
Quantitative Lessons From a Full-scale Multi-Hop
Wireless Ad Hoc Network Testbed

1

David A. Maltz Josh Broch David B. Johnson
Computer Science Department
, Carnegie Mellon University

Pittsburgh, PA 15213
http://www.monarch.cs.cmu.edu/

S / S.B /S.B.C

S,B,C,D S.B.C,D S,B,C.D

S.(B).C.D S.B.(C).D S.B.C,(D)

C moves away

towarding fails
S,(B).C.D S.B,(C),D

- dead ROUTE ERROR

Absrruct-This paper presents preliminary quantitative results from data
collected during runs of our multi-hop wireless ad hoc network testbed. The
network successfully carried a composite workload including voice, bulk
data, and real-time data. Careful analysis of recorded runs highlights radio
propagation issues that network protocols will need to address in the future.

B
> C OP)
2s

ez s I. INTRODUCTION

data
Sent

data
sent

During the 7 months from August 1998 to February 1999,
we designed and implemented a full-scale physical testbed [131
to enable the evaluation of ad hoc network performance in the
field. From February through April, the testbed was used to
demonstrate the potential of ad hoc networking to our sponsors
and as a research tool to experiment with the carrying capacity
and behavior of a fully-deployed network.

Each node in the testbed uses the Dynamic Source Routing
(DSR) protocol [3], [12] to find and maintain routes to the other
nodes in the testbed, and the entire testbed is integrated into the
existing Internet infrastructure. We also implemented an exten-
sive set of monitoring tools, which allow the motion and detailed
protocol activity on each of the nodes to be analyzed, and a se-
ries of traffic generators to stress the network.

This paper briefly describes the results of our initial experi-
ments on the testbed, and the considerable effect that real-world
radio propagation had on the protocols in the network. The pa-
per is not the final performance analysis of the testbed or of the
DSR protocol, although such work is in progress. The quan-
titative numbers reported in later sections of this paper are in-
tended to serve three purposes. First, they validate the archi-
tectural decisions made in constructing the protocol implemen-
tation. Second, they provide protocol designers with more data
points on the characteristics of the outdoor wireless environment
in which actual protocols for many uses must run. Finally, they
point out several interesting consequences of real-world radio
propagation.

This work was supported in part by the National Science Foundation (NSF)
under CAREER Award NCR-9502725, by Caterpillar Corporation, and by
the Air Force Materiel Command (AFMC) under DARPA contract number
F19628-96-C-0061. David Maltz was also supported under an Intel Graduate
Fellowship. The views and conclusions contained here are those of the authors
and should not be interpreted as necessarily representing the official policies or
endorsements, either express or implied, of NSF, AFMC, DARPA, Caterpillar,
Intel, Camegie Mellon University, or the U.S. Government.

broadcast

I

I

unicast
ROUTE REPLY

data received

Fig. 1. Basic operation of the DSR protocol showing the building of a source
route during the propagation of a ROUTE REQUEST, the source route’s re-
turn in a ROUTE REPLY, its use in forwarding data, and the sending of a
ROUTE ERROR upon forwarding failure. The next hop is indicated by the
address in parentheses.

11. DSR OVERVIEW

The Dynamic Source Routing protocol (DSR) [3], [7], [8] is
based on source routing, such that the originator of each packet
determines an ordered list of nodes through which the packet
must pass while traveling to the destination. The key advantage
of a source routing design is that intermediate nodes do not need
to maintain up-to-date routing information in order to route the
packets that they forward, since the packet’s source has already
made all of the routing decisions. This fact, coupled with the en-
tirely on-demand nature of the protocol, elimitlates the need for
the periodic route advertisement and neighbor detection packets
present in other protocols. Although DSR uses source routes,
most packets do not need to incur the overhead of carrying an
explicit source route header [3], [1 1 1 .

The DSR protocol consists of two mechanisms: Route
Discovery and Route Maintenance. Route Discovery is the
mechanism by which a node S wishing to send a packet to a
destination D obtains a source route to D. To reduce the cost of
Route Discovery, each node maintains a Route Cache of source
routes it has learned or overheard. Route Maintenance is the
mechanism by which a packet’s originator S detects if the net-
work topology has changed such that it can no longer use its
route to the destination D because some of the nodes listed on
the route have moved out of range of each other. Figure 1 shows
the basic operation of the DSR protocol.

To perform a Route Discovery, the source node S locally
broadcasts a ROUTE REQUEST packet with the Time-to-Live
field of the IP header initialized to 1. This type of ROUTE

0-7803-6596-8/00/$10.00 0 2000 IEEE 992

http://www.monarch.cs.cmu.edu

truck

ad

-.- -...

-’.

I hoc network
00 MHz WaveLAN

tern
%._.

ireless 2.4 GHz Field Office

GPS reference station
Bel
CD

I I

Central Office

Fig. 2. Logical overview of the testbed network.

REQUEST is called a non-propagating ROUTE REQUEST. It al-
lows node S to inexpensively query the Route Caches of each
of its neighbors for a route to the destination, and it optimizes
the case in which the destination is directly reachable. If no
REPLY is returned within the nominal one-hop round trip time,
node S transmits a propagating ROUTE REQUEST that is flooded
through the network in a controlled manner and is answered by
a ROUTE REPLY packet from either the destination node or an-
other node that knows a route to the destination.

Route Maintenance is performed only when a node is attempt-
ing to forward a packet. If the packet cannot be successfully
forwarded to the next-hop indicated in the packet’s source route,
Route Maintenance declares that link in the source route to be
broken, and notifies the packet’s originator S with a ROUTE
ERROR packet. The originator S can then attempt to use any
other route to D that is already in its Route Cache, or can invoke
Route Discovery again to find a new route.

111. TESTBED OVERVIEW

The design goal of the testbed was to challenge the network
protocols to the point where they were stressed, by subjecting
them to higher rates of topology change than previous testbeds
had explored [2], [101. With the vehicles, radios, and site used in
our testbed, we forced the protocols to,operate in an environment
in which all links between nodes change status at least every
220 seconds. Ignoring the additional factor of packet loss due to
wireless errors, on average, the network topology changed every
4 seconds.

Figure 2 shows a logical view of the ad hoc network testbed.
The actual ad hoc network is comprised of 5 moving car-
mounted nodes, labeled Tl-T5, and 2 stationary nodes, la-
beled E l and E2. Each of these nodes communicates using
900 MHz WaveLAN-I radios. These radios do not implement
the IEEE 802.11 MAC protocol [6], since at the time the testbed
was built, the WaveLAN-IEEE radios were not available. The
ad hoc network is connected to a$eld ofice using a 2.4 GHz
point-to-point wireless link over a distance of about 700 m. This

point-to-point link does not interfere with the 900 MHz radio in-
terfaces on the individual ad hoc network nodes.

At the field office is a router R that connects both the ad hoc
network and an IP subnet at the field office back to the central
ofice via a wide-area network. The visualizer node V is used
to monitor the status of the ad hoc network, and the GPS ref-
erence station (RS), located on the roof of the field office, is
responsible for sending differential real-time kinematic (RTK)
GPS corrections to nodes in the ad hoc network.

The central office is home to a roving node (RN) that drives
between the central office and the ad hoc network. Node HA
provides Mobile IP home agent services [141 for the roving node
so that it is able to leave the central office and still maintain
connectivity with all of the other nodes in the testbed.

During a typical experiment, which we call a run, the drivers
of each of the cars follow a set course at speeds varying from
25 to 40 Km/hr (15 to 25 miles per hour). Each run lasts for
between 30 and 120 minutes. The road we use is open to general
vehicle traffic and has several Stop signs, so the speed of each
node varies in a complex fashion, just as it would in any real
network. Likewise, the nodes are constrained to move along
the paved surfaces of the site. This prevents us. from testing
the arbitrary topologies used in some theoretical simulations on
abstract flat planes, but enables us to evaluate the performance
we can expect in a real application.

During each run, the network was subjected to the composite
workload shown in Table I, consisting of synthetic voice calls,
bulk data transfer, location dependent transfers, and real-time
data. The workload includes: each node making one voice call
to every other node once per hour; each node transferring a data
file to every other node once per hour; each moving node (Tl-
T5) making a location-dependent transfer to El when located
within 150 m of El; multicast differential RTK GPS corrections;
and real-time situational awareness data sent by our Position and
Communication Tracking daemon (PCTd).

Iv . LAYER 3 MECHANISMS FOR ACKNOWLEDGMENTS
AND RETRANSMISSION

Since the WaveLAN-I radios do not provide link-layer reli-
ability, we implemented a hop-by-hop retransmission and ac-
knowledgment scheme within the DSR layer that provides the
feedback necessary to drive DSR’s Route Maintenance mecha-
nism. One interesting aspect of our ARQ scheme was the use
of passive acknowledgements [9], which significantly reduces
the number of acknowledgement packets transmitted when com-
pared to acknowledgment schemes that acknowledge every
packet (e.g., IEEE 802.1 1 [6]).

A. Implementation Overview

Our implementation utilizes passive acknowledgments when-
ever possible, meaning that if a packet’s sender hears the next
hop forward the packet, it accepts this as evidence that the
packet was successfully received by that next hop. If a node A
fails to receive a passive acknowledgment for a particular packet
that it has transmitted to some next hop B, then A retransmits the
packet, but sets a bit in the packet’s header to request an explicit
acknowledgment. Node A also requests an explicit acknowl-
edgment from B if B is the packet’s final destination, since in

993

TABLE I
LOAD OFFERED TO THE NETWORK BY NODES IN THE TESTBED.

Application Rate Protocol Size

Voice 6hourlnode UDP Average of 180 kbytes

I GPS I 1 pktlsec multicast I UDP I 150 bytes I

Data

Location-dependent

Shourlnode TCP 30,60, or 90 kbytes

When near E l TCP Average of 150 kbytes

this case, A will not have the opportunity to receive a passive
acknowledgment from B. To avoid the inefficiencies of a stop-
and-wait ARQ scheme, node A uses a buffer to hold packets it
has transmitted that are pending acknowledgement and an iden-
tifier based on the IP ID field [151 to match acknowledgements
with buffered packets.

This acknowledgement procedure allows A to receive ac-
knowledgments from B even in the case in which the wireless
link from A to B is unidirectional, since explicit acknowledge-
ments can take an indirect route from B to A. During an average
run, 90 percent of the acknowledgements used a direct one-hop
route, and 10 percent of the acknowledgements were sent over
routes with multiple hops. While this strongly suggests the pres-
ence of unidirectional links in the network, it does not support a
conclusion that 10 percent of the packets travel over a unidirec-
tional link. Once a multiple-hop route for acknowledgements is
discovered, it may continue to be used for some period of time
even after the direct route begins working again.

When performing retransmissions at the DSR layer, we also
found it necessary to perform duplicate detection so that when
an acknowledgment is lost, a retransmitted packet is not need-
lessly forwarded through the network multiple times. The du-
plicate detection algorithm used in our implementation specified
that a node should drop a received packet if an identical copy of
the packet was found in a buffer awaiting either transmission or
retransmission. We found that this simple form of duplicate pre-
vention was sufficient, and that maintaining a separate history
of recently seen packets was not necessary.

PCTd

B. Packet Loss Rate

When our testbed network operated without the layer 3 ac-
knowledgment and retransmission scheme, the average packet
loss rate over a single hop was measured as 11 percent. With
the ARQ scheme described, the average loss rate over a. single
hop dropped to 5 percent. The losses are highly correlated with
position, however, and demonstrate the highly variable .nature
of wireless propagation due to scattering, multi-path, and shad-
owing effects in the real world. While future research could
experiment with attempting to reduce the loss rate by requiring
a greater signal strength from the packets that are received be-
fore accepting the existence of a link, the frequent occurrence
of Rayleigh fades on the order of 10 dB or more argues that

1 pktlseclnode unicast UDP 228 bytes

significant numbers of packets may still be lost.

C. Heuristics for Selecting Emeout Values

Early in the design of our retransmission mechanism, we
found that contention for the wireless medium produced enough
variance in the Round Trip Time (RTT) between neighboring
nodes that using a fixed value for the retransmission timer was
not practical and that adaptive retransmission timers were re-
quired.

Our initial implementation of an adaptive retransmission
timer employed the scheme used by TCP where a smoothed RTT
estimator (srtt) and a smoothed mean deviation (rttvar) are
maintained independently for each next hop to which a node is
communicating. The retransmission timeout (RTO) is then com-
puted as:

RTO = srtt + 4 * rttvar
Unfortunately, the variance in RTT prevented this implemen-

tation from performing adequately. Frequently, the RTO would
not adapt quickly enough to congestion in the network and pack-
ets would be retransmitted unnecessarily, creating even more
congestion. It also suffered from the fact that the RTO to each
next hop was computed independently, while the need to defer
transmissions due to congestion is common across all neighbors
accessed via the same network interface.

We found that several simple methods of reacting to increas-
ing congestion did not work. For example, if retransmission
timeouts are treated as a RTT sample of twice the current RTT,
the value of the retransmission timer tends to diverge and re-
main pegged at its maximum value, even after congestion has
subsided.

We developed a successful retransmission timer algorithm by
including a heuristic estimate of the level of local congestion,
so that the retransmission timer could react quickly to changes.
One of the simplest ways for a node to measure congestion in
the network is to look at the length of its own network interface
transmit queue. Specifically, if more than 5 packets are found
in the interface transmit queue - meaning that congestion is
starting to occur - we increase the value of the retransmission
timer 20 ms for each packet in the queue. Assume that there
are N packets in the network interface queue. For N 5 5 , the
retransmission timeout is computed as before:

RTO = srtt + 4 * rttvar

994

However, for N > 5, the retransmission timeout is computed
as:

RTO = srtt + 4 * rttvar + ((N - 5) * 20 ms)
This heuristic allows the retransmission timer to increase

quickly during periods of congestion and then return just as
quickly to its computed value once the congestion dissipates.
In 47 10 measurements over several runs, approximately 75% of
the packets transmitted use the minimum retransmission timer
value of 50 ms. However, for the other 25% of the packets, the
retransmission timer adjusted itself to values between 60 ms and
920 ms. The wide range indicates that an adaptive retransmis-
sion scheme is required for good performance if acknowledg-
ments are implemented above the link layer.

v. JITTER IN INTER-PACKET SPACING

Isochronous communications, such as interactive voice and
remote telemetry, are extremely sensitive to packet jitter. In or-
der to evaluate how well isochronous communications would
work across our testbed network, we evaluated the jitter experi-
enced by the synthetic audio traffic sent as part of the composite
workload described in Table I. Each audio connection consisted
of alternating simplex packet streams between the communicat-
ing parties, and each packet stream consisted of 250-byte UDP
packets sent 8 times per second, giving an average bit rate of
16 Kb/s. This traffic pattern was chosen to model the Push-To-
Talk mobile radios commonly used on construction sites.

During an average run, 98,000 voice packets are originated,
which represents a total of 3.4 hours of voice. Of these
98,000 packets, 3.8% are lost in the network. The testbed does
not contain any special handling rules for the voice packets,
so the packets are retransmitted according to the same mech-
anism described in Section IV. The jitter, defined as the varia-
tion in inter-packet spacing introduced by the network, ranged
from -9.4 s to 6.5 s. This extreme amount of jitter is rare, and
typically occurs when the network is temporarily partitioned.
During a partition, the voice sources continue to send data, but
the packets are buffered inside the network. The result is a burst
of back-to-back packet arrivals at the destination when the par-
tition heals. As an area for future research, more sophisticated
packet handling algorithms might detect these delayed but time-
sensitive packets and drop them inside the network to conserve
resources [111.

When the most extreme 2% of jitter samples are removed as
outliers, the range of jitter drops to between -1.04 s and 1.02 s.
The mean jitter is 0.001 s, and the standard deviation 0.143 s.
Figure 3 shows the distribution of jitter samples using a his-
togram. The y-axis is on a log scale for clarity: each bar is
20 ms wide, and there are 10 times more packets with 0.0 s of
jitter than packets with either f 20 ms of jitter. 90% of the
voice packets experience a jitter between -0.2 s and 0.2 s, so a
playback buffer of 400 ms should be sufficient for voice com-
munication.

VI. THE NEED FOR HYSTERESIS IN ROUTE SELECTION

As mentioned above, the packet loss rate seen between any
two nodes in the network is highly variable, depending not only
on the positions of the nodes involved, but also on the move-
ment of other objects around the nodes. In working with TCP

5 5
3.5

-1.5 -1 4 . 5 0 0.5 1 1 5
Jiner (seconds)

Fig. 3. Distribution of jitter. Y-axis is on a log scale for clarity.

connections carried over the testbed network, we found this vari-
ability had a disastrous effect on the bandwidth delivered by
these TCP connections. Other researchers have addressed re-
lated problems in layer 4 and at the boundary between layer 3
and layer 4 [l], [5] , so in this section we will concentrate on a
layer 3 issue caused when radio propagation is transiently better
than expected.

To isolate the layer 3 issue, we conducted an experiment with
three nodes arranged in a linear fashion. The nodes were posi-
tioned by driving two cars in opposite directions and positioning
them as far from the middle node as possible, while still allow-
ing both of the end nodes to successfully flood ping the interme-
diate node with 1024-byte packets (i.e., sending ping packets as
fast as possible). Once positioned, the nodes remained station-
ary for the remainder of the test. For the purpose of discussion,
let node A be the TCP source, B the intermediate node, and C
the TCP sink.

This is a particularly challenging scenario, not only because
electromagnetic propagation is highly variable, but because the
specific setup of this test introduces the hidden terminal prob-
lem. A number of times during these tests, we saw the DSR
retransmission timer expire, creating ROUTE ERRORS and sub-
sequent ROUTE REQUESTS as the nodes attempt to restore con-
nectivity.

As described in Section 11, nodes using DSR discover routes
to other nodes by first sending a non-propagating ROUTE
REQUEST that the target node will answer with a ROUTE REPLY
if can directly receive the originator’s REQUEST. If the origina-
tor does not receive a ROUTE REPLY within 30 ms, it sends a
propagating ROUTE REQUEST that floods through the network
in a controlled fashion to discover multi-hop routes to the target.

In order to obtain baseline performance metrics, we used our
macf i l t e r tool [13], which allows us to create a synthetic
propagation environment among nodes in a laboratory setting.
We first made 5 independent transfers of 1 MB each from node
A to node C. Over these 5 transfers, TCP averaged 0.50 Mb/s
(61 KBIs) with a standard deviation of 0.079 Mbls. When the
same transfers were performed in the field, however, the average
data rate was 0.12 Mbls (14.65 KBk) with a standard deviation

995

I 10’

10-

a -

8 -

7 -

t

;

3 6 -
I H 5-

4 -

3-

2 -

Fig. 4. A TCP sequence number plot for a 1 MB transfer over a two-hop
route. The vertical lines indicate the times at which the TCP source initi-
ated Route Discovery; the dashed lines indicate the times at which only a
non-propagating ROUTE REQUEST was transmitted and the solid lines indi-
cate both a non-propagating and a propagating ROUTE REQUEST.

of 0.025 Mbls - only 25% of the throughput measured in the
lab. In fact, some of the 1 MB data transfers, which were set up
to last for a maximum of 50 seconds, timed out before the en-
tire megabyte could be transfered. In these cases, we report the
average data rate for the 50-second duration of the connections.

The time-sequence number plot from a typical two-hop con-
nection in the testbed is depicted in Figure 4. Sequence num-
bers marked with a small dot were transmitted using the two-
hop route A+B+C, while sequence numbers marked ‘ x ’ were
transmitted using the one-hop route A-C. The dashed ver-
tical lines in the figure indicate when the TCP source A per-
formed a Route Discovery consisting only of a non-propagating
ROUTE REQUEST, and the solid vertical lines indicate when
a Route Discovery consisting of both a non-propagating and a
propagating ROUTE REQUEST occurred (by the rules of Route
Discovery, if the non-propagating REQUEST returns a REPLY
the propagating REQUEST is not sent).

The TCP connection in Figure 4 made very good progress for
the first 9 seconds of the connection, using almost exclusively
a two-hop route. However, during the time interval from 9 s
to 22 s , the connection makes almost no progress, sending about
30 KB in this 13 s interval. After processing a ROUTE ERROR at
t = 9 s , the TCP source (node A) initiates a ROUTE DISCOVERY.
The non-propagating ROUTE REQUEST is answered directly by
node C, causing A not to send a subsequent propagating ROUTE
REQUEST and thus to use a single-hop route to node C. The
poor quality of this single-hop link leads to repeated errors and
Route Discovery attempts. Finally, at t = 18 s, node A’s non-
propagating ROUTE REQUEST fails to return any REPLYS and
so A transmits a propagating REQUEST. This results in the
discovery of both the single-hop route and the two-hop route
through intermediate node B. By this time, TCP has backed
off and does not offer the next packet to the network until t
= 22 s. Node A attempts to use the one-hop route that it dis-
covered, finds that it does not work well, removes the one-hop

x 105
I

10 -

9 -

8 -

7 -
P

j 6 -

E 5 -
K

I

15 20 25 30 35 40 45 50
Time (s)

Fig. 5. A TCP sequence number plot for a 1 MB transfer over a two-hop route
when the macjilter utility was used on both the source and destination nodes
to prevent the use of single-hop routes. The vertical lines indicate the times
at which the TCP source initiated Route Discovery.

route from its Route Cache, and begins using the two-hop route.
At this time, the connection again starts making progress. The
same scenario of repeated attempts to use a one-hop route occurs
again from t = 25 s to 32 s and from t = 35 s to 43 s.

This scenario illustrates an important challenge for ad hoc
network routing protocols and argues strongly that all routing
protocols need some ability to remember which recently used
routes have been tried and found not to work. Even traditional
distance vector style protocols are subject to this problem as they
attempt to minimize a single metric - usually hop count.

Considering the three-node scenario discussed above, if A, B,
and C were all participating in a distance vector routing pro-
tocol, A would sometimes hear advertisements from node C.
Since the direct route to C is more optimal in terms of hop count
than the route through the intermediate node B, A would attempt
to send all of its packets directly to C until that direct route
timed out. In other words, without some type of local feedback
or other hysteresis, A will often try to send its packets directly
to C, effectively black-holing most of these packets since that
link is so unreliable. Protocols such as Signal Stability Based
Routing (SSA) [4] may behave much better in this scenario.

To evaluate the potential gain of having a mechanism that
would prevent the repeated use of the poor direct route from A to
C, we emulated perfect routing information by using our mac -
f i l t e r to eliminate the discovery of 1-hop routes. Figure 5
shows the time-sequence plot for a 1 MB transfer in the field
using this “perfect routing.” The flat plateaus are no longer
present, and the throughput is 30% higher. The remaining Route
Discoveries are triggered when packets are repeatedly lost due
to variation in wireless propagation, and techniques such as no-
tifications to the TCP module could be used to prevent the TCP
stalls that follow these Route Discoveries.

We are presently considering three ways to implement such a
mechanism in DSR. One solution would be for DSR to cache
information about each link for which it receives a ROUTE
ERROR. This negative information could be timed out after a

996

period based on the estimated rate of link fluctuation, but would
prevent DSR from repeatedly attempting to use a poor quality
link. The drawback of this solution is the difficulty of designing
a strategy to pick a reasonable timeout value.

While not a generic technique, in networks where each node
knows its position (e.g., due to the use of GPS as in our net-
work) communicating nodes could use the location information
propagated by the other nodes to model the position of their cor-
respondents. If the link A to C is found to be bad, DSR could
retain that negative information in its cache until it finds that
either node A or C has changed position in some reasonably
significant way.

The third and more sophisticated approach would combine
the signal strength at which the node received ROUTE REPLYS,
the position of the nodes, and the mobility pattern of the nodes
to estimate the probability of successful communication over a
particular route [161.

VII. CONCLUSIONS

We have created a testbed for ad hoc network research, fea-
turing 2 stationary nodes, 5 car-mounted nodes that drive around
the testbed site, and 1 car-mounted roving node that enters and
leaves the site. Packets are routed between the nodes using the
DSR protocol, which also seamlessly integrates the ad hoc net-
work into the Internet via a gateway. The use of Mobile IP per-
mits nodes to roam transparently between the ad hoc network
and normal IP subnets.

In preliminary analysis of data from runs of the testbed, we
have measured the jitter introduced by the network and found
that even under a full load and without any special QoS han-
dling, the network can support a Push-To-Talk voice system.
We have also explained how our novel heuristic for the DSR-
layer packet acknowledgement and retransmission scheme al-
lows nodes to rapidly adapt to changing levels of network con-
gestion. Finally we have demonstrated the need for hysteresis
in the selection of routes that are used in ad hoc networks to
prevent the use of routes that exist only transiently.

VIII. ACKNOWLEDGEMENTS

The Monarch Project ad hoc network testbed was the product
of the work of many people, but special recognition is due to
Jorjeta Jetcheva, Qifa Ke, and Ben Bennington.

We are also grateful for the efforts of the other members of the
research team, including Ratish Punnoose, Pavel Nikitin, Dan
Stancil, Satish Shetty, Michael Lohmiller, Yih-Chun Hu, Sam
Weiler, and Jon Schlegel.

REFERENCES
Bikram S. Bakshi, P. Krishna, N. H. Vaidya, and D. K. Pradham. Im-
proving the Performance of TCP over Wireless Neworks. In Proceedings
of the I7th International Conference on Distributed Computing Systems
(ICDCS’97), pages 365-373, May 1997.
David A. Beyer. Accomplishments of the DARPA Survivable Adaptive
Networks SURAN Program. In Proceedings of MILCOM’90, 1990.
Josh Broch, David B. Johnson, and David A. Maltz. The Dynamic Source
Routing Protocol for Mobile Ad Hoc Networks. Internet-Draft, draft-ietf-
manet-dsr-03.txt. October 1999. Work in progress.
Rohit Dube, Cynthia D. Rais, Kuang-Yeh Wang, and Satish K. Tripathi.
Signal Stability based Adaptive Routing (SSA) for Ad Hoc Mobile Net-
works. IEEE Personal Communications, pages 36-45, February 1997.
Gavin Holland and Nitin Vaidya. Analysis of TCP Performance over Mo-
bile Ad Hoc Networks. In The Fijih Annual ACMLEEE International Con-
ference on Mobile Computing and Networking (MobiCom’99). pages pp.
219-230, 1999.
IEEE Computer Society LAN MAN Standards Committee. Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications,
IEEE Std 802.11-1999. The Institute of Electrical and Electronics Engi-
neers, New York, New York, 1999.
David B. Johnson. Routing in Ad Hoc Networks of Mobile Hosts. In
Proceedings of the IEEE Workshop on Mobile Computing Systems und
Applications, pages 158-163, December 1994.
David B. Johnson and David A. Maltz. Dynamic Source Routing in
Ad Hoc Wireless Networks. In Mobile Computing, edited by Tomasz
lmielinski and Hank Korth, chapter 5 , pages 153-181. Kluwer Academic
Publishers, 1996.
John Jubin and Janet D. Tomow. The DARPA Packet Radio Network
Protocols. Proceedings of the IEEE, 75(1):21-32, January 1987.
Robert E. Kahn, Steven A. Gronemeyer, Jerry Burchfiel, and Ronald Kun-
zelman. Advances in Packet Radio Technology. Proceedings of the IEEE,
66(11):1468-1496, November 1978.
David A. Maltz. Resource Management in Multi-hop Ad Hoc Net-
works. Technical Report CMU CS 00-150, School of Computer
Science, Camegie Mellon University, July 2000. Available from
http://www.monarch.cs.cmu.edu/papers.html.
David A. Maltz, Josh Broch, Jojeta Jetcheva, and David B. Johnson. The
Effects of On-Demand Behavior in Routing Protocols for Ad Hoc Net-
works. IEEE Journal on Selected Areus in Communications. 17(8):1439-
1453, August 1999.
David A. Maltz, Josh Broch, and David B. Johnson. Experi-
ences Designing and Building a Multi-Hop Wireless Ad Hoc Net-
work Testbed. Technical Report 99-116, School of Computer Sci-
ence, Camegie Mellon University, March 1999. Available from
http://www.monarch.cs.cmu.edu/papers.html.
Charles Perkins, editor. IP Mobility Support. RFC 2002, October 1996.
J. Postel. Intemet Protocol. RFC 791, September 1981.
Ratish J. Punnoose, Pavel V. Nikitin, Josh Broch, and Daniel D. Stancil.
Optimizing Wireless Network Protocols Using Real-Time Predictive Prop-
agation Modeling. In Radio and Wireless Conference (RAWCON), Denver.
CO, August 1999.

http://www.monarch.cs.cmu.edu/papers.html
http://www.monarch.cs.cmu.edu/papers.html

