s′) = w and o(s) = os and o(s′) = os′

If the set of states S and the alphabet A are finite, weighted automata can be conveniently represented in the following way.
Let S = {s1, . . . , sn} be the set of states and A = {a1, . . . , am} the input alphabet. The output function o can be seen as a
vector with n entries

o =

⎛

⎜

⎜

⎜

⎜

⎝

o(s1)

...

o(sn)

⎞

⎟

⎟

⎟

⎟

⎠

1 In the original formulation also an input value is considered. To simplify the presentation and following [13] we omit it.

A. Silva et al. / Information and Computation 209 (2011) 822–849 831

and the transition function T is a set of m matrices (of dimension n × n)

Tai =

⎛

⎜

⎜

⎜

⎜

⎝

t11 . . . t1n
...

...

tn1 . . . tnn

⎞

⎟

⎟

⎟

⎟

⎠

with tjk = T(sj)(ai)(sk)

This representation has advantages in the definition of homomorphism between two weighted automata. Composition of
homomorphisms can be expressed as matrix multiplication, making it easier to check the commutativity of the diagram
below. This will be useful in the proof of Proposition 3.4, which states the coincidence between the coalgebraic notion of
behavioural equivalence for the weighted automata functor and the bisimilarity notion introduced in [12].

Let (S, 〈o, T〉) and (S′, 〈o′, T ′〉) be two weighted automata. A homomorphism between these automata is a function
h : S → S′ which makes the following diagram commute

S

〈o,T〉

h
S′

〈o′,T ′〉

S × (SS)A
id×(Sh)A

S × (SS′)A

Now, representing h : S → S′, with S = {s1, . . . , sn} and S′ = {s′1, . . . , s
′
m} as a matrix with dimensions n × m in the

following way

h =

⎛

⎜

⎜

⎜

⎜

⎝

h11 . . . h1m
...

...

hn1 . . . hnm

⎞

⎟

⎟

⎟

⎟

⎠

with hjk =

{

1 h(sj) = s′k
0 otherwise

one can formulate the commutativity condition of the diagram above – (id× (Sh)A)◦ 〈o, T〉 = 〈o′, T ′〉 ◦ h – as the following
matrix equalities:

o = h × o′ and ∀a∈A Ta × h = h × T ′a

Here, we are using the same letters to denote the functions, on the left side of the equations, and their representation as
matrices, on the right side. Note that (Sh ◦ Ta)(si)(s

′
j) = (Ta × h)(i, j), T ′a ◦ h = h × T ′a and o′ ◦ h = h × o′.

For a concrete example, let S = R, let A = {a} and consider the two weighted automata depicted below.

s2

s1

a,1

a,1

0

0 s3

0

s′1
a,2

s′2

0 0

o =

⎛

⎜

⎜

⎜

⎝

0

0

0

⎞

⎟

⎟

⎟

⎠

Ta =

⎛

⎜

⎜

⎜

⎝

0 1 1

0 0 0

0 0 0

⎞

⎟

⎟

⎟

⎠

o′ =

⎛

⎝

0

0

⎞

⎠ T ′a =

⎛

⎝

0 2

0 0

⎞

⎠

Now consider the morphism h : S → S′ which maps s1 to s′1 and both s2 and s3 to s′2, that is, it corresponds to the matrix

h =

⎛

⎜

⎜

⎜

⎝

1 0

0 1

0 1

⎞

⎟

⎟

⎟

⎠

832 A. Silva et al. / Information and Computation 209 (2011) 822–849

We now compute

h × o′ =

⎛

⎜

⎜

⎜

⎝

0

0

0

⎞

⎟

⎟

⎟

⎠

= o and Ta × h =

⎛

⎜

⎜

⎜

⎝

0 2

0 0

0 0

⎞

⎟

⎟

⎟

⎠

= h × T ′a

and we can conclude that h is a coalgebra homomorphism.
It is worth recalling that coalgebra homomorphisms alwaysmap states into bisimilar states ([35, Lemma 5.3]). Thus, since

h is a R × (RId)A-homomorphism, s1 is bisimilar to s′1 and s2,s3 are bisimilar to s′2.
Note that the multiplicative monoid 〈S,×, 1〉 plays no role in the coalgebraic definition of weighted automata. Also

in [18,38] it is used only to define the weight of a sequence of transitions. Bisimilarity for weighted automata has been
studied in [12] and it coincides with the coalgebraic notion of behavioural equivalence.

Proposition 3.4. Behavioural equivalence for S × (SId)A coincides with the weighted automata bisimilarity defined in [12].

Proof. The definition of homomorphism which we stated above using matrix multiplication coincides with the definition
of functional simulation [12, Definition 3.1]. Then, by [12, Corollary 3.6], states s ∈ S and s′ ∈ S′ of two weighted automata
(S, 〈o, T〉) and (S′, 〈o′, T ′〉) are bisimilar (according to [12]) if and only if there exists aweighted automata 〈Q , 〈o1, T1〉) such
that there exist surjective functional simulations h : S → Q and h′ : S′ → Q satisfying h(s) = h′(s′). In coalgebraic terms,
h and h′ form a cospan of coalgebra homomorphisms, which we show in the following commuting diagram:

S

〈o,T〉

h
Q

〈o1,T1〉

S′

〈o′,T ′〉

h′

S × (SS)A S × (SQ)A S × (SS′)A

Thus, for any s ∈ S and s′ ∈ S′, if they are bisimilar accordding to [12], that is if h(s) = h′(s′), then we have that
behQ (h(s)) = behQ (h′(s′)) which, by uniqueness of the map into the final coalgebra, implies that behS(s) = behS′(s

′).
Hence, the states s and s′ are behaviourally equivalent.

For the converse implication, suppose that s and s′ are behaviourally equivalent, that is behS(s) = behS′(s
′). We set

(S, 〈o, T〉), (S′, 〈o′, T ′〉) and (Q , 〈o1, T1〉) in the diagram above to be the subcoalgebras 〈s〉, 〈s′〉 and behS(〈s〉). The key point
is now to observe that behS(〈s〉) = behS′(〈s

′〉) and thus, by definition, we have two surjective homomorphisms h and h′

(the suitable restrictions of behS and behS′ to 〈s〉 and 〈s′〉, respectively) satisfying h(s) = h′(s′). Hence, s and s′ are bisimilar
according to [12]. �

4. A non-idempotent algebra for quantitative regular behaviours

In this section,wewill extend the frameworkpresented inSection2 inorder todealwithquantitative systems, asdescribed
in the previous section. We will start by defining an appropriate class of functors H, proceed with presenting the language
ExpH of expressions associated with H together with a Kleene like theorem and finally we introduce an axiomatization of
ExpH and prove it sound and complete with respect to behavioural equivalence.

Definition 4.1. The set QF of quantitative functors on Set is defined inductively by putting:

QF ∋ H:: = G | M
H | (MH)A | M

H1
1 × M

H2
2 | M

H1
1 ✸+ M

H2
2

where G is a non-deterministic functor, M is a commutative monoid and A is a finite set.

Note that the Pω functor is explicitly included in the syntax above, since it is a non-deterministic functor. Moreover, note
that we do not allowmixed functors, such as G✸+ M

H or G× M
H . The reason for this restriction will become clear later in

this sectionwhenwe discuss the proof of Kleene’s theorem. In Section 5, wewill showhow to deal with suchmixed functors.
We need now to extend several definitions presented in Section 2. The definition of the ingredient associated with a

functor is extended in the expected way, as we show next.

Definition 4.2. Let ⊳ ⊆ QF × QF be the least reflexive and transitive relation on quantitative functors such that

H1 ⊳ H1 × H2, H2 ⊳ H1 × H2, H1 ⊳ H1 ✸+ H2, H2 ⊳ H1 ✸+ H2, H⊳ H
A, H⊳ PωH, H⊳ M

H

All the other definitionswepresented in Section2neednow tobe extended toquantitative functors.We start by observing
that taking the current definitions and replacing the subscript F ⊳ Gwith F ⊳ Hdoes most of the work. In fact, having that,
we just need to extend all the definitions for the case M

F ⊳ H.

A. Silva et al. / Information and Computation 209 (2011) 822–849 833

We start by introducing a new expression m · ε, which we highlight in the definition, with m ∈ M, extending the set of
untyped expressions.

Definition 4.3 (Expressions for quantitative functors). LetAbe afinite set, B a finite join-semilattice,M a commutativemonoid
and X a set of fixed-point variables. The set of all expressions is given by the following grammar, where a ∈ A, b ∈ B,m ∈ M

and x ∈ X:

ε :: = ∅ | x | ε ⊕ ε | µx.γ | b | l〈ε〉 | r〈ε〉 | l[ε] | r[ε] | a(ε) | {ε} | m · ε

where γ is a guarded expression given by:

γ :: = ∅ | γ ⊕ γ | µx.γ | b | l〈ε〉 | r〈ε〉 | l[ε] | r[ε] | a(ε) | {ε} | m · ε

The intuition behind the new expressionm ·ε is that there is a transition between the current state and the state specified
by ε with weight m.

The type system will have one extra rule, which we highlight in the definition.

Definition 4.4 (Type system). We now define a typing relation ⊢⊆ Exp × QF × QF that will associate an expression ε with
two quantitative functors F and H, which are related by the ingredient relation (F is an ingredient of H). We shall write
⊢ ε : F ⊳ H for 〈ε, F, H〉 ∈ ⊢. The rules that define ⊢ are the following:

⊢ ∅ : F ⊳ H ⊢ b : B ⊳ H ⊢ x : H ⊳ H

⊢ ε : H ⊳ H

⊢ µx.ε : H ⊳ H

⊢ ε1 : F ⊳ H ⊢ ε2 : F ⊳ H

⊢ ε1 ⊕ ε2 : F ⊳ H

⊢ ε : H ⊳ H

⊢ ε : Id ⊳ H

⊢ ε : F ⊳ H

⊢ {ε} : PωF ⊳ H

⊢ ε : F ⊳ H

⊢ a(ε) : F
A ⊳ H

⊢ ε : F1 ⊳ H

⊢ l〈ε〉 : F1 × F2 ⊳ H

⊢ ε : F2 ⊳ H

⊢ r〈ε〉 : F1 × F2 ⊳ H

⊢ ε : F1 ⊳ H

⊢ l[ε] : F1 ✸+ F2 ⊳ H

⊢ ε : F2 ⊳ H

⊢ r[ε] : F1 ✸+ F2 ⊳ H

⊢ ε : F ⊳ H

⊢ m · ε : M
F ⊳ H

We define ExpF⊳H by:

ExpF⊳H = {ε ∈ Exp | ⊢ ε : F ⊳ H} .

The set ExpH of well-typed H-expressions equals ExpH⊳H .
Next, we provide the set ExpH with a coalgebraic structure. More precisely, we define a function δF⊳H : ExpF⊳H →

F(ExpH) and then set δH = δH⊳H . We show the definition of δF⊳H aswell as of the auxiliary constant EmptyF⊳H and func-
tion PlusF⊳H . As beforewe highlight the newpart of the definitionwhen comparedwith the definition for non-deterministic
functors.

Definition 4.5. For every H ∈ QF and for every Fwith F ⊳ H:

(i) we define a constant EmptyF⊳H ∈ F(ExpH) by induction on the syntactic structure of F:

EmptyId⊳H = ∅ Empty
F1✸+F2⊳H

= ⊥

EmptyB⊳H = ⊥B EmptyFA⊳H = λa.EmptyF⊳H

EmptyF1×F2⊳H = 〈EmptyF1⊳H, EmptyF2⊳H〉 EmptyPωF⊳H = {}

EmptyMF⊳H = λc.0

(ii) we define a function PlusF⊳H : F(ExpH) × F(ExpH) → F(ExpH) by induction on the syntactic structure of F:

PlusId⊳H(ε1, ε2) = ε1 ⊕ ε2

PlusB⊳H(b1, b2) = b1 ∨B b2

834 A. Silva et al. / Information and Computation 209 (2011) 822–849

PlusF1×F2⊳H(〈ε1, ε2〉, 〈ε3, ε4〉) = 〈PlusF1⊳H(ε1, ε3), PlusF2⊳H(ε2, ε4)〉

Plus
F1✸+F2⊳H

(κi(ε1), κi(ε2)) = κi(PlusFi⊳H(ε1, ε2)), i ∈ {1, 2}

Plus
F1✸+F2⊳H

(κi(ε1), κj(ε2)) = ⊤ i, j ∈ {1, 2} and i �= j

Plus
F1✸+F2⊳H

(x,⊤) = Plus
F1✸+F2⊳H

(⊤, x) = ⊤

Plus
F1✸+F2⊳H

(x,⊥) = Plus
F1✸+F2⊳H

(⊥, x) = x

PlusFA⊳H(f , g) = λa. PlusF⊳H(f (a), g(a))

PlusPωF⊳H(s1, s2) = s1 ∪ s2

PlusMF⊳H(f , g) = λc.f (c) + g(c)

(iii) we define a function δF⊳H : ExpF⊳H → F(ExpH), by induction on the product of types of expressions and expressions
(using the order defined in Eq. (2), extendedwith the clauseN(m·ε) = 0). For every ingredientFof a non-deterministic
functor H and an expression ε ∈ ExpF⊳H , we define δF⊳H(ε) as follows:

δF⊳H(∅) = EmptyF⊳H

δF⊳H(ε1 ⊕ ε2) = PlusF⊳H(δF⊳H(ε1), δF⊳H(ε2))

δH⊳H(µx.ε) = δH⊳H(ε[µx.ε/x])

δId⊳H(ε) = ε for H �= Id

δB⊳H(b) = b

δF1×F2⊳H(l〈ε〉) = 〈δF1⊳H(ε), EmptyF2⊳H〉

δF1×F2⊳H(r〈ε〉) = 〈EmptyF1⊳H, δF2⊳H(ε)〉

δ
F1✸+F2⊳H

(l[ε]) = κ1(δF1⊳H(ε))

δ
F1✸+F2⊳H

(r[ε]) = κ2(δF2⊳H(ε))

δFA⊳H(a(ε)) = λa′.

⎧

⎨

⎩

δF⊳H(ε) if a = a′

EmptyF⊳H otherwise

δPωF⊳G({ε}) = { δF⊳H(ε) }

δMF⊳H(m · ε) = λc.

{

m if δF⊳H(ε) = c

0 otherwise

The function δH = δH⊳H provides an operational semantics for the expressions. We will soon illustrate this for the case
of expressions for weighted automata (Example 4.8).

Finally, we introduce an equational system for expressions of type F⊳H. We define the relation≡ ⊆ ExpF⊳H ×ExpF⊳H ,
written infix, as the least reflexive and transitive relation containing the following identities:

ε ⊕ ε ≡ ε, if ε ∈ ExpF⊳G (Idempotency)

ε1 ⊕ ε2 ≡ ε2 ⊕ ε1 (Commutativity)

ε1 ⊕ (ε2 ⊕ ε3) ≡ (ε1 ⊕ ε2) ⊕ ε3 (Associativity)

∅ ⊕ ε ≡ ε (Empty)

γ [µx.γ /x] ≡ µx.γ (FP)

γ [ε/x] ≡ ε ⇒ µx.γ ≡ ε (Unique)

∅ ≡ ⊥B (B − ∅) b1 ⊕ b2 ≡ b1 ∨B b2 (B −⊕)

l〈∅〉 ≡ ∅ (× − ∅ − L) l〈ε1 ⊕ ε2〉 ≡ l〈ε1〉 ⊕ l〈ε2〉 (×−⊕− L)

r〈∅〉 ≡ ∅ (× − ∅ − R) r〈ε1 ⊕ ε2〉 ≡ r〈ε1〉 ⊕ r〈ε2〉 (×−⊕− R)

a(∅) ≡ ∅ (−A − ∅) a(ε1 ⊕ ε2) ≡ a(ε1) ⊕ a(ε2) (−A −⊕)

(0 · ε) ≡ ∅ (M− − ∅) (m · ε) ⊕ (m′ · ε) ≡ (m + m′) · ε (M− − ⊕)

l[ε1 ⊕ ε2] ≡ l[ε1] ⊕ l[ε2] (+ − ⊕ − L)

r[ε1 ⊕ ε2] ≡ r[ε1] ⊕ r[ε2] (+ − ⊕ − R)

l[ε1] ⊕ r[ε2] ≡ l[∅] ⊕ r[∅] (+ − ⊕ − ⊤)

A. Silva et al. / Information and Computation 209 (2011) 822–849 835

ε1 ≡ ε2 ⇒ ε[ε1/x] ≡ ε[ε2/x] if x is free in ε (Cong)

µx.γ ≡ µy.γ [y/x] if y is not free in γ (α − equiv)

Note that (Idempotency) only holds for ε ∈ ExpF⊳G . The reason why it cannot hold for the remaining functors comes
from the fact that a monoid is, in general, not idempotent. Thus, (Idempotency) would conflict with the axiom (M− − ⊕),
which allows us to derive, for instance, (2 · ∅) ⊕ (2 · ∅) ≡ 4 · ∅. In the case of an idempotent commutative monoid M,
(Idempotency) follows from the axiom (M− − ⊕).

Lemma 4.6. Let M be an idempotent commutative monoid. For every expression ε ∈ ExpMF⊳H , one has ε ⊕ ε ≡ ε.

Proof. By induction on the product of types of expressions and expressions (using the order defined in Eq. (2)). Everything
follows easily by induction. The most interesting case is ε = p · ε1. Then, by (M−⊕), (p · ε1)⊕ (p · ε1) ≡ (p+ p) · ε1 and,
since the monoid is idempotent one has (p + p) · ε1 = p · ε1. �

Example 4.7 (Expressions for Pω(Id) and 2Id). The functor Pω(Id), which we explicitly include in our syntax of quantitative
functors (since it is a non-deterministic functor), is isomorphic to the functor 2Id, an instance of themonoidal exponentiation
functor. We shall now show that, as expected, ExpPω(Id)/≡

∼= Exp2Id/≡.
The expressions for Pω(Id) are given by the closed and guarded expressions defined in the following BNF

ε:: = ∅ | ε ⊕ ε | µx.ε | x | {ε}

The axioms which apply for these expressions are the axioms for fixed-points plus the axioms (Associativity),
(Commutativity), (Idempotency) and (Empty).

For 2Id, the expressions are given by the closed and guarded expressions defined in the following BNF

ε:: = ∅ | ε ⊕ ε | µx.ε | x | 1 · ε | 0 · ε

The axiomatization consists of the axioms for fixed-points plus (Associativity), (Commutativity), (Empty), 0 · ε ≡ ∅ and
p · ε ⊕ p′ · ε ≡ (p + p′) · ε. Because 2 is an idempotent monoid, the last axiom can be replaced, for p = p′, by the
(Idempotency) axiom (by Lemma 4.6). For p �= p′ , note that 0 · ε ≡ ∅ applies and, using the fact that 1 + 0 = 0, the
axiom p · ε ⊕ p′ · ε ≡ (p + p) · ε can be completely eliminated. This, together with the one but last axiom, yields that
ExpPω(Id)/≡

∼= Exp2Id/≡.

Example 4.8 (Expressions for weighted automata). The syntax canonically derived from our typing system for the functor
W = S × (SId)A 2 is given by the closed and guarded expressions defined by the following BNF:

ε :: = ∅ | ε ⊕ ε | x | µx.ε | l〈s〉 | r〈ε′〉

ε′ :: = ∅ | ε′ ⊕ ε′ | a(ε′′)

ε′′ :: = ∅ | ε′′ ⊕ ε′′ | s · ε

where s ∈ S and a ∈ A. The operational semantics of these expressions is given by the function δW⊳W (hereafter denoted
by δW) which is an instance of the general definition of δF⊳H above. It is given by:

δW(∅) = 〈0, λa.λε.0〉

δW(ε1 ⊕ ε2) = 〈s1 + s2, λa.λε.(f (a)(ε) + g(s)(ε))

where 〈s1, f 〉 = δW(ε1) and 〈s2, g〉 = δW(ε2)

δW(µx.ε) = δW(ε[µx.ε/x])

δW(l〈s〉) = 〈s, λa.λε.0〉

δW(r〈ε′〉) = 〈0, δ(SId)A⊳W(ε′)〉

2 Tobe completelyprecise (in order forW to be aquantitative functor) here the leftmostS shouldbewritten asS
{∗} . However, it is easy to see that ExpS{∗}/≡ ∼= S

and so we will omit this detail from now on.

836 A. Silva et al. / Information and Computation 209 (2011) 822–849

δ(SId)A⊳W(∅) = λa.λε.0

δ(SId)A⊳W(ε1 ⊕ ε2) = λa.λε.(f (a)(ε) + g(s)(ε))

where f = δ(SId)A⊳W(ε1) and g = δ(SId)A⊳W(ε2)

δ(SId)A⊳W(a(ε′′)) = λa′.

⎧

⎨

⎩

δSId⊳W(ε′′) if a = a′

λε.0 otherwise

δ(SId)⊳W(∅) = λε.0

δ(SId)⊳W(ε1 ⊕ ε2) = λε.(f (ε) + g(ε))

where f = δ(SId)⊳W(ε1) and g = δ(SId)⊳W(ε2)

δ(SId)⊳W(s · ε) = λε′.

⎧

⎨

⎩

s if ε = ε′

0 otherwise

The function δW assigns to each expression ε a pair 〈s, t〉, consisting of an output weight s ∈ S and a function t : A →
S
ExpW . For a concrete example, let S = R, A = {a}, and consider ε = µx.r〈a(2 · x⊕ 3 · ∅)〉 ⊕ l〈1〉 ⊕ l〈2〉. The semantics of

this expression, obtained by δW is described by the weighted automaton below.

ε

a,2

a,3
∅

3 0

o =

⎛

⎝

3

0

⎞

⎠ Ta =

⎛

⎝

2 0

3 0

⎞

⎠

In Table 1, a more concise syntax for expressions for weighted automata is presented (together with an axiomatization). We
remark that this syntax is a subset of the one proposed in [13] (there a parallel composition was also considered), but the
axiomatization is new.

In order to see that the concise syntax and axiomatization are correct, one has to write translation maps between both
syntaxes, which we show next, and then prove that if two expressions are provably equivalent in one syntax then their
translations are provably equivalent as well. We will not show the full proof here but we will illustrate one case.

First, we translate the syntax presented in Table 1 into the canonically derived syntax presented above.

(∅)† = ∅

(ε1 ⊕ ε2)
† = (ε1)

† ⊕ (ε2)
†

(µx.ε)† = µx.ε†

s† = l〈s〉

(a(s · ε))† = r〈a(s · ε†)〉

x† = x

And now the converse translation:

(∅)‡ = ∅

(ε1 ⊕ ε2)
‡ = (ε1)

‡ ⊕ (ε2)
‡

(µx.ε)‡ = µx.ε‡

x‡ = x

(l〈s〉)‡ = s

(r〈∅〉)‡ = ∅

(r〈ε′1 ⊕ ε′2〉)
‡ = (r〈ε′1〉)

‡ ⊕ (r〈ε′2〉)
‡

(r〈a(∅)〉)‡ = ∅

(r〈a(ε′′1 ⊕ ε′′2)〉)
‡ = (r〈a(ε′′1)〉)

‡ ⊕ (r〈a(ε′′2)〉)
‡

(r〈a(s · ε)〉)‡ = a(s · ε‡)

Let us next show an example of the correctness of the syntax and axioms presented in Table 1. Take, from Table 1, the axiom
a(0 · ε) ≡ ∅. We need to prove that (a(0 · ε))† ≡ ∅†, using the canonically derived axioms for ExpW . The left expression
would be translated to r〈a(0 · ε†)〉, whereas ∅ would just be translated to ∅. Next, using the axioms of ExpW one derives
r〈a(0 · ε†)〉 ≡ r〈a(∅)〉 ≡ r〈∅〉 ≡ ∅, as expected.

We are now ready to formulate the analogue of Kleene’s theorem for quantitative systems.

Theorem 4.9 (Kleene’s theorem for quantitative functors). Let H be a quantitative functor.

1. For every locally finite H-coalgebra (S, h) and for every s ∈ S there exists an expression εs ∈ ExpH such that s ∼b εs.
2. For every ε ∈ ExpH , there exists a finite H-coalgebra (S, h) with s ∈ S such that s ∼b ε.

A. Silva et al. / Information and Computation 209 (2011) 822–849 837

Proof. Let Hbe a quantitative functor.
Proof of item 1. Let s ∈ S and let 〈s〉 = {s1, . . . , sn} with s1 = s. We construct, for every state si ∈ 〈s〉, an expression

〈〈 si 〉〉 such that si ∼ 〈〈 si 〉〉 (and thus si ∼b 〈〈 si 〉〉).
If H = Id, we set, for every i, 〈〈 si 〉〉 = ∅. It is easy to see that {〈si,∅〉 | si ∈ 〈s〉} is a bisimulation and, thus, we have that

s ∼ 〈〈 s 〉〉.
ForH �= Id, we proceed in the followingway. Let, for every i, Ai = µxi.γ

H

h(si)
where, forF⊳Hand c ∈ F〈s〉, the expression

γ F
c ∈ ExpF⊳H is defined by induction on the structure of F:

γ Id
si

= xi γ B
b = b γ

F1×F2
〈c,c′〉 = l〈γ F1

c 〉 ⊕ r〈ε
F2
c′

〉 γ F
A

f =
⊕

a∈A a
(

γ F

f (a)

)

γ
F1✸+F2
κ1(c)

= l[γ F1
c] γ

F1✸+F2
κ2(c)

= r[γ F2
c] γ

F1✸+F2
⊥ = ∅ γ

F1✸+F2
⊤ = l[∅] ⊕ r[∅]

γ
PωF

C =

⎧

⎨

⎩

⊕

c∈C
{γ F

c } C �= {}

∅ otherwise
γ M

H1

f =
⊕

c ∈ H1(〈s〉)

f (c) �= 0

f (c) · γ H1
c

Now, let A0
i = Ai, define A

k+1
i = Ak

i {A
k
k+1/xk+1} and then set 〈〈 si 〉〉 = An

i . Here, A{A
′/x} denotes syntactic replacement (that

is, substitution without renaming of bound variables in Awhich are also free variables in A′).
Observe that the term

An
i =

(

µxi.γ
H

h(si)

) {

A0
1/x1

}

. . .
{

An−1
n /xn

}

is a closed term because, for every j = 1, . . . , n, the term A
j−1
j contains at most n− j free variables in the set {xj+1, . . . , xn}.

It remains to prove that si ∼ 〈〈 si 〉〉. We show that R = {〈si, 〈〈 si 〉〉〉 | si ∈ 〈s〉} is a bisimulation. For that, we first define,
for F ⊳ H and c ∈ F〈s〉, ξF

c = γ F
c {A0

1/x1} . . . {An−1
n /xn} and the relation

RF⊳H =
{

〈c, δF⊳H(ξF

c)〉 | c ∈ F〈s〉
}

.

Then, we prove that 1 RF⊳H = F(R) and 2 〈h(si), δH(〈〈 si 〉〉)〉 ∈ RH⊳H .

1 By induction on the structure of F. We will show here only the proof for the case F = M
H1 .

〈f , g〉 ∈ MH1(R)

⇔∃ϕ : H1(R)→M M
H1(π1)(ϕ) = f and M

H1(π2)(ϕ) = g (def. MH1(R))

⇔ f (u) =
∑

〈u,y〉∈H1(R)

ϕ(〈u, y〉) and g(v) =
∑

〈x,v〉∈H1(R)

ϕ(〈x, v〉) (def. MH1 on arrows)

⇔ f (u) =
∑

〈u,y〉∈RH1⊳H

ϕ(〈u, y〉) and g(v) =
∑

〈x,v〉∈RH1⊳H

ϕ(〈x, v〉) (ind. hyp.)

⇔ f (u) = ϕ
(

〈u, δ(ξH1
u)〉

)

and g(v) =
∑

v=δ(ξ
H1
x)

ϕ
(

〈x, δ(ξH1
x)〉

)

(def. RH1⊳H)

⇔ f (u) = ϕ
(

〈u, δ(ξH1
u)〉

)

and g(v) =
∑

v=δ(ξ
H1
x)

f (x) (def. f)

⇔ f ∈ M
H1(〈s〉) and g = δMH1⊳H

(

⊕

f (x)�=0
f (x) · ξH1

x

)

(def. δMH1⊳H)

⇔ f ∈ M
H1(〈s〉) and g = δMH1⊳H

(

ξM
H1

f

)

(def. ξM
H1

f)

⇔〈f , g〉 ∈ RMH1⊳H

2 Wewant toprove that 〈g(si), δH(〈〈 si 〉〉)〉 ∈ RH⊳H . For that,wemust showthat g(si) ∈ H〈s〉 and δH(〈〈 si 〉〉) = δH(ξH

g(si)
).

The latter follows by definition of 〈s〉, whereas for the former we observe that:

δH(〈〈 si 〉〉)

= δH

((

µxi.γ
H

g(si)

) {

A0
1/x1

}

. . .
{

An−1
n /xn

})

(def. of 〈〈 si 〉〉)

= δH

(

µxi.γ
H

g(si)

{

A0
1/x1

}

. . .
{

A
i−2
i−1/xi−1

} {

Ai
i+1/xi+1

}

. . .
{

An−1
n /xn

})

838 A. Silva et al. / Information and Computation 209 (2011) 822–849

= δH

(

γ H

g(si)

{

A0
1/x1

}

. . .
{

A
i−2
i−1/xi−1

} {

Ai
i+1/xi+1

}

. . .
{

An−1
n /xn

}

[An
i /xi]

)

(def. of δH)

= δH

(

γ H

g(si)

{

A0
1/x1

}

. . .
{

A
i−2
i−1/xi−1

} {

Ai
i+1/xi+1

}

. . .
{

An−1
n /xn

}

{

An
i /xi

}

)

([

An
i /xi

]

= {An
i /xi}

)

= δH

(

γ H

g(si)

{

A0
1/x1

}

. . .
{

A
i−2
i−1/xi−1

}

{

An
i /xi

}

{

Ai
i+1/xi+1

}

. . .
{

An−1
n /xn

})

= δH

(

ξH

g(si)

)

Here, note that [An
i /xi] = {An

i /xi}, because An
i has no free variables. The last two steps follow, respectively, because xi is

not free in Ai
i+1, . . . , A

n−1
n and:

{

An
i /xi

}

{

Ai
i+1/xi+1

}

. . .
{

An−1
n /xn

}

=
{

A
i−1
i

{

Ai
i+1/xi+1

}

. . .
{

An−1
n /xn

}

/xi

} {

Ai
i+1/xi+1

}

. . .
{

An−1
n /xn

}

=
{

A
i−1
i /xi

} {

Ai
i+1/xi+1

}

. . .
{

An−1
n /xn

}

(3)

Eq. (3) uses the syntactic identity

A{B{C/y}/x}{C/y} = A{B/x}{C/y}, y not free in C (4)

Proof of item 2. We want to show that for every expression ε ∈ ExpH there is a finite H-coalgebra (S, f) with s ∈ S such
that s ∼b ε. We construct such coalgebra in the following way.

Again, we only show the proof forH = M
H1 . The casewhenH is a non-deterministic functor is covered by Theorem 2.12

and the other cases (MH × M
H , (MH)A and M

H ✸+ M
H) follow directly from the H = M

H1 , which we shall prove next.
For ε ∈ ExpMH1⊳H , we set (S, h) = 〈ε〉 (recall that ε is the subcoalgebra generated by ε). We now just have to prove

that S is finite. In fact we shall prove that S ⊆ cl(ε), where cl(ε) denotes the smallest subset containing all subformulas of ε
and the unfoldings of µ (sub)formulas, that is, the smallest subset satisfying:

cl(∅) = {∅} cl(l[ε1]) = {l[ε1]} ∪ cl(ε1)

cl(ε1 ⊕ ε2) = {ε1 ⊕ ε2} ∪ cl(ε1) ∪ cl(ε2) cl(r[ε1]) = {r[ε1]} ∪ cl(ε1)

cl(µx.ε1) = {µx. ε1} ∪ cl(ε1[µx.ε1/x]) cl(a(ε1)) = {a(ε1)} ∪ cl(ε1)

cl(l〈ε1〉) = {l〈ε1〉} ∪ cl(ε1) cl({ε1}) = {{ε1}} ∪ cl(ε1)

cl(r〈ε1〉) = {r〈ε1〉} ∪ cl(ε1) cl(m · ε1) = {m · ε1} ∪ cl(ε1)

Note that the set cl(ε) is finite (the number of unfoldings is finite).
To show that S ⊆ cl(ε) (S is the state space of 〈ε〉), it is enough to show that, for any c ∈ H1(ExpMH1⊳H), δMH1⊳H(ε)(c)

�= 0 ⇒ c ∈ H1(cl(ε)).
It is an easy proof by induction on the product of types of expressions and expressions (using the order defined in Eq. (2)).

We exemplify the cases ε = ε1 ⊕ ε2

δMH1⊳H(ε1 ⊕ ε2)(c) �= 0

⇔ δMH1⊳H(ε1)(c) �= 0 or δMH1⊳H(ε2)(c) �= 0 (def. δMH1⊳H)

⇒ c ∈ H1(cl(ε1)) or c ∈ H1(cl(ε2)) (ind. hyp.)

⇒ c ∈ H1(cl(ε1 ⊕ ε2)) (def. cl)

and ε = µx.ε1

δMH1 (µx.ε1)(c) �= 0

⇔ δMH1 (ε1[µx.ε1/x])(c) �= 0 (def. δMH1 (µx.ε1))

⇒ c ∈ H1(cl(ε1[µx.ε1/x])) (ind. hyp.)

⇒ c ∈ H1(cl(µx.ε1)) (H1(cl(ε1[µx.ε1/x])) ⊆ H1(cl(µx.ε1))) �

We can now explain the technical reason why we consider in this section only functors that are not mixed.

A. Silva et al. / Information and Computation 209 (2011) 822–849 839

In the case of a non-deterministic functor G, the proof of item 2. above requires considering subcoalgebras modulo
(Associativity), (Commutativity) and (Idempotency) (ACI). Consider for instance the expression ε = µx.r〈a(x ⊕ x)〉 of type
D = 2 × IdA. The subcoalgebras generated with and without applying ACI are the following:

ε

a

ε a
ε ⊕ ε

a
(ε ⊕ ε) ⊕ (ε ⊕ ε)

a . . .

In the case of M
H (or M

H × M
H , (MH)A and M

H ✸+ M
H), the idempotency axiom does not hold anymore. However,

surprisingly enough, in these cases proving the finiteness of the subcoalgebra 〈ε〉 is not problematic. The key observation is
that the monoid structure will be able to avoid the infinite scenario described above. What happens is concisely captured
by the following example. Take the expression ε = µx.2 · (x ⊕ x) for the functor R

Id. Then, the subcoalgebra generated by
ε is depicted in the following picture:

ε 2
ε ⊕ ε

4

The syntactic restriction that excludes mixed functors is needed because of the following problem. Take as an example the
functor M

Id × IdA. A well-typed expression for this functor would be ε = µx.r〈a(x⊕ x⊕ l〈2 · x〉 ⊕ l〈2 · x〉)〉. It is clear that
we cannot apply idempotency in the subexpression x ⊕ x ⊕ l〈2 · x〉 ⊕ l〈2 · x〉 and hence the subcoalgebra generated by ε
will be infinite:

ε a
ε′

a

4
ε′ ⊕ ε′

a

8

(ε′ ⊕ ε′) ⊕ (ε′ ⊕ ε′)
a

16

. . .

with ε′ = ε ⊕ ε ⊕ l〈2 · ε〉 ⊕ l〈2 · ε〉. We will show in the next section how to overcome this problem.
Let us summarizewhatwe have achieved so far:we have presented a framework that allows, for each quantitative functor

H ∈ QF, the derivation of a language ExpH . Moreover, Theorem 4.9 guarantees that for each expression ε ∈ ExpH , there
exists a finite H-coalgebra (S, h) that contains a state s ∈ S bisimilar to ε and, conversely, for each locally finite H-coalgebra
(S, h) and for every state in s there is an expression εs ∈ ExpH bisimilar to s.

Next, we show that the axiomatization is sound and complete with respect to behavioural equivalence.

4.1. Soundness and completeness

The proof of soundness and completeness follows exactly the same structure as the ones presented in [8] for non-
deterministic functors (with the difference that now we use behavioural equivalence ∼b instead of bisimilarity ∼). We
will recall all the steps here, but will only show the proof of each theorem and lemma for the new case of the monoidal
exponentiation functor.

The relation ≡ gives rise to the equivalence map [−] : ExpF⊳H → ExpF⊳H/≡, defined by [ε] = {ε′ | ε ≡ ε′}. The
following diagram summarizes the maps we have defined so far:

ExpF⊳H

δF⊳H

[−]
ExpF⊳H/≡

F(ExpH)
F[−]

F(ExpH/≡)

In order to complete the diagram, we next prove that the relation ≡ is contained in the kernel of F[−] ◦ δF⊳H
3 . This

will guarantee the existence of a well-defined function ∂F⊳H : ExpF⊳H/≡ → F(ExpH/≡) which, when F = H, provides
ExpH/≡ with a coalgebraic structure ∂H : ExpH/≡ → H(ExpH/≡) (as before we write ∂H for ∂H⊳H) and which makes
[−] a homomorphism of coalgebras.

Lemma 4.10. Let H and F be quantitative functors, with F ⊳ H. For all ε1, ε2 ∈ ExpF⊳H with ε1 ≡ ε2,

(F[−]) ◦ δF⊳H(ε1) = (F[−]) ◦ δF⊳H(ε2)

Proof. By induction on the length of derivations of≡.

3 This is equivalent to proving that ExpF⊳H/≡ , together with [−], is the coequalizer of the projection morphisms from≡ to ExpF⊳H .

840 A. Silva et al. / Information and Computation 209 (2011) 822–849

We just show the proof for the axioms 0 · ε = ∅ and (m · ε) ⊕ (m′ · ε) = (m + m′) · ε.

δMH1⊳H(0 · ε) = λc.0 = δMH1⊳H(∅)

δMH1⊳H((m · ε) ⊕ (m′ · ε)) = λc.δMH1⊳H(m · ε)(c) + δMH1⊳H(m′ · ε)(c)

= λc.

{

m + m′ if δH1⊳H(ε) = c

0 otherwise

= δMH1⊳H((m + m′) · ε) �

Thus, we have now provided the set ExpH/≡ with a coalgebraic structure: we have defined a function ∂H : ExpH/≡ →
H(ExpH/≡), with ∂H([ε]) = (H[−]) ◦ δH(ε).

At this point we can prove soundness, since it is a direct consequence of the fact that the equivalence map [−] is a
coalgebra homomorphism.

Theorem 4.11 (Soundness). Let H be a quantitative functor. For all ε1, ε2 ∈ ExpH ,

ε1 ≡ ε2 ⇒ ε1 ∼b ε2

Proof. Let Hbe a quantitative functor, let ε1, ε2 ∈ ExpH and suppose that ε1 ≡ ε2. Then, [ε1] = [ε2] and, thus

behExpH/≡([ε1]) = behExpH/≡([ε2])

where behS denotes, for any H-coalgebra (S, f), the unique map into the final coalgebra. The uniqueness of the map into
the final coalgebra and the fact that [−] is a coalgebra homomorphism implies that

behExpH/≡ ◦ [−] = behExpH
(5)

which then yields

behExpH
(ε1) = behExpH

(ε2)

Hence, ε1 ∼b ε2. �

For completeness a bit more of work is required. Let us explain upfront the key ingredients of the proof. The goal is to
prove that ε1 ∼b ε2 ⇒ ε1 ≡ ε2. First, note that, using Eq. (5) above, we have

ε1 ∼b ε2 ⇔ behExpH
(ε1) = behExpH

(ε2) ⇔ behExpH/≡([ε1]) = behExpH/≡([ε2]) (6)

We thenprove thatbehExpH/≡ is injective,which is a sufficient condition to guarantee that ε1 ≡ ε2 (since it implies, together
with (6), that [ε1] = [ε2]).

We proceed as follows. First, we factorize behExpH/≡ into an epimorphism and a monomorphism [35, Theorem 7.1] as
shown in the following diagram (where I = behExpH/≡(ExpH/≡)):

ExpH/≡

behExpH/≡

e

∂H

I
m

ωH

	H

ωH

H(ExpH/≡) H(I) H	H

(7)

Then, we prove that (1) (ExpH/≡, ∂H) is a locally finite coalgebra (Lemma 4.12) and (2) both coalgebras (ExpH/≡, ∂H) and
(I, ωH) are final in the category of locally finiteH-coalgebras (Lemmas 4.15 and 4.16, respectively). Since final coalgebras are
unique up to isomorphism, it follows that e : ExpH/≡ → I is in fact an isomorphism and therefore behExpH/≡ is injective,
which will give us completeness.

We now proceed with presenting and proving the extra lemmas needed in order to prove completeness. We start by
showing that the coalgebra (ExpH/≡, ∂H) is locally finite (note that this implies that (I, ωH) is also locally finite) and that
∂H is an isomorphism.

Lemma 4.12. The coalgebra (ExpH/≡, ∂H) is a locally finite coalgebra. Moreover, ∂H is an isomorphism.

Proof. Locally finiteness is a direct consequence of the generalized Kleene’s theorem (Theorem 4.9). In the proof of Theo-
rem 4.9 we showed that given ε ∈ ExpH , for H = M

H1 , H = M
H1 × M

H2 , H = (MH1)A or H = M
H1 ✸+ M

H2 , the
subcoalgebra 〈ε〉 is finite. In case H is a non-deterministic functor, we proved in [8] that the subcoalgebra 〈[ε]ACIE〉 is finite.

A. Silva et al. / Information and Computation 209 (2011) 822–849 841

Thus, the subcoalgebra 〈[ε]〉 is always finite (since ExpH/≡ is a quotient of both ExpH and ExpH/≡ACIE
). Recall that ACIE

abbreviates the axioms (Associativity), (Commutativity), (Idempotency) and (Empty).
To see that ∂H is an isomorphism, first define, for every F ⊳ H,

∂−1
F⊳H

(c) = [γ F

c] (8)

where γ F
c is defined, for F �= Id, as γ F

c in the proof of Theorem 4.9, and for F = Id as γ Id
[ε] = ε. Then, we prove that the

function ∂−1
F⊳H has indeed the desired properties 1 ∂−1

F⊳H ◦ ∂F⊳H = idExpF⊳H/≡ and 2 ∂F⊳H ◦ ∂−1
F⊳H = idF(ExpF⊳H/≡).

Instantiating F = Hone derives that δH is an isomorphism. It is enough to prove for 1 that γ F

∂F⊳H([ε]) ≡ ε and for 2 that

∂F⊳H([γ F
c]) = c. We just illustrate the case F = M

H1 .
1 By induction on the product of types of expressions and expressions (using the order defined in Eq. (2)).

γ M
H1

∂
M

H1 ⊳H
([m·ε])

=
⊕

{∂MH1⊳H([m · ε])(c) · γ H1
c | c ∈ H1(ExpH/≡), ∂MH1⊳H([m · ε])(c) �= 0}

=m · γ
H1
∂H1⊳H([ε])

≡m · ε

In the last step,weused the inductionhypothesis,whereas in theonebut last stepweused the fact that∂MH1⊳H([m·ε])(c) �=
0 ⇔ c = ∂H1⊳H([ε]).
2 By induction on the structure of F.

∂MH1⊳H

(

[γ M
H1

f]
)

= ∂MH1⊳H([
⊕

{f (c) · γ H1
c | c ∈ H1(ExpH/≡), f (c) �= 0}])

= λc′.
∑

{

f (c) | c ∈ H1(ExpH/≡) and c′ = ∂H1⊳H

(

γ H1
c

)}

IH
= λc′.

∑
{

f (c) | c ∈ H1(ExpH/≡) and c′ = c
}

= f �

Wenowprove the analogue of the following useful and intuitive equality on regular expressions,whichwewill thenmake
use of to prove that there exists a coalgebra homomorphism between any locally finite coalgebra (S, h) and (ExpH/≡, ∂H).

Given a deterministic automaton 〈o, t〉 : S → 2×SA and a state s ∈ S, the associated regular expression rs can bewritten
as

rs = o(s) +
∑

a∈A

a · rt(s)(a) (9)

using the axioms of Kleene algebra [11, Theorem 4.4].

Lemma 4.13. Let (S, h) be a locally finite H-coalgebra, with H �= Id, and let s ∈ S, with 〈s〉 = {s1, . . . , sn} (where s1 = s).

Then:

〈〈 si 〉〉 ≡ γ H

g(si)
{〈〈 s1 〉〉/x1} . . . {〈〈 sn 〉〉/xn} (10)

Proof. Let Ak
i , where i and k range from 1 to n, be the terms defined as in the proof of Theorem 4.9. Recall that 〈〈 si 〉〉 = An

i .
We calculate:

〈〈 si 〉〉

= An
i

=
(

µxi.γ
G

g(si)

) {

A0
1/x1

}

. . .
{

An−1
n /xn

}

= µxi.
(

γ G

g(si)

{

A0
1/x1

}

. . .
{

A
i−2
i−1/xi−2

} {

Ai
i+1/xi+1

}

. . .
{

An−1
n /xn

})

≡ γ
G

g(si)
{A0

1/x1} . . .
{

A
i−2
i−1/xi−2

} {

Ai
i+1/xi+1

}

. . .
{

An−1
n /xn

}

{

An
i /xi

}

(fixed-point axiom 4)

= γ G

g(si)

{

A0
1/x1

}

. . .
{

An−1
n /xn

}

(by 3)

3 Note that the fixed point axiom can be formulated using syntactic replacement rather than substitution – γ {µx.γ /x} ≡ µx.γ – since µx.γ is a closed term.

842 A. Silva et al. / Information and Computation 209 (2011) 822–849

= γ G

g(si)

{

A0
1

{

A1
2/x2

}

. . .
{

An−1
n /xn

}

/x1

}

. . .
{

An−1
n /xn

}

(by 4)

= γ G

g(si)

{

An
1/x1

}

{

A1
2/x2

}

. . .
{

An−1
n /xn

}

(def. An
1)

...
(

last 2 steps for A1
2, . . . , A

n−2
n−1

)

= γ G

g(si)

{

An
1/x1

} {

An
2/x2

}

. . .
{

An
n/xn

}

(

An
n−1 = An

n

)

= γ G

g(si)

[

An
1/x1

] [

An
2/x2

]

. . .
[

An
n/xn

]

(all An
i are closed) �

Instantiating (10) for 〈o, t〉 : S → 2 × SA, one can easily spot the similarity with Eq. (9) above:

〈〈 s 〉〉 ≡ l〈o(s)〉 ⊕ r
〈

⊕

a∈A

a
(

〈〈 t(s)(a) 〉〉
)

〉

The above equality is used to prove that there exists a coalgebra homomorphism between any locally finite coalgebra (S, h)
and (ExpH/≡, ∂H).

Lemma 4.14. Let (S, h) be a locally finite H-coalgebra. There exists a coalgebra homomorphism ⌈− ⌉ : S → ExpH/≡.

Proof. Wedefine ⌈− ⌉ = [−]◦〈〈− 〉〉, where 〈〈− 〉〉 is as in the proof of Theorem4.9, associating to a state s of a locally finite
coalgebra an expression 〈〈 s 〉〉with s ∼ 〈〈 s 〉〉. To prove that ⌈− ⌉ is a homomorphismwe need to verify that (H⌈− ⌉) ◦ h =
∂H ◦ ⌈− ⌉.

If H = Id, then (H⌈− ⌉) ◦ g(si) = [∅] = ∂H(⌈ si ⌉). For H �= Id we calculate, using Lemma 4.13:

∂H ◦ ⌈ si ⌉ = ∂H

([

γ H

g(si)
[〈〈 s1 〉〉/x1] . . . [〈〈 sn 〉〉/xn]

])

and we then prove the more general equality, for F ⊳ H and c ∈ F〈s〉:

∂F⊳H

([

γ F

c [〈〈 s1 〉〉/x1] . . . [〈〈 sn 〉〉/xn]
])

= F⌈− ⌉(c) (11)

The intended equality then follows by taking F = H and c = g(si). Let us prove the Eq. (11) by induction on F. We only
show the case F = M

H1 .

∂MH1⊳H

([

γ M
H1

f [〈〈 s1 〉〉/x1] . . . [〈〈 sn 〉〉/xn]
])

= ∂MH1⊳H([
⊕

{f (c) · γ H1
c [〈〈 s1 〉〉/x1] . . . [〈〈 sn 〉〉/xn] | c ∈ H1(ExpH/≡), f (c) �= 0}])

= λc′.
∑

{

f (c) | c ∈ H1(ExpH/≡) and c′ = ∂H1⊳H

(

γ H1
c [〈〈 s1 〉〉/x1] . . . [〈〈 sn 〉〉/xn]

)}

IH
= λc′.

∑
{

f (c) | c ∈ H1(ExpH/≡) and c′ = (H1⌈− ⌉)(c)
}

= M
H1(⌈− ⌉)(f) �

We can now prove that the coalgebras (ExpH/≡, ∂H) and (I, ωH) are both final in the category of locally finite H-
coalgebras.

Lemma 4.15. The coalgebra (I, ωH) is final in the category Coalg(H)LF .

Proof. Wewant to show that for any locally finite coalgebra (S, h), there exists a unique homomorphism (S, h) → (I, ωH).
The existence is guaranteed by Lemma 4.14, where ⌈− ⌉ : S → ExpH/≡ is defined. Postcomposing this homomorphism
with e (defined above, in diagram 7)we get a coalgebra homomorphism e◦⌈− ⌉ : S → I. If there is another homomorphism
f : S → I, then by postcomposition with the inclusion m : I →֒ 	 we get two homomorphisms (m ◦ f and m ◦ e ◦ ⌈− ⌉)
into the final H-coalgebra. Thus, f and e ◦ ⌈− ⌉must be equal. �

Lemma 4.16. The coalgebra (ExpH/≡, ∂H) is final in the category Coalg(H)LF .

Proof. We want to show that for any locally finite coalgebra (S, h), there exists a unique homomorphism (S, h) →
(ExpH/≡, ∂H). We only need to prove uniqueness, since the existence is guaranteed by Lemma 4.14, where ⌈− ⌉ : S →
ExpH/≡ is defined.

Suppose we have another homomorphism f : S → ExpH/≡. Then, we shall prove that f = ⌈−⌉. First, observe that
because f is a homomorphism the following holds for every s ∈ S (without any risk of confusion, in this proof that follows

A. Silva et al. / Information and Computation 209 (2011) 822–849 843

we denote equivalence classes [ε] by expressions ε representing them):

f (s) = ∂−1
H

◦ Hf ◦ h(s) =
[

γ H

g(s)[f (s1)/x1] . . . [f (sn)/xn]
]

(12)

where 〈s〉 = {s1, . . . , sn}, with s1 = s (recall that ∂−1
H was defined in (8) and note that γ H

Hf◦h(s) = γ H

h(s)[f (si)/xi]).
We now have to prove that f (si) = ⌈ si ⌉, for all i = 1, . . . , n. The proof, which relies mainly on uniqueness of fixed

points, is exactly the same as in the analogue theorem for non-deterministic functors and we omit it here. �

Because final objects are unique up-to isomorphism, we know that e : ExpH/≡ → I is an isomorphism and hence we
can conclude that the map behExpH/≡ is injective, since it factorizes into an isomorphism followed by a mono. This fact is
the last ingredient we need to prove completeness.

Theorem 4.17 (Completeness). Let H be a quantitative functor. For all ε1, ε2 ∈ ExpH ,

ε1 ∼b ε2 ⇒ ε1 ≡ ε2

Proof. Let Hbe a quantitative functor, let ε1, ε2 ∈ ExpH and suppose that ε1 ∼b ε2, that is, behExpH
(ε1) = behExpH

(ε2).
Since the equivalence class map [−] is a homomorphism, it holds that behExpH/≡([ε1]) = behExpH/≡([ε2]). Now, because
behExpH/≡ is injective we have that [ε1] = [ε2]. Hence, ε1 ≡ ε2. �

5. Extending the class of functors

In the previous section, we introduced regular expressions for the class of quantitative functors. In this section, by
employing standard results from the theory of coalgebras, we show how to use such regular expressions to describe the
coalgebras of many more functors, including the mixed functors we mentioned in Section 4.

Given F and G two endofunctors on Set, a natural transformation α : F ⇒ G is a family of functions αS : F(S) → G(S)
(for all sets S), such that for all functions h : T → U, αU ◦ F(h) = G(h) ◦ αT . If all the αS are injective, then we say that α is
injective.

Proposition 5.1. An injective natural transformation α : F ⇒ G induces a functor α ◦ (−) : Coalg(F)LF → Coalg(G)LF that

preserves and reflects behavioural equivalence.

Proof. It is well known from [5,35] that, an injective α : F ⇒ G induces a functor α ◦ (−) : Coalg(F) → Coalg(G) that
preserves and reflects behavioural equivalence. Thus we have only to prove that α ◦ (−) maps locally finite F-coalgebras
into locally finite G-coalgebras.

Recall that α ◦ (−) maps each F-coalgebra (S, f) into the G-coalgebra (S, α ◦ f), and each F-homomorphism into itself.
We prove that if (S, f) is locally finite, then also (S, α ◦ f) is locally finite.

An F-coalgebra (S, f) is locally finite if for all s ∈ S, there exists a finite set Vs ⊆ S, such that s ∈ Vs and Vs is a subsystem
of S. That is, there exists a function v : Vs → F(Vs), such that the inclusion i : Vs → S is an F-homomorphism between
(Vs, v) and (S, f). At this point, note that if i : V → S is an F-homomorphism between (Vs, v) and (S, f), then it is also a
G-homomorphism between (Vs, α ◦ v) and (S, α ◦ f). Thus, (S, α ◦ f) is locally finite. �

This result allows us to extend our framework tomany other functors, aswe shall explain next. Consider a functorFwhich
is not quantitative and suppose there exists an injective natural transformation α from F into some quantitative functor H.
A (locally finite) F-coalgebra can be translated into a (locally finite) H-coalgebra via the functor α ◦ (−) and then it can be
characterized by using expressions in ExpH . The axiomatization for ExpH is still sound and complete for F-coalgebras, since
the functor α ◦ (−) preserves and reflects behavioural equivalence.

However, note that (half of) Kleene’s theorem does not hold anymore, because not all the expressions in ExpH denote
F-behaviours or, more precisely, not all expressions in ExpH are equivalent to H-coalgebras that are in the image of α ◦ (−).
Thus, in order to retrieve Kleene’s theorem, one has to exclude such expressions. Inmany situations, this is feasible by simply
imposing some syntactic constraints on ExpH .

Let us illustrate this by means of an example. First, we recall the definition of the probability functor (which will play a
key role in the next section).

Definition5.2 (Probability functor). AprobabilitydistributionoverasetS is a functiond : S → [0, 1] such that
∑

s∈S d(s) = 1.
The probability functor Dω : Set → Set is defined as follows. For all sets S, Dω(S) is the set of probability distributions over
S with finite support. For all functions h : S → T , Dω(h) maps each d ∈ Dω(S) into dh (Definition 3.1).

Note that for any set S, Dω(S) ⊆ R
S since probability distributions are also functions from S to R. Let ι be the family of

inclusions ιS : Dω(S) → R
S . It is easy to see that ι is a natural transformation between Dω and R

Id (the two functors are
defined in the same way on arrows). Thus, in order to specify Dω-coalgebras, we will use ε ∈ ExpRId . These are the closed

844 A. Silva et al. / Information and Computation 209 (2011) 822–849

and guarded expressions given by the following BNF, where r ∈ R and x ∈ X (X a set of fixed-point variables)

ε :: = ∅ | ε ⊕ ε | x | µx.ε | r · ε

This language is enough to specify all Dω-behaviours, but it also allows us to specify R
Id-behaviours that are not Dω-

behaviours, such as for example, µx.2 · x and µx.0 · x. In order to obtain a language ExpDω
that specifies all and only

the regular Dω-behaviours, it suffices to change the BNF above as follows:

ε :: = x | µx.ε |
⊕

i∈1,...,n

pi · εi for pi ∈ (0, 1] such that
∑

i∈1,...,n

pi = 1 (13)

where
⊕

i∈1,...,n
pi · εi denotes p1 · ε1 ⊕ · · · ⊕ pn · εn.

Next, we prove Kleene’s theorem for this restricted syntax. Note that the procedure of appropriately restricting the syntax
usually requires some ingenuity.We shall see that inmany concrete cases, as for instanceDω above, it is fairly intuitivewhich
restriction to choose. Also, although we cannot provide a uniform proof of Kleene’s theorem, the proof for each concrete
example is a slight adaptation of the more general one (Theorem 4.9).

Theorem 5.3 (Kleene’s Theorem for the probability functor).

1. For every locally finite Dω-coalgebra (S, d) and for every s ∈ S there exists an expression εs ∈ ExpDω
such that s ∼b εs.

2. For every ε ∈ ExpDω
, there exists a finite Dω-coalgebra (S, d) with s ∈ S such that s ∼b ε.

Proof. Let s ∈ S and let 〈s〉 = {s1, . . . , sn}with s1 = s. We construct, for every state si ∈ 〈s〉, an expression 〈〈 si 〉〉 such that
si ∼ 〈〈 si 〉〉 (and thus s ∼b εs) .

Let, for every i, Ai = µxi.
⊕

d(si)(sj)�=0
d(si)(sj) · xj .

Now, let A0
i = Ai, define A

k+1
i = Ak

i {A
k
k+1/xk+1} and then set 〈〈 si 〉〉 = An

i . Observe that the term

An
i =

⎛

⎝µxi.
⊕

d(si)(sj)�=0

d(si)(sj) · xj

⎞

⎠

{

A0
1/x1

}

. . .
{

An−1
n /xn

}

is a closed term and
∑

d(si)(sj)�=0
d(si)(sj) = 1. Thus, An

i ∈ ExpDω
.

It remains to prove that si ∼b 〈〈 si 〉〉. We show that R = {〈si, 〈〈 si 〉〉〉 | si ∈ 〈s〉} is a bisimulation. For that we define a
function ξ : R → Dω(R) as ξ(〈si,−〉)(〈sj,−〉) = d(si)(sj) andwe observe that the projectionmapsπ1 andπ2 are coalgebra
homomorphisms, that is, the following diagram commutes.

〈s〉

(1)d

R
π1

(2)ξ

π2 {An
i | si ∈ 〈s〉}

δExpDω

Dω(〈s〉) Dω(R)
Dω(π1) Dω(π2)

Dω({An
i | si ∈ 〈s〉})

Dω(π1)(ξ(〈si, A
n
i 〉))(sj) =

∑

〈sj,x〉∈R
ξ(〈si, A

n
i 〉)(〈sj, x〉) = d(si)(sj) (1)

Dω(π2)(ξ(〈si, A
n
i 〉))(A

n
j) =

∑

〈x,anj 〉∈R

ξ(〈si, A
n
i 〉)(〈x, A

n
j 〉) = d(si)(sj) = δExpDω

(An
i)(A

n
j) (2)

For the second part of the theorem, We need to show that for every expression ε ∈ ExpDω
there is a finite Dω-coalgebra

(S, d) with s ∈ S such that s ∼b ε. We take (S, d) = 〈ε〉 and we observe that S is finite, because S ⊆ cl(ε) (the proof of this
inclusion is as in Theorem 4.9). �

The axiomatization of ExpDω
is a subset of the one for ExpRId , since some axioms, such as∅ ≡ 0·ε, have nomeaning in the

restricted syntax. In this case the axiomatization for ExpDω
would contain the axioms for the fixed-point, plus (Associativity),

(Commutativity) and p · ε ⊕ p′ · ε = (p + p′) · ε. The soundness of this axiomatization comes for free from the soundness
in R

Id, because behavioural equivalence in R
Id implies behavioural equivalence in Dω . Completeness needs however a bit

more of work: we need to prove that, for any two expressions in the new syntax, if they are provably equivalent using all

A. Silva et al. / Information and Computation 209 (2011) 822–849 845

the axioms of ExpRId then they must be provably equivalent using only the restricted set of axioms. Note that it is usually
obvious which axioms one needs to keep for the restricted syntax.

For another example, consider the functors Id and Pω(Id). Let τ be the family of functions τS : S → Pω(S) mapping
each s ∈ S in the singleton set {s}. It is easy to see that τ is an injective natural transformation. With the above obser-
vation, we can also get regular expressions for the functor M

Id × IdA which, as discussed in Section 4, does not belong
to our class of quantitative functors. By extending τ , we can construct an injective natural transformation M

Id × IdA ⇒
M

Id × Pω(Id)A.
In the same way, we can construct an injective natural transformation from the functor Dω(Id) + (A × Id) + 1 (which

is the type of stratified systems, which we shall use as an example in the next section) into R
Id + (A × Pω(Id)) + 1. Since

the latter is a quantitative functor, we can use its expressions and axiomatization for stratified systems. But since not all its
expressions define stratified behaviours, we again will have to restrict the syntax.

6. Probabilistic systems

Many different types of probabilistic systems have been defined in the literature: examples include reactive, generative,
stratified, alternating, (simple) Segala, bundle and Pnueli–Zuck. Each type corresponds to a functor, and the systems of a
certain type are coalgebras of the corresponding functor. A systematic study of all these systems as coalgebras was made
in [5]. In particular, Fig. 1 of [5] provides a full correspondence between types of systems and functors. By employing this
correspondence and the results of the previous section, we can use our framework in order to derive regular expressions
and axiomatizations for all these types of probabilistic systems.

In order to show the effectiveness of our approach, we have derived expressions and axioms for three different types of
probabilistic systems: simple Segala, stratified, and Pnueli–Zuck.

Simple Segala systems Simple Segala systems are transition systems where both probability and non determinism are
present. They are coalgebras of the functorPω(Dω(Id))A. Each labelled transition leads, non-deterministically, to a probability
distribution of states instead of a single state. An example is shown in Fig. 1(i).

We recall the expressions and axioms for simple Segala systems as shown in Table 1.

ε:: = ∅ | ε � ε | µx.ε | x | a({ε′}) where a ∈ A, pi ∈ (0, 1] and
∑

i∈1 ldots,n
pi = 1

ε′:: =
⊕

i∈1,...,n
pi · εi

(ε1 � ε2) � ε3 ≡ ε1 � (ε2 � ε3) ε1 � ε2 ≡ ε2 � ε1 ε � ∅ ≡ ε ε � ε ≡ ε

(ε′1 ⊕ ε′2) ⊕ ε′3 ≡ ε′1 ⊕ (ε′2 ⊕ ε′3) ε′1 ⊕ ε′2 ≡ ε′2 ⊕ ε′1 (p1 · ε) ⊕ (p2 · ε) ≡ (p1 + p2) · ε

ε[µx.ε/x] ≡ µx.ε γ [ε/x] ≡ ε ⇒ µx.γ ≡ ε

Here, in order to avoid confusion, we use � instead of ⊕ for the expressions at the top level, making a clear distinc-
tion between the idempotent (non-deterministic) and non-idempotent (probabilistic) sums. The syntax above was ob-
tained from the canonically derived one by applying the restrictions arising from Dω and also some simplifications (syn-
tactic sugar) which improve readability (in the spirit of what we showed before for ExpW , the expressions for weighted
automata).

As we showed in Section 5, to be completely formal we would have to prove Kleene’s Theorem and the completeness of
the axiomatization for the restricted syntax (as well as the correctness of the simplifications). The proofs would be based on
the ones we showed for the functor Dω (and the ones for the simplifications similar to what we showed for ExpW). We omit
themhere and show instead an example of application. The expression a({1/2·∅⊕1/2·∅})�a({1/3·∅⊕2/3·∅})�b({1·∅})
is bisimilar to the top-most state in the simple Segala system depicted in Fig. 1(i). Using the axiomatization, we can derive:

a({1/2 · ∅ ⊕ 1/2 · ∅}) � a({1/3 · ∅ ⊕ 2/3 · ∅}) � b({1 · ∅})

≡ a({(1/2 + 1/2) · ∅}) � a({(1/3 + 2/3) · ∅}) � b({1 · ∅})

≡ a({1 · ∅}) � a({1 · ∅}) � b({1 · ∅})

≡ a({1 · ∅}) � b({1 · ∅})

Thus, we can conclude that the system presented in Fig. 1(i) is bisimilar to the following one:

•
a b

1 1
•

846 A. Silva et al. / Information and Computation 209 (2011) 822–849

Fig. 1. (i) A simple Segala system, (ii) a stratified system and (iii) a Pnueli–Zuck system

The language and axiomatization we presented above are the same as the one presented in [17] (with the difference that
in [17] a parallel composition operator was also considered). This is of course reassuring for the correctness of the general
framework we presented. In the next two examples, we will present new results (that is syntax/axiomatizations which did
not exist). This is where the generality starts paying off: not only one recovers known results but also derives new ones, all
of this inside the same uniform framework.

Stratified systems. Stratified systems are coalgebras of the functorDω(Id)+ (B× Id)+1. Each state of these systems either
performs unlabelled probabilistic transitions or one B-labelled transition or it terminates. We first derive expressions and
axioms for R

Id + (B× Pω(Id)) + 1 and then we restrict the syntax to characterize only Dω(Id) + (B× Id) + 1-behaviours.
This, together with the introduction of some syntactic sugar, leads to the following syntax and axioms.

ε:: = µx.ε | x | 〈b, ε〉 |
⊕

i∈1,...,n
pi · εi | ↓ where b ∈ B, pi ∈ (0, 1] and

∑

i∈1,...,n
pi = 1

(ε1 ⊕ ε2) ⊕ ε3 ≡ ε1 ⊕ (ε2 ⊕ ε3) ε1 ⊕ ε2 ≡ ε2 ⊕ ε1 (p1 · ε) ⊕ (p2 · ε) ≡ (p1 + p2) · ε

ε[µx.ε/x] ≡ µx.ε γ [ε/x] ≡ ε ⇒ µx.γ ≡ ε

Here ↓, which denotes termination, corresponds to the canonically derived expression r[r[1]], whilst 〈b, ε〉 corresponds to
r[l[l〈b〉 ⊕ r〈{ε}〉]].

We can use these axioms (togetherwith Kleene’s theorem) to reason about the systempresented in Fig. 1(ii). The topmost
state of this system is bisimilar to the expression

1/2 · (1/3 · 〈a,↓〉 ⊕ 2/3 · 〈a,↓〉) ⊕ 1/2 · 〈b,↓〉

which in turn is provably equivalent to 1/2 · (1 · 〈a,↓〉) ⊕ 1/2 · 〈b,↓〉. That leads us to conclude that the aforementioned
system is equivalent to the following simpler one.

•
1/2 1/2

•

1

•

b

•
a

•

The language of expressions we propose for these systems is a subset of the language originally proposed in [45] (there
a parallel composition operator is also considered). More interestingly, there was no axiomatization of the language in [45]
and thus the axiomatization we present here is completely new.

Pnueli–Zuck systems.These systemsare coalgebras of the functorPωDω(Pω(Id)A). Intuitively, the ingredientPω(Id)A denotes
A-labelled transitions to other states. Then, Dω(Pω(Id)A) corresponds to a probability distribution of labelled transitions and
then, each state of a PωDω(Pω(Id)A)-coalgebra performs a non-deterministic choice amongst probability distributions of
labelled transitions. For an example, consider the system depicted in Fig. 1(iii).

We first derive expressions and axioms for the functor Pω(RPω(Id)A) and then we restrict the syntax to characterize only

PωDω(Pω(Id)A)-behaviours (note that the existence of an injective natural transformation fromPωDω(Pω(Id)A) toPω(RPω(Id)A)
is a direct consequence of the existence of a natural transformation from Dω to R

Id and the fact that Pω preserves monos).
The expressions and axioms for these systems are the following:

ε:: = ∅ | ε � ε | µx.ε | x | {ε′} where a ∈ A, pi ∈ (0, 1] and
∑

i∈1,...,n
pi = 1

ε′:: =
⊕

i∈1,...,n
pi · ε

′′
i

ε′′:: = ∅ | ε′′ � ε′′ | a({ε})

A. Silva et al. / Information and Computation 209 (2011) 822–849 847

(ε1 � ε2) � ε3 ≡ ε1 � (ε2 � ε3) ε1 � ε2 ≡ ε2 � ε1 ε � ∅ ≡ ε ε � ε ≡ ε

(ε′1 ⊕ ε′2) ⊕ ε′3 ≡ ε′1 ⊕ (ε′2 ⊕ ε′3) ε′1 ⊕ ε′2 ≡ ε′2 ⊕ ε′1 (p1 · ε′′) ⊕ (p2 · ε′′) ≡ (p1 + p2) · ε
′′

(ε′′1 � ε′′2) � ε′′3 ≡ ε′′1 � (ε′′2 � ε′′3) ε′′1 � ε′′2 ≡ ε′′2 � ε′′1 ε′′ � ∅ ≡ ε′′ ε′′ � ε′′ ≡ ε′′

ε[µx.ε/x] ≡ µx.ε γ [ε/x] ≡ ε ⇒ µx.γ ≡ ε

The expression {1/3 · (a({∅}) � a({∅})) ⊕ 2/3 · (b({∅}) � a({∅}))} � {1 · b({∅})} specifies the Pnueli–Zuck system in
Fig. 1(iii). Note that we use the same symbol � for denoting two different kinds of non-deterministic choice. This is safe,
since they satisfy exactly the same axioms.

Both the syntax and the axioms we propose here for these systems are to the best of our knowledge new. In the past,
these systems were studied using a temporal logic [33].

7. A slight variation on the monoidal exponentiation functor

In this section, we show a slight variation on the definition of the monoidal exponentiation functor which would allow
for a cleaner derivation of syntax and axioms for certain functors, amongst which the probability functor.

In the spirit of [26], where this functor is defined, we shall call it constrained monoidal exponentiation functor.

Definition 7.1 (Constrained monoidal exponentiation functor). Let M be a commutative monoid and V ⊆ M (V being the
constraint). The constrained monoidal exponentiation functor M

−
V : Set → Set is defined on sets as M

S
V = {f ∈ M

S
ω |

∑

s∈S
f (s) ∈ V} and on functions as M

−
ω .

The probability functor Dω coincides now with (R+
0)−{1} (R

+
0 denotes the monoid of positive real numbers).

The expressions associated with this functor are the closed and guarded expressions given by the following BNF, where
x ∈ X andmi ∈ M,

Exp
M

−
V
∋ ε :: = x | µx.ε |

⊕

i∈I

mi · εi such that
∑

i∈I

mi ∈ V

We note that instantiating this syntax for (R+
0)−{1}, one gets precisely the syntax we proposed in Eq. (13) for Dω .

Providing a Kleene like theorem and a sound and complete axiomatization goes precisely as before (for the functor M
−
ω),

with the minor difference that the axiom 0 · ε ≡ ∅ has to be replaced by 0 · ε ⊕ m · ε′ ≡ m · ε′, since ∅ is not a valid
expression for this functor.

All of this seems to indicate that using the constrained monoidal exponentiation functor would have made it easier to
define expressions and axiomatizations for quantitative systems. Although thiswould have been true for systems such as the
simple Segala, itwouldnot completely avoid theuse of the techniquewedescribed in Section5,which allowsus todealwith a
large class of functors: not onlywithDω (embedded intoR

Id) but alsowithmixed functors, such the one of stratified systems.
Moreover, using this functor would require extra care when dealing with the modularity of the axiomatization, which we
will illustrate next by means of an example. For these reasons, we decided to present the syntax and axiomatizations of all
our running examples as a special instance of the general technique described in Section 5.

Example 7.2 (Reactive probabilistic automata). Let us consider a very simple version of reactive probabilistic automata,
coalgebras for the functor Dω(−)A = ((R+

0)Id{1})
A.

The syntax modularly derived for this functor would be

ε:: = ∅ | ε ⊕ ε | x | µx.ε | a(ε′)

ε′:: =
⊕

i∈I
pi · εi such that

∑

i∈I
pi = 1

In the axiomatization, we would (expect to) have the axiom a(ε1)⊕ a(ε2) ≡ a(ε1 ⊕ ε2). But now note how this could lead
to an inconsistent specification, since ε1 ⊕ ε2 will not be a valid expression anymore for Dω (if

∑

pi = 1 in both ε1 and ε2
then it will be 2 in ε1 ⊕ ε2!).

In order to keep the axiomatization compositional wewould have to require certain conditions on the set V in the functor
M

−
V . For instance, one of the possible conditions would be that V would have to be closed with respect to +, which would

be a too strong condition to model Dω .

8. Discussion

We presented a general framework to canonically derive expressions and axioms for quantitative regular behaviours. To
illustrate the effectiveness and generality of our approach we derived expressions and equations for weighted automata,

848 A. Silva et al. / Information and Computation 209 (2011) 822–849

simple Segala, stratified and Pnueli–Zuck systems. We recovered the syntaxes proposed in [13,17,45] for the first three
models and the axiomatization of [17]. For weighted automata and stratified systems we derived new axiomatizations and
for Pnueli–Zuck systems both a novel language of expressions and axioms. The process calculi in [13,17,45] also contained
a parallel composition operator and thus they slightly differ from our languages that are more in the spirit of Kleene and
Milner’s expressions. In order to obtain a language, based on the one we defined in this chapter, which also includes other
(user-defined) operators, such as parallel composition, we would like to study the connection with bialgebras and GSOS.

In [4,16,42] expressions without parallel composition are studied for probabilistic systems. These provide syntax and
axioms for generative systems, Segala systems and alternating systems, respectively. For Segala systems our approach will
derive the same language of [16], whilst the expressions in [42] differ from the ones resulting from our approach, since they
use a probabilistic choice operator +p. For alternating systems, our approach could bring some new insights, since in [4]
only expressions without recursion are considered.

The derivation of the syntax and axioms associatedwith each quantitative functor is in the process of being implemented
in the coinductive prover CIRC [30]. For the non-deterministic fragment everything can be done automatically, whereas
for the functors described in Section 5, such as the probability functor, some user input is required, in order to define the
syntactic restrictions. This will then allow for automatic reasoning about the equivalence of expressions specifying systems.

In this paper we studied coalgebras for Set functors. It is an interesting and challenging question to extend our results to
other categories. In particular, it seems promising to study functors over metric spaces [43,44] or vector spaces [9,36].

Acknowledgments

The authors are grateful for useful comments from several people, amongst which Bartek Klin, Ana Sokolova, the anony-
mous reviewers of the conference version of this paper, the (very participative) audience of CONCUR’09 and the two anony-
mous reviewers of the present paper for their detailed reports which greatly improved the presentation.

References

[1] LucaAceto, Zoltán Ésik, Anna Ingólfsdóttir, Equational axioms for probabilistic bisimilarity, in: HélèneKirchner, Christophe Ringeissen (Eds.), AMAST, Lecture
Notes in Computer Science, vol. 2422, Springer, 2002, pp. 239–253.

[2] Jos C.M. Baeten, Jan A. Bergstra, Scott A. Smolka, Axiomization probabilistic processes: Acpwith generative probabililties (extended abstract), in: Cleaveland
[14], pp. 472–485.

[3] Jos C.M. Baeten, Jan Willem Klop (Eds.), in: CONCUR ’90, Theories of Concurrency: Unification and Extension, Amsterdam, The Netherlands, August 27–30,
1990, Proceedings, Lecture Notes in Computer Science, vol. 458, Springer, 1990.

[4] Emanuele Bandini, Roberto Segala, Axiomatizations for probabilistic bisimulation, in: Fernando Orejas, Paul G. Spirakis, Jan van Leeuwen (Eds.), ICALP,
Lecture Notes in Computer Science, vol. 2076, Springer, 2001, pp. 370–381.

[5] Falk Bartels, Ana Sokolova, Erik P. de Vink, A hierarchy of probabilistic system types, Theor. Comput. Sci. 327 (1–2) (2004) 3–22.
[6] Filippo Bonchi, Marcello M. Bonsangue, Jan J.M.M. Rutten, Alexandra Silva, Deriving syntax and axioms for quantitative regular behaviours, in: Bravetti,

Zavattaro [10], pp. 146–162.
[7] MarcelloM. Bonsangue, Jan J.M.M. Rutten, Alexandra Silva, Coalgebraic logic and synthesis ofMealymachines, in: RobertoM. Amadio (Ed.), FoSSaCS, Lecture

Notes in Computer Science, vol. 4962, Springer, 2008, pp. 231–245.
[8] Marcello M. Bonsangue, Jan J.M.M. Rutten, Alexandra Silva, An algebra for Kripke polynomial coalgebras, in: LICS, IEEE Computer Society, 2009, pp. 49–58.
[9] Michele Boreale, Weighted bisimulation in linear algebraic form, in: Bravetti, Zavattaro [10], pp. 163–177.

[10] Mario Bravetti, Gianluigi Zavattaro (Eds.), in: CONCUR 2009 – Concurrency Theory, 20th International Conference, CONCUR 2009, Bologna, Italy, September
1–4, 2009, Proceedings, Lecture Notes in Computer Science, vol. 5710, Springer, 2009.

[11] Janusz A. Brzozowski, Derivatives of regular expressions, J. ACM 11 (4) (1964) 481–494.
[12] Peter Buchholz, Bisimulation relations for weighted automata, Theor. Comput. Sci. 393 (1–3) (2008) 109–123.
[13] Peter Buchholz, Peter Kemper, Quantifying the dynamic behavior of process algebras, in: Luca de Alfaro, Stephen Gilmore (Eds.), PAPM-PROBMIV, Lecture

Notes in Computer Science, vol. 2165, Springer, 2001, pp. 184–199.
[14] Rance Cleaveland (Ed.), in: CONCUR ’92, Third International Conference on Concurrency Theory, Stony Brook, NY, USA, August 24–27, 1992, Proceedings,

Lecture Notes in Computer Science, vol. 630, Springer, 1992.
[15] Pedro R. D’Argenio, Holger Hermanns, Joost-Pieter Katoen, On generative parallel composition, Electr. Notes Theor. Comput. Sci. 22 (1999) 30–54.
[16] Yuxin Deng, Catuscia Palamidessi, Axiomatizations for probabilistic finite-state behaviors, in: Vladimiro Sassone (Ed.), FoSSaCS, Lecture Notes in Computer

Science, vol. 3441, Springer, 2005, pp. 110–124.
[17] Yuxin Deng, Catuscia Palamidessi, Jun Pang, Compositional reasoning for probabilistic finite-state behaviors, in: Aart Middeldorp, Vincent van Oostrom,

Femke van Raamsdonk, Roel C. de Vrijer (Eds.), Processes, Terms and Cycles, Lecture Notes in Computer Science, vol. 3838, Springer, 2005, pp. 309–337.
[18] Manfred Droste, Paul Gastin, Weighted automata and weighted logics, in: Luís Caires, Giuseppe F. Italiano, Luís Monteiro, Catuscia Palamidessi, Moti Yung

(Eds.), ICALP, Lecture Notes in Computer Science, vol. 3580, Springer, 2005, pp. 513–525.
[19] Alessandro Giacalone, Chi-Chang Jou, Scott A. Smolka, Algebraic reasoning for probabilistic concurrent systems, in: M. Broy, C.B. Jones (Eds.), Proceedings of

Working Conference on Programming Concepts and Methods, IFIP TC 2, 1990.
[20] H. Peter Gumm, Tobias Schröder, Monoid-labeled transition systems, Electr. Notes Theor. Comput. Sci. 44 (1) (2001) 185–204.
[21] H. Peter Gumm, Tobias Schröder, Products of coalgebras, Algebra Universalis 46 (2001) 163–185.
[22] H. Peter Gumm, Tobias Schröder, Coalgebras of bounded type, Math. Struct. Comput. Sci. 12 (5) (2002) 565–578.
[23] Hans Hansson, Bengt Jonsson, A logic for reasoning about time and reliability, Formal Asp. Comput. 6 (5) (1994) 512–535.
[24] Chi-Chang Jou, Scott A. Smolka, Equivalences, congruences, and complete axiomatizations for probabilistic processes, in: Baeten, Klop [3], pp. 367–383.
[25] Stephen Kleene, Representation of events in nerve nets and finite automata, Autom. Stud. (1956) 3–42.
[26] Bartek Klin, Structural operational semantics for weighted transition systems, in: Jens Palsberg (Ed.), Semantics and Algebraic Specification, Lecture Notes

in Computer Science, vol. 5700, Springer, 2009, pp. 121–139.
[27] Dexter Kozen, A completeness theorem for Kleene algebras and the algebra of regular events, in: Proceedings, Sixth Annual IEEE Symposium on Logic in

Computer Science, 15–18 July, LICS, IEEE Computer Society, Amsterdam, The Netherlands, 1991, pp. 214–225.
[28] Kim Guldstrand Larsen, Arne Skou, Bisimulation through probabilistic testing, Inform. Comput 94 (1) (1991) 1–28.
[29] Kim Guldstrand Larsen, Arne Skou, Compositional verification of probabilistic processes, in: Cleaveland [14], pp. 456–471.

A. Silva et al. / Information and Computation 209 (2011) 822–849 849

[30] Dorel Lucanu, Eugen-Ioan Goriac, Georgiana Caltais, Grigore Rosu, Circ: a behavioral verification tool based on circular coinduction, in: Alexander Kurz,
Marina Lenisa, Andrzej Tarlecki (Eds.), CALCO, Lecture Notes in Computer Science, vol. 5728, Springer, 2009, pp. 433–442.

[31] Robin Milner, A complete inference system for a class of regular behaviours, J. Comput. Syst. Sci. 28 (3) (1984) 439–466.
[32] Michael W. Mislove, Joël Ouaknine, James Worrell, Axioms for probability and nondeterminism, Electr. Notes Theor. Comput. Sci. 96 (2004) 7–28.
[33] Amir Pnueli, Lenore D. Zuck, Probabilistic verification by tableaux, in: LICS, IEEE Computer Society (1986) 322–331.
[34] Michael O. Rabin, Probabilistic automata, Inform. Control 6 (3) (1963) 230–245.
[35] Jan J.M.M. Rutten, Universal coalgebra: a theory of systems, Theor. Comput. Sci. 249 (1) (2000) 3–80.
[36] Jan J.M.M.Rutten, Coalgebraic foundationsof linear systems, in: TillMossakowski,UgoMontanari,MagneHaveraaen (Eds.), CALCO, LectureNotes inComputer

Science, vol. 4624, Springer, 2007, pp. 425–446.
[37] Arto Salomaa, Two complete axiom systems for the algebra of regular events, J. ACM 13 (1) (1966) 158–169.
[38] Marcel Paul Schützenberger, On the definition of a family of automata, Inform. Control 4 (2–3) (1961) 245–270.
[39] Roberto Segala, Modeling and Verification of Randomized Distributed Real-time Systems, Ph.D. thesis, MIT, Department of EECS, 1995.
[40] Roberto Segala, Nancy A. Lynch, Probabilistic simulations for probabilistic processes, in: Bengt Jonsson, Joachim Parrow (Eds.), CONCUR, Lecture Notes in

Computer Science, vol. 836, Springer, 1994, pp. 481–496.
[41] Scott A. Smolka, Bernhard Steffen, Priority as extremal probability, in: Baeten, Klop [3], pp. 456–466.
[42] Eugene W. Stark, Scott A. Smolka, A complete axiom system for finite-state probabilistic processes, in: Gordon D. Plotkin, Colin Stirling, Mads Tofte (Eds.),

Proof, Language, and Interaction, The MIT Press, 2000, pp. 571–596.
[43] Daniele Turi, Jan J.M.M. Rutten, On the foundations of final coalgebra semantics: non-well-founded sets, partial orders, metric spaces, Math. Struct. Comput.

Sci. 8 (5) (1998) 481–540.
[44] Franck van Breugel, James Worrell, Approximating and computing behavioural distances in probabilistic transition systems, Theor. Comput. Sci. 360 (1–3)

(2006) 373–385.
[45] Rob J. van Glabbeek, Scott A. Smolka, Bernhard Steffen, Reactive, generative and stratified models of probabilistic processes, Inform. Comput. 121 (1) (1995)

59–80.
[46] Moshe Y. Vardi, Automatic verification of probabilistic concurrent finite-state programs, in: FOCS, Springer (1985) 327–338.

	Quantitative Kleene coalgebras
	Introduction
	Preliminaries
	A language of expressions for non-deterministic coalgebras

	Monoidal exponentiation functor
	A non-idempotent algebra for quantitative regular behaviours
	Soundness and completeness

	Extending the class of functors
	Probabilistic systems
	A slight variation on the monoidal exponentiation functor
	Discussion

