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We present a transfer-function approach to calculate the force on a magnetic force microscope tip
and the stray field due to a perpendicularly magnetized medium having an arbitrary magnetization
pattern. Under certain conditions, it is possible to calculate the magnetization pattern
from the measured force data. We apply this transfer function theory to quantitatively simulate
magnetic force microscopy data acquired on a CoNi/Pt multilayer and on an epitaxially grown
Cu/Ni/Cu/Si~001! magnetic thin film. The method described here serves as an excellent basis for ~i!
the definition of the condition for achieving maximum resolution in a specific experiment, ~ii! the
differences of force and force z-derivative imaging, ~iii! the artificial distinction between domain
and domain wall contrast, and finally ~iv! the influence of various tip shapes on image content.
© 1998 American Institute of Physics. @S0021-8979~98!03611-1#

I. INTRODUCTION

Magnetic force microscopy ~MFM!1–5 has become a
valuable tool for imaging the stray field of complicated fer-
romagnetic samples6–15 and superconductors.16–23 The in-
strument consists of a micron-scale ferromagnetic tip at-
tached to a flexible cantilever which scans close to the
surface of the sample. The stray field emanating from the
sample generates a force on the magnetic force microscope
tip. The ability of the instrument to image both the magnetic
stray field of the sample and sample topography24–26 allows a
correlation of the measured stray field with particular surface
structures. Thus it is possible to study the pinning of domain
walls in ferromagnetic samples and the pinning of vortices in
superconducting samples due to a structural defect observ-
able at the surface. Other applications are the use of the stray
field of the tip27–29 for modifying the magnetic state of the
sample22,30–32 or for determining the sensitivity and response
of magnetic heads to localized fields.33–38

There is growing interest to move from qualitative im-
aging to quantitative analysis of sample properties using
MFM. To this end, image analysis in reciprocal space and
the use of transfer functions is now being explored. In gen-
eral it is not possible to calculate a magnetization distribution
from MFM data. In the special case of perpendicular magne-
tization, as we will show later, it is theoretically possible to
use the force pattern, F(x ,y), to generate the magnetization
pattern, M (x ,y), to within a constant. However due to the
limited signal-to-noise ratio of a MFM force measurement,
the better procedure remains to assume a magnetization pat-
tern, calculate its field, and then calculate the force on the tip
due to this field. This calculated force is then compared with
the measured force data. This process is iterated until the

agreement between measured and calculated force patterns is
optimized. Important tasks remain including the understand-
ing of the image formation process. This can be difficult
because of the possibly strong perturbation of the sample
magnetization by the magnetization of the tip, or vice versa.
Generally, the MFM image formation can be divided into
three categories: first, the hard magnetic case, where the
magnetization of the tip and the sample remains undisturbed
by the scanning process of the magnetic tip above the
sample; second, the hysteresis free, soft magnetic case,
where the sample or the tip magnetization is uniquely de-
fined by the position of the tip above the sample ~and the
magnetic structure of the tip and the sample!;16,21 and third,
the intermediate case, where the magnetization of the tip and
the sample influence each other and change in a discontinu-
ous, hysteretic way.39 The ideal MFM situation, even when
measuring soft samples, is a magnetically hard tip with small
enough volume that the tip field is so weak that it does not
perturb the sample magnetization. The small tip volume also
makes higher resolution possible. However, the size of the
tip volume is limited by the sensitivity of the force micro-
scope system to detect smaller tip deflections.

In this article, we restrict the discussion to the hard mag-
netic case because we believe that the increased sensitivity of
future scanning force microscope instrumentation allows the
use of hard, low magnetic volume tips. So far, the following
approaches for modeling ~MFM! data have been presented.
~i! In the case of simple tip and sample magnetization struc-
tures, the MFM response is often calculated analytically in
direct space.24,40–50 ~ii! More complex magnetization struc-
tures, including configurations with soft magnetic tips and/or
samples have been treated numerically by dividing the tip
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and the sample into many subcells.51–56 However, both
methods are of limited utility for many MFM applications. In
the first case, complex magnetization structures cannot be
described in direct space by analytic solutions, while in the
second case a large amount of processor time is needed even
for relatively simple cases. ~iii! In contrast, an approach
based on Fourier transform methods gives more insight into
the basic image formation principles and is applicable to
arbitrary samples and tips as long as the micromagnetic state
of the tip is not influenced by the sample and vice versa
~hard magnetic case!.57 Schönenberger et al.3 have used the
Fourier transform method to study the image formation prop-
erties of tips made from different ferromagnetic materials. In
Refs. 58 and 59 the micromagnetic structure of the sample
was the main point of interest while the tip was not taken
into account or it was assumed to be of a rather simple struc-
ture. The first article58 discusses noise problems and image
focusing, while the latter59,60 addresses the problem of the
reconstruction of the sample magnetization from the mea-
sured field data. All these approaches calculate the force on
the magnetized tip in the stray field of the sample.

Alternatively, the modeling of MFM data has been ac-
complished using the force reciprocity principle.61 The au-
thors calculate the force acting on the magnetization of the
sample produced by the stray field of the tip rather than vice
versa. This allows the role of the tip in the imaging process
to be represented in a particularly simple fashion.

In this article we outline a transfer function theory ap-
propriate to MFM and demonstrate its power for quantitative
analysis of MFM images. In Sec. II we use a Fourier trans-
form method to calculate the stray field of an arbitrarily com-
plex magnetization.62 We find transfer functions that allow
the determination of the Fourier components of the field
from those of the magnetization and those of the force from
those of the field by simple multiplication. The capabilities
and the limits of the inversion of these transfer functions are
discussed. The enhancement of the resolution of an MFM
image @if defined as the full width at half maximum
~FWHM! of the force image of a transition of the magneti-
zation# and the reconstruction of the magnetization pattern
from the measured data are shown to play an important role
in MFM experiments. In Sec. III, we first describe the ex-
perimental conditions that must be followed in order to allow
proper interpretation of MFM data. We then apply our theory
to the analysis of magnetic force microscopy data acquired
on a CoNi/Pt multilayer and on an epitaxially grown
Cu/Ni/Cu/Si~001! magnetic thin film.

II. THEORY

One challenge in interpreting MFM images is that three-
dimensional spatial integration is necessary to get to the field
from the magnetization and the force from the field:
M (x ,y)→H(x ,y ,z)→F(x ,y ,z). The more efficient way is
to Fourier transform those fields and make use of the fact
that their Fourier transforms are simply related by multipli-
cative functions called transfer functions: M (kx ,ky)
→H(kx ,ky ,z)→F(kx ,ky ,z). In this section we summarize
those aspects of Fourier transfer functions that are important

for quantitative understanding of MFM images. We first as-
sume a perpendicular sample magnetization distribution,
M z(x ,y), which is uniform over the film thickness, h . The
magnetization, M z(x ,y), gives rise to surface charge
distributions63 at the top surface @1s(x ,y), z50# and the
bottom surface @2s(x ,y), z52h#. The magnetic field
above the sample is produced by these charges only. If nec-
essary, bulk charges can easily be introduced, for instance by
layering the magnetic film into sheets of surface charges.
Following64,65 we perform the calculation in the two-
dimensional ~2D! spatial frequency domain, using the Fou-
rier description of the surface charges at the top and the
bottom of the film

AM~k!5E
2`

`

s~r!•e ikr
•dr ~1!

with r5~x ,y !, k5~kx ,ky! and k5Akx
2
1ky

2. ~2!

As is common in magnetostatic calculations, we define a
magnetostatic potential, f(x ,y ,z) as

H~x ,y ,z !52grad f~x ,y ,z !. ~3!

The magnetostatic potential must be a solution of the
Laplace equation in the free space outside the magnetic
sample. A general solution of the Laplace equation, which
vanishes as the distance, z , goes to infinity, is

f~x ,y ,z !5E
0

`

Af~k!•e ik•r
•e2Ak

x
2
1k

y
2
zdk. ~4!

Using the boundary condition

]f

]z
U

z510

52
1

2
M ~x ,y !, ~5!

the Fourier components of the magnetization, AM(k), and
those of the magnetostatic potential, Af(k), used in Eq. ~4!
are related as

Af~k!5
AM~k!

2Akx
2
1ky

2
. ~6!

Equation ~6! expresses in the simplest form, the use of a
transfer function, (2k)21, to relate the Fourier transforms of
the sample magnetization and the magnetostatic potential. Its
utility will become clearer as we proceed.

Using Eqs. ~3!, ~4!, and ~6! we can easily find the rela-
tion between the Fourier components of the stray field,
AHx ,y ,z

z ,h (k), and those of the magnetization @Eq. ~1!#,

AHx ,y

z ,h ~k!5i•
e2kz~12e2kh!kx ,y

2k
•AM~k!

5HTFx ,y~k!–AM~k!, ~7!

AHz

z ,h~k!5
e2kz~12e2kh!

2
•AM~k!5HTFz~k!AM~k!,

~8!

where the HTFi are called the field transfer functions. Note
that the factor (12e2kh) originates from the magnetic sur-
face charge density at the lower surface of the film. The
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magnetic stray field at the position, r, a distance, z , above
the surface of the film can be calculated by the reverse trans-
form

Hx ,y~r,z !5
1

4p2 E
2`

`

AHx ,y

z ,h e2ikr
–dk,

~9!

Hz~r,z !5
1

4p2 E
2`

`

AHz

z ,he2ikr
–dk.

In Fig. 1~a!, we plot the field transfer function ~HTF! which,
by Eq. ~8!, is equal to the ratio of the Fourier components of
the field and the magnetization. The HTF is plotted for a
bulk sample ~thickness, h5` , z51! and a thin film sample
~thickness, h50.1, z51! in dimensionless units. These
transfer functions, when multiplied by the Fourier coeffi-
cients of the magnetization distribution, give the Fourier co-
efficients of the field. Figure 1~b! shows the x-dependence of

the field, Hz , for square magnetization distributions ~many
Fourier components! in a thin film for three different mag-
netization periods. For a long magnetization period ~e.g., 5
mm, dashed line! the fundamental spatial frequency of the
magnetization is multiplied by a small HTF value. Hence the
field above the center of the domain is weak. The higher
spatial frequency components of the magnetization which
occur near the domain walls are amplified by a larger HTF so
the field there is larger. ~In earlier articles this strengthening
of the field above a sharp change in magnetization was often
called domain wall contrast.! Note that the largest stray field
is generated for a magnetization wavelength given by

k5

lnS z1h

z
D

h
. ~10!

This field is shown by the dotted line in Fig. 1~b!. In this
case, the fundamental Fourier component of the magnetiza-
tion occurs at the peak in the HTF so the largest component
of the field is at the fundamental period of the magnetization.
For very small magnetization periods @solid line in Fig. 1~b!#
the exponential decay of the field-transfer function leads to a
strong attenuation of the stray field. In this case, good reso-
lution can be obtained only if the MFM has very high sen-
sitivity. Thus we can see that the HTF is a function that
generates fields of different strength from magnetization fea-
tures of different wavelength.

Once the stray field of a magnetic sample is known, the
force on the MFM tip is found by integrating the product of
the field and the magnetic charge distribution of the tip over
the tip volume. We define a tip volume charge distribution,
rTip , and a tip surface charge distribution, sTip , as

rTip~x8,y8,z8!5divM~x8,y8,z8!;~x8,y8,z8!PVTip ,

sTip~x8,y8,z8!5MTip•n;~x8,y8,z8!PATip ,
~11!

where the origin of the primed coordinate system is attached
to the end of the tip ~Fig. 2!. Then the z component of the
force on the tip located at the position (r,z) becomes

FIG. 1. ~a! The field-transfer function ~HTF!, which is the ratio of the
Fourier components of the field to those of magnetization, is plotted as a
function of the wave vector, k52p/l ~and wavelength, l!. The dashed
curve represents the HTF for a bulk sample and the solid curve is the HTF
for a thin film sample (h50.1). In both cases the distance from the sample
is z51 and the sample magnetization is M51. Clearly the HTF for the bulk
sample reaches its maximum value of 0.5 for the large magnetization peri-
ods ~small wave vectors! and decays exponentially at short magnetization
periods. In contrast, the HTF of the thin film sample reaches its maximum
value for l52ph/ln@(z1h)/z# ~dotted line in b! and rolls off for short and
long magnetization periods ~dashed and solid line in b!. ~b! The stray field
of a square magnetization pattern in a perpendicular thin film ~magnetization
up and down! is plotted as a function of the lateral distance, x in mm, for
three domain periods. The sample thickness is 10 nm, and the tip-to-sample
distance is 100 nm. The dashed line is the field for a magnetization wave-
length of 5000 nm (l550), the dotted line for 659 nm (l56.595lmax),
and the solid line for 100 nm (l51).

FIG. 2. The sample coordinate system is attached to the sample surface (z

50). The primed coordinate system is attached at the tip located at the
position (tx ,ty ,tz).
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Fz~r,z !5m0•E
V

rTip~r8,z8!Hz~r1r8,z1z8!dV81m0

• R
A

sTip~r8,z8!Hz~r1r8,z1z8!dA8. ~12!

Alternatively, the force may be calculated by taking the z

derivative of the magnetostatic energy of the tip in the stray
field of the sample ~see appendix!.

The force can also be calculated in Fourier space. The
Fourier descriptions of the force and the field,

Fz~r,z !5
1

4p2 E
2`

`

AFz

z ,he2ikr
–dk ~13!

and

Hz~r1r8,z1z8!5
1

4p2 E
2`

`

AHz

z ,he2ik~r1r8!e2kz8dk,

~14!

can be inserted in Eq. ~12!. Then we find the relation be-
tween the Fourier components as

AFz

z ,h~k!5AHz

z ,h~k!–FTF~k! ~15!

with

FTF~k!5m0•E
V

rTip~r8,z8!e2kz8e ikr8dV81m0

• R
A

sTip~r8,z8!e2kz8e ikr8dA8. ~16!

Finally we define the tip-transfer function, TTF ~k!, as the
product of the field-transfer function and the force-transfer
function ~see Fig. 5!:

TTF~k!5HTF~k!FTF~k!. ~17!

For a given image size ~set of k vectors! the two integrals in
Eq. ~16! need to be calculated only once to be applied to an
arbitrary magnetization pattern.66 Note that the force-transfer
function reflects the magnetic microstructure of the MFM tip
only, whereas the field-transfer function, HTF ~k! is deter-
mined by the magnetic sample ~bulk, thin film, multilayer,
etc.!.

The three transfer functions relevant to MFM image
analysis have now been defined. We now show the power of
these functions by demonstrating their use in defining the
field of more complex sample or tip charge distributions.
From Eq. ~8!, the Fourier components of the field above a
single surface charge distribution, s(k)5s(k,z50) is

AHz

s ,z
5HTF~k!–s~k!5

e2kz

2
s~k!. ~18!

The field above a double layer, s(k)5s(k,z50)2s(k,z
52h), is simply

AHz

s6,z
5HTF~k!–@s~k!2s~k!–e2kh#

5
e2kz@12e2kh#

2
s~k!. ~19!

By extension, the Fourier components of the field above a
continuous, z-dependent distribution of charges are given by

AHz

s~z8!,z~k!5E HTF~k!–s~k,z8!e2kz8dz8

5
1

2
•E e2kzs~k,z8!e2kz8dz8. ~20!

It is not possible to make a simple statement of the real space
field above an arbitrary charge distribution because each k

value of s(k) decays with distance at a different rate.
Note that Eq. ~16! is of the same form as Eq. ~20! for

z50. Thus the force-transfer function @Eq. ~16!# is the Fou-
rier transform of the stray field of the tip in the plane
(x8,y8,z850).

In this work we restrict our calculations of the force-
transfer function, FTF ~k!, to a long, thin, slablike tip ~see
Fig. 3!, with

~i! its bottom and top surface area given by, (bxby),
~ii! a homogeneous magnetization directed along its long

axis, l , and
~iii! the tip oriented perpendicular to the surface of the

sample.

Using Eq. ~16! we find for the FTF ~k!

FTF~k!52
4m0M Tip

kxky

sinS kxbx

2 D sinS kyby

2 D ~12e2kl!.

~21!

In Fig. 4~a! we have plotted Eq. ~21! as a function of the
wave vector, kx , in one dimension with a tip length l510, a
bottom surface edge length, b50.1, and m051. The FTF is
flat over a large range of wave vectors and decays for small
and large wave vectors. The decay for small wave vectors
~large magnetization wavelengths! is due to the finite length
of the tip ~dipole tip behavior! through the last factor in Eq.
~21!. The decay for large wave vectors is caused by the

FIG. 3. To obtain a tip with a well defined direction of the magnetization we
have used an electron microscope to grow a deposition tip on a standard
pyramid tip of a commercially available cantilever. The needlelike tip was
intentionally grown at an angle of approximately twelve degrees to the axis
of the pyramid tip, so that it is perpendicular to the surface of the sample.
The tip is made sensitive to magnetic stray fields by a 25-nm-thick Co film
which was deposited on the side of the needlelike tip by thermal evapora-
tion.
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1/kxky dependence in Eq. ~21!. Further the sine terms intro-
duce a series of zeros in the force-transfer function related to
the bottom area of the tip, bxby.67 The size of the bottom
surface of the tip, (bxby), thus sets a natural limit to the
resolution of the stray field. The measured force is propor-
tional to the stray field as long as the length of the tip is
larger than the decay length of the field, e2kl

!1, @see appen-
dix, Eqs. ~A5!, ~A6!, and Fig. 4~b!#. If the bottom surface of
the tip is much smaller than the shortest wavelengths of the
magnetic surface charge distribution, kxbx!1 and kyby!1
~the flat region of the FTF, Fig. 4~a!, should be extended to
smaller k values.!, then the force-transfer function, FTF @Eq.
~21!#, can be approximated by a point charge, qm

FTF~k!'2m0M Tipbxby5qm . ~22!

It is important to note the analogy between the transfer-
function analysis of MFM and magnetic recording theory.
An MFM tip resembles a single pole head used in perpen-
dicular magnetic recording. ~i! In the e2kz term we see the
same behavior as described by head-to-medium distance
loss. ~ii! In the TTF @Eqs. ~21! and ~17!# we recognize the
sinusoidal functions to give a behavior like the inductive
head gap loss @FTF ~k!#. ~iii! Contained in the HTF @Eq. ~8!#

we see a term 12e2kh, identical to that used to describe the
effects of recorded signal depth, h , on field strength, namely
the film thickness loss.68

In conclusion ~see Fig. 5! the force on the MFM tip can
be calculated directly from the magnetic surface charges on
the tip by means of the tip-transfer function @TTF, Eq. ~17!#
or, alternatively from the stray field by means of the force-
transfer function @FTF, Eq. ~16!#. The stray field is calculated
from the Fourier component of the sample magnetization by
the field-transfer function, @HTFz , Eq. ~8!#. With these equa-
tions it is further possible to calculate many important quan-
tities.

~1! The stray field can be determined from the force image.
This process is limited by the cutoff frequency of the
force-transfer function @Fig. 4~a!#69 or by the force sen-
sitivity of the MFM ~the rapid decay of the force-transfer
function for small wave vectors may lead to a cutoff
given by the limited sensitivity of the force microscope
instrumentation rather than by the finite size of the tip!.

~2! One can calculate the stray field at a smaller tip-to-
sample distance, z , from data acquired at a larger tip-to-
sample distance, Z , by

AHz
~k!5AHZ

~k!–ek~Z2z !. ~23!

Note that this process is limited by the signal-to-noise
ratio of the measurement.

~3! The sample surface charge distribution can be recon-
structed from the stray field @set z50 in Eq. ~23!#. Note
that in the case of perpendicular magnetization, the sur-
face charge distribution is equal to one half of the mag-
netization. Again, the process is limited by the signal-to-
noise ratio of the field or force data.

~4! The z derivative of the field can be determined from the

FIG. 4. ~a! The force-transfer function ~FTF! which is the ratio of the
Fourier components of the force to those of the field, is plotted as a function
of the wave-vector, k52p/l ~and wavelength, l! for a slablike tip @Eq.
~21!#. Tip length, l510; size of bottom and top surface surface, b50.1; tip
magnetization, M Tip51. ~b! Various tip lengths in a field emanating from a
periodic magnetization pattern. The force on the dipole tip ~a! is propor-
tional to the z derivative of the field, whereas the force on the monopole tip
~c! is proportional to the stray field ~tip length much larger than the decay
constant of the stray field!. The force on the elongated-dipole tip ~b! can be
calculated as the force difference between the lower, positive charge, and
the upper negative charge.

FIG. 5. The Fourier components of the force, F z , on the MFM tip are
calculated either directly from those of the magnetic surface charges,
AM(k), by means of the tip-transfer function @TTF, Eq. ~17!# or indirectly
from the Fourier components of the stray field, AHz

h ,z , by means of the force-
transfer function @FTF, Eq. ~16!#, where the stray field is calculated by the
field-transfer function, @HTFz , Eq. ~8!#.
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field or force by
Az derivative~k!5AField~k!–~2k !. ~24!

Note that operation modes which measure the force de-
rivative amplify the high frequency Fourier components
and seem to be well suited for high-resolution MFM.
However, dynamic mode MFM images are more diffi-
cult to interpret ~see discussion in next section!.

~5! The stray field of the tip, Hz ,Tip(r8,z8) is equal to 2m0
times the force-transfer function @Eq. ~16!# which is used
to calculate the Fourier components of the force, AFx

,
from those of the field, AHz

z ,h .

With the transfer-function approach we have found an effi-
cient way to calculate the Fourier components of the force
and the stray field from those of the magnetization. A stray
field or force calculation becomes similar to a regular
Fourier-filtering procedure. The method described here is
easily implemented using todays high-level-language image
processing software packages, e.g.,70,71 which allow efficient
handling of the Fourier transformation of large matrices of
real numbers.

III. APPLICATION TO MFM MEASUREMENTS

In this section we illustrate the application of the MFM
transfer function theory developed in Sec. II. New quantita-
tive analysis is presented for magnetic domain images taken
on perpendicular CoNi magnetic recording thin films and
ultrathin Cu/Ni/Cu films.

The present results were taken at room temperature and
in air using a new, sophisticated fiber-optical scanning force
microscope ~SFM! which was built for low temperature and
UHV use.72 The small size of the instrument ~diameter: 40.4
mm, length: 120 mm! and the thermally well compensated
construction make this instrument particularly suited to re-
producibly perform MFM experiments using a fixed set of
operation parameters. The microscope can be used in dc and
ac scanning modes of force microscopy ~see article about
MFM in Ref. 73!. Although the ac modes have the advantage
of higher sensitivity for short wavelength Fourier compo-
nents @Eq. ~24!#, the quantitative interpretation of the data is
difficult. In the following we discuss some of the most com-
mon difficulties of the interpretation of images acquired in
the ac-operation modes.

In the ac mode the relative frequency shift, dv/v , in
cantilever resonance is commonly assumed to be propor-
tional to the force derivative by

dv

v0
5

1

2c

]Fz

]z
, ~25!

where c is the force constant of the cantilever and v0 is the
resonance frequency of the free cantilever. However, Eq.
~25! is true only under three conditions: first, the damping of
the cantilever oscillation is constant throughout the image,
second, the oscillation amplitude of the cantilever is small
compared to the average tip-to-sample distance and third, the
tip-to-sample distance is constant.

However, using microfabricated cantilevers in air, we
often find that the damping strongly depends on the local

topography.74 Topographic features or even cantilever de-
flections caused by magnetic forces are then easily misinter-
preted as force derivatives using Eq. ~25!. Further, the am-
plitude of the cantilever oscillation is a large fraction of the
tip-to-sample distance in many experiments75–83 because the
sensitivity depends linearly on the oscillation amplitude. The
minimum detectable force z derivative is given by84

Fzmin8 5
1

A
A2ckBTDn

Qv0
, ~26!

where A is the oscillation amplitude, kB is the Boltzmann
constant, T is the temperature, Dn is the measurement band-
width, and Q is the sharpness of the cantilever resonance.
Finally, many groups have operated their instruments in a
constant frequency shift ~force derivative! mode. In order to
have the feedback loop stable ~see article about MFM in Ref.
73!, it is necessary to apply an electric field between the tip
and the sample in order to keep the second z derivative of the
force from changing its sign. This mode allows stable MFM
operation even with relatively simple instrumentation, often
lacking mechanical and thermal stability. However, such an
operation mode leads to a nonconstant tip-to-sample dis-
tance. An elegant solution to this problem was presented by
Schönenberger.25 He uses the second harmonic generated by
an oscillating electric field applied between the tip and the
sample to keep the tip-to-sample distance constant. Then the
change of the cantilever resonance frequency reflects the
magnetic signal.

In the experiments presented in this work we have used
a static MFM operation mode ~the details of this operation
mode have been described in previous work!.26,85 The static
mode is used to avoid the above problems and to make a
quantitative interpretation possible. We do not use feedback
to control the tip-to-sample distance but simply add a linear
and quadratic part of the x- and y-scan signal to the z piezo
in order to compensate for the sample slope and the nonlin-
earity in the scan-piezo movement. Using topographical
measurements to find the best fitting parameters, the tip fi-
nally scans on a ‘‘least square deviation paraboloid.’’ With
the presently used tip-to-sample distances around 100 nm
and topographical features typically 10 nm in height, the
variation of the tip-to-sample distance can be neglected. We
currently reach a force resolution of 1 pN giving a reasonable
signal-to-noise ratio of 26–34 dB.

In all experimental examples discussed below we have
used a tip produced by e beam induced deposition.86–88 The
needlelike tip was grown on a commercially available canti-
lever at an angle of approximately twelve degrees to the axis
of the pyramid tip, so that the needle is perpendicular to the
surface of the sample. The tip is made sensitive to magnetic
stray fields by a 15–25-nm-thick Co film which was depos-
ited on the side of the tip by thermal evaporation ~Fig. 3!.

A first application of the MFM transfer function theory
is the enhancement of the sharpness of an MFM image. In
realistic MFM measurements, the minimum tip-to-sample
distance is limited by the snap-to-contact distance of the
cantilever.26,89 When the sample is brought towards the tip,
the cantilever deflection becomes unstable when the attrac-
tive force z derivative becomes larger than the force constant
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of the cantilever. At this point the cantilever snaps to contact,
making a measurement of small magnetic forces
impossible.4,26

One of our experiments was performed on magneto-
optically written bits in a 203(5ÅCo50Ni50/5 ÅPt) multi-
layer. Due to the low squareness of the hysteresis loop, this
material splits up into small domains which are still visible
outside the bits. The bits were written with laser pulses of
0.24 ms duration and powers of 2.5, 5, 7.5, and 10 mW ~Fig.
6!. Note that the bits are not fully saturated due to the low
field applied during writing @Fig. 7~a!#. It has been pointed
out that such a sample may serve as a reference to test the
resolution of magnetic force microscopes and/or MFM tips
but it is not suited as a recording material.90

With Figs. 7~a!–7~c! we show that the resolution ~if de-
fined as the sharpness of transitions! can be enhanced by
using Eq. ~23! as a Fourier-filtering function. We calculate
the image at a reduced tip-to-sample distance of 20 nm @Fig.
7~b!# from data acquired at a tip-to-sample distance of 74 nm
@Fig. 7~a!#. In Fig. 7~c! we plot the field-transfer functions
for z574.2 and z520 nm as a function of the magnetization
wavelength, l, rather than as a function of the wave vector,
k52p/l , @Fig. 1~a!#. The figure clarifies that a strong am-
plification of the small wavelength Fourier components is
achieved. At a magnetization period of 100 nm, i.e., a do-
main size of 50 nm ~dotted line!, the gain becomes 30. To
avoid an amplification of the high frequency noise we first
low-pass filter the data to suppress the amplification of wave-
lengths below 50 nm ~Note that a cutoff wavelength of 50
nm is justified because the distance between two measure-
ment points is 30 nm.!. Note that no information is lost as the
tip-to-sample distance is increased as long the information
remains above the noise level.91,92 However, in practice the
sharpening is limited by the signal-to-noise ratio of the origi-
nal data.

As indicated in the above discussion, a definition of the
resolution relying on the measured width of a sharp transi-
tion of the magnetization is not suitable. The high frequency
Fourier components are suppressed more strongly than the

low frequency ones @Eq. ~8!# but can be recovered in some
cases. Further, a high frequency variation of the magnetiza-
tion which is overlayed on a low frequency variation of the
same amplitude is easily missed in the MFM image. Without
the presence of a low frequency Fourier component, the high
frequency one would have been easily visible.

We suggest not to define the resolution as the sharpness
of a transition but as the wavelength where the signal-to-
noise ratio becomes &(3 dB). Note that for a finite tip
length and/or for a finite sample thickness there is also a long
wavelength limit. However this limit is generally not impor-
tant for MFM experiments. The ~lateral! resolution depends
on the sample properties, the tip-to-sample distance, z , the
size and type of the tip ~force-transfer function!, and the
minimal measurable force ~vertical resolution! or force de-
rivative of the force microscope instrumentation used. The
resolution depends on sample properties through the magni-
tude and direction of the magnetization and the type of
sample ~bulk sample or thin film with thickness, h!. A stron-
ger stray field will generally allow a higher resolution. The

FIG. 6. A laser beam has been used to magneto-optically write bits in a
multilayer, 203(5 ÅCo50Ni50/5 Å Pt). The bits were written with laser
pulses of 0.24 ms duration and powers of 2.5, 5, 7.5, and 10 mW ~Fig. 6,
top!. The bits are not fully saturated ~subdomains exist! due to the low field
applied during writing @Fig. 7~a!#.

FIG. 7. Close up image of one bit from Fig. 6. The sharpness of the tran-
sitions can be enhanced by calculating the image at a reduced tip-to-sample
distance of 20 nm ~b! from data acquired at 74 nm ~a!. This process is
limited by the signal-to-noise ratio of the MFM measurement performed at
74.2 nm. ~c! The field-transfer functions for the tip-to-sample distances z

574.2 ~dashed line! and 20 nm ~solid line! are plotted as functions of the
magnetization wavelength, l ~sample thickness, h520 nm, sample magne-
tization, M Sample51!. A strong amplification of the high frequency Fourier
components is achieved by measurement or simulation at small tip-to-
sample distances. At a magnetization period of 100 nm ~domain size of 50
nm! the gain becomes 30.
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role of the tip is more evident. The resolution depends on the
tip size and the magnetic charge at the bottom surface. Fur-
ther, an elongated dipole tip prevents an early role off of the
force transfer function at small wave vectors. Finally, the
force ~or force derivative! resolution of the microscope might
be responsible for an early cutoff of the tip-transfer function.
The lateral resolution of an MFM experiment may be limited
by the vertical resolution ~or the signal-to-noise ratio! of the
microscope rather than by the tip. To find the maximum
achievable resolution, it becomes necessary to:

~1! calculate the tip-transfer function for the given tip/
sample configuration,

~2! determine the minimum measurable force of the micro-
scope,

~3! compare the minimum detectable force ~microscope sen-
sitivity! with the tip-transfer function to determine the
nature of the limit ~tip or distance limited!.

From a resolution point of view it is interesting to compare
data acquired in the static and dynamic measurement mode.
Figure 8~a! shows an MFM image acquired in the static op-
eration mode and the negative if a simulation of a dynamic
mode MFM image @Fig. 8~b!# uses Eq. ~24! to calculate the
force z derivative image. At first glance, the images look
very similar. However, in the z-derivative image the high
frequencies are amplified by a factor of k making the transi-
tions in z-derivative image sharper than those of the force
image.

In summary the resolution is improved by decreasing the
tip-to-sample distance, using a smaller tip and increasing the
sensitivity of the scanning force microscope. The last limita-
tion factor is often neglected.

Another important application of the present methods
arises from the possibility to efficiently calculate stray fields
of arbitrarily complex magnetization patterns. This allows
one to adjust different parameters such as the tip-to-sample

distance, the size of the sample magnetization, the tip mag-
netization, size or shape, or many other parameters to simu-
late an MFM image. As an example we use a Marquart fit
routine to simulate an MFM image of the domain structure
of a thin Ni film sandwiched between two Cu layers.

We use an molecular beam epitaxy ~MBE! grown, epi-
taxial Cu/Ni/Cu/Si~001! film with a Ni thickness of 10 nm
and a capping layer of 2 nm thickness. The Cu/Ni/Cu/
Si~001! system shows an extremely broad thickness range
~2–14 nm! over which perpendicular magnetization is
observed.13 A series of such films had previously been stud-
ied by MFM to reveal the dependence of the domain struc-
ture on the thickness of the Ni layer ~2–12.5 nm!12 and to
explain the transition of the magnetization direction from
perpendicular to in-plane above a critical thickness.14 At a Ni
film thickness of 10 nm, submicron bubble domains start to
form inside micron sized domains @Fig. 9~a!# while the sta-
bility calculations show that the domain magnetization re-
mains exactly perpendicular.72 Therefore the above theory
can be applied.

Here we concentrate on the analysis of large scale im-
ages (13.6315.8 mm2) where the magnetization pattern con-
tains various spatial frequencies. The relatively large grid
pitch of 53.1361.7 nm2 of the MFM image justifies the use
of a simple force-transfer function @Eq. ~22!#. We have tried
both an extended dipole tip and a monopole ~point charge!

tip and found the latter to give better fit results @Fig. 4~b!#.
This suggests that the top charge might be compensated by
the usually complex domain structure on the pyramid tip. In
the example shown in Fig. 9 we use the following procedure
to simulate the MFM image @Fig. 9~c!# and to compare it to
the MFM measurement @Fig. 9~a!#:

~1! We use the measured data to calculate a working image
~not shown! at a reduced tip-to-sample distance @Fig.
9~a!#. Then we discriminate the working image at a cer-
tain level ~1st fit parameter! to obtain the normalized
~white51, black521! magnetization pattern @Fig.
9~b!#.93

~2! We calculate a force image @Fig. 9~c!# from the normal-
ized magnetization pattern @Fig. 9~b!# using Eqs. ~1!, ~8!,
~9!, and ~22! as a force-transfer function. The tip-to-
sample distance and the product of the tip charge and the
sample magnetization are fit parameters.

~3! We use a Marquart-fit procedure to minimize the mean-
square deviation of the difference of the simulated force
image @Fig. 9~c!# and the measured MFM data @Fig.
9~a!#. The fit routine returns the three optimized param-
eters from which the first one, the level of the discrimi-
nation plane, has no physical value. The tip-to-sample
distance becomes 176 nm which is larger than expected
from approach curves. This reflects the fact that the mag-
netic tip ~the point charge! is not located at the very end
of the amorphous carbon needle probably because of the
microscopic geometry ~curvature! of the tip. The product
of the charge of the tip and the magnetization of the
sample becomes 1.66 nN. From the saturation magneti-
zation of the sample (M Ni54.853105 Am21) we can
calculate the point charge of the tip: qTip53.42

FIG. 8. In the dynamic MFM operation modes the high frequency Fourier
components are enhanced relative to those measured in the static mode
@image ~a!#. The gradient image ~b! was calculated using Eq. ~24!. The
tip-to-sample distance, z , is 74 nm; the film thickness, h is 20 nm.
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31026 nN/Am21. From this value and the magnetiza-
tion of the tip (M Co51.423106 A/m) we can further
estimate @Eq. ~22!# the bottom surface of the tip to be
1.91310215 m2 or 20 nm396 nm. This suggests that the
tip has about a 10:1 aspect ratio, which is consistant with
Fig. 3.

Note that the above procedure can be used to calibrate
the tip ~evaluate the size of the point charge! on a standard
sample with a well defined magnetization. Once the tip is
calibrated, the size of the z component of the stray field of a
perpendicularly magnetized sample with an arbitrarily com-
plex domain pattern can be measured quantitatively ~see field
axis in Fig. 9 sections a and c!.

Thus the calibration of the tip has made it possible to
assign a field value to the cross sectional force scans shown
in Fig. 9. The question is, how consistent are these fields?
The field for the 2.5 mm domain, located around the 10 mm
position in section a!, is 73103 A/m near the domain wall.
This value is 1.4% of the saturation magnetization of Ni.
From Fig. 1~b! we can see that the ratio of the field to the
magnetization ~HTF! near the domain wall is in good agree-
ment considering that the calculation was done in one dimen-
sion while the data are for a 2D-domain pattern. Further the
calculation in Fig. 1~b! was done at a tip-to-sample distance
of 100 nm while the magnetic charge-to-sample distance was
determined to be 176 nm.94 In addition to calculating a cor-

rect and consistent magnitude for the field cross sections,
their shapes are also in agreement with the predictions of
transfer function theory. For example, the 600-nm-wide fea-
ture at the 6.5 mm position in section a! of Fig. 9 gives the
strongest stray field or force contrast. This is consistent with
the dotted line in Fig. 1~b! for which the fundamental Fourier
component occurs at the peak of the transfer function @dotted
line in Fig. 1~a!#. The larger domain ~2.5 mm wide! around
the 10 mm position generates the strongest stray field at the
domain wall, while the interior of the domain produces a
weaker field. This behavior is very well described by the
dashed line of Fig. 1~b! which gives the field for a 2.5-mm-
wide domain.

IV. OUTLOOK AND CONCLUSION

In this article we have presented a transfer-function ap-
proach to calculate the stray field emanating from a perpen-
dicularly magnetized sample and the force on a ferromag-
netic MFM tip. The transfer-function method is easily
implemented into today’s image processing software pack-
ages which feature efficient handling of Fourier transforma-
tion of large matrices of real numbers. This allows the ad-
justment of different parameters such as the tip-to-sample
distance, the size of the sample magnetization, the tip mag-
netization, size or shape, or many other parameters to simu-
late an MFM image.

FIG. 9. Simulation of MFM data. ~a! MFM measurement of a Cu/Ni ~10 nm!/Cu/Si~001! thin film showing perpendicular magnetization. ~b! The magneti-
zation pattern is generated by a discrimination process from the MFM measurement. ~c! The simulation of the MFM image is generated from the magneti-
zation pattern using the transfer function theory. ~Sections a and c! Cross sections of the MFM measurement and the simulation.
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We have also described how and with what limitations
the magnetization pattern can be calculated from the mea-
sured force image and how the sharpness of transitions can
be enhanced. In addition we have mentioned the instrumental
properties and operation modes required for quantitative
magnetic force microscopy work. We have applied our
theory to the analysis of magnetic force microscopy data
acquired on a CoNi/Pt multilayer and on an epitaxially
grown Cu/Ni/Cu/Si~001! magnetic thin film.

Future theoretical work will include lateral magnetiza-
tion structures and rough sample surfaces to allow fast stray
field calculations of complex three-dimensional magnetiza-
tion structures. Future experimental work will address the
enhancement of the signal-to-noise ratio, the reduction of the
size of the tip and the tip-to-sample distance in order to im-
prove the lateral resolution of MFM measurements.

APPENDIX

It is instructive to derive the force on the MFM tip in
direct space. We start from the total magnetostatic energy of
the tip/sample system

E5
m0

2 FE MTip–HSampledV1E HTip–MSampledV G ~A1!

5m0E MTip–HSampledV , ~A2!

where we have used the reciprocity principle to obtain
Eq. ~28! @the two integrals in Eq. ~A1! are equal#. Note that
the coordinate system is fixed to the surface of the tip and
that the magnetization functions, MTip(x ,y ,z), and
MSample(x ,y ,z), vanish outside the tip and sample volume,
respectively. To calculate the force on the MFM tip it is
useful to introduce a coordinate system, (x8,y8,z8), which is
attached to the tip located at the position t5(tx ,ty ,tz). Using
the coordinates as defined in Fig. 2, Eq. ~A2! can be written
as

E~t!5m0E MTip~x8,y8,z8!•HSample@~x8,y8,z8!1t#dV8.

~A3!

The z component of the force acting on the tip becomes

Fz~t!52m0E MTip~x8,y8,z8!

•

]

]tz

HSample@~x8,y8,z8!1t#dV8

52m0E MTip~x8,y8,z8!

•

]

]z8
HSample@~x8,y8,z8!1t#dV8. ~A4!

The other components of the force are easily evaluated by
replacing the derivative in Eq. ~A4! by the corresponding
lateral derivatives.

It is noteworthy that for an extended tip the force is
proportional to the integral of the derivative of the stray field

and not proportional to the derivative of the field. For a com-
parison to the transfer-function approach we may assume the
tip to be a long and thin, slablike object, with
~i! a bottom and a top surface, (bxby),
~ii! magnetized homogeneously along its long axis, l , and
~iii! oriented perpendicular to the surface of the sample ~see
Fig. 3!.
Then Eq. ~A4! becomes

Fz~ tz!52m0M Tip•E
~bxby !

@Hz ,Sample~x81tx ,y81ty ,tz!

2Hz ,Sample~x81tx ,y81ty ,tz1l !#dA8, ~A5!

where the integration is evaluated only over the bottom and
top surfaces of the tip ~Fig. 4!. The derivative along the z

direction of Eq. ~A4! has become a difference ~stray field at
the bottom surface of tip minus stray field at the top surface
of the tip! when the integration along the z direction of Eq.
~A4! is evaluated.

For a tip surface, (bxby), smaller than the grid
resolution67 and a stray field decaying rapidly along the z

direction such that the stray field at the bottom surface is
much larger than that at the top surface @Hz ,Sample(tz)
@Hz ,Sample(tz1l)# , Eq. ~A5! finally becomes

Fz~t!5qTipHz ,Sample~t!, ~A6!

where the tip is modeled by a magnetic point charge @Fig.
4~c! tip ~c!#, qTip , given by Eq. ~22!.
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30 T. Göddenhenrich, U. Hartmann, and C. Heiden, Ultramicroscopy 42–44,

256 ~1992!.
31 T. Ohkubo, J. Kishigami, and K. R. Kaneko, NTT Res. and Dev. ~Japan!

42, 545 ~1993!.
32 T. Ohkubo, J. Kishigami, and K. R. Kaneko, IEEE Trans. Magn. 29, 4086

~1993!.
33 K. Wago, K. Sueoka, and F. Sai, IEEE Trans. Magn. 27, 5178 ~1991!.
34 K. Sueoka, K. Wago, and F. Sai, IEEE Trans. Magn. 28, 2307 ~1992!.
35 O. Watanuki, F. Sai, and K. Sueoka, Ultramicroscopy 42–44, 315 ~1992!.
36 S. Takayama, K. Sueoka, H. Setoh, R. Schafer, B. E. Argyle, and P. L.

Trouilloud, IEEE Trans. Magn. 28, 2647 ~1992!.
37 G. A. Gibson, S. Schultz, T. Carr, and T. Jagielinski, IEEE Trans. Magn.

28, 2310 ~1992!.
38 G. Persch and H. Strecker, Ultramicroscopy 42–44, 1269 ~1992!.
39 A. Hubert, Institut für Werkstoffwissenschaften Universität Erlangen,

Martenstrasse 7 D-91058 Erlangen, Schluchsee, Germany, 1994 ~private
communication!.

40 J. Saenz and N. Garcia, J. Appl. Phys. 63, 2947 ~1988!.
41 U. Hartmann, J. Appl. Phys. 64, 1561 ~1988!.
42 U. Hartmann and C. Heiden, J. Microsc. 152, 281 ~1988!.
43 U. Hartmann, Phys. Rev. B 40, 7421 ~1989!.
44 A. Wadas, J. Magn. Magn. Mater. 78, 263 ~1989!.
45 A. Wadas and P. Grütter, Phys. Rev. B 39, 12 013 ~1989!.
46 A. Wadas and H.-J. Güntherodt, Phys. Lett. A 146, 277 ~1990!.
47 A. Wadas, P. Grütter, and H.-J. Güntherodt, J. Vac. Sci. Technol. A 8, 416

~1990!.
48 A. Wadas, P. Grütter, and H.-J. Güntherodt, J. Appl. Phys. 67, 3462

~1990!.
49 U. Hartmann, J. Vac. Sci. Technol. A 8, 411 ~1990!.
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