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intRoDuction

Gliomas, which comprise 27% of all brain tumours, are 

lethal primary malignant brain tumours originating from 

the interstitial tissue of the brain.1 Gliomas are categorised 

as di�use astrocytic and oligodendroglial tumours, other 

astrocytic tumours, ependymal cell types and neuronal 

and mixed neuronal-glial tumours according to the World 

Health Organization (WHO) guidelines. A recent upgrade 

of the WHO guidelines feature integrated molecular 

parameters into histology that underlines the importance 

of radiogenomics in the classi�cation of tumour entities.2,3 

�e severity of the grade depends on tumour growth, 

localized invasion, cell pleomorphism, mitotic activity, 

vascular proliferation, necrosis, and resistance to therapy.

To date, MRI is the modality of choice as it o�ers valuable 

information on overall tumour structure, composition, 

physiology and function.4 Tumour characteristics exam-

ined such as intensity distribution, enhancement, size, 

shape, structure, location, volume, border, focality, subven-

tricular zone involvement, cystic changes, the  percentage 

of necrosis and tumour volume are o�en inadequate for 

clinical use because of the irregular shape and heteroge-

neous composition of the tumours.5–9 Histopathological 
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objective:   The diversity of tumour characteristics 

among glioma patients, even within same tumour grade, 

is a big challenge for disease outcome prediction. A 

possible approach for improved radiological imaging 

could come from combining information obtained 

at the  molecular level. This review assembles recent 

evidence highlighting the value of using radiogenomic 

biomarkers to infer the  underlying biology of gliomas 

and its correlation with imaging features. 

methods:   A  literature search was done for articles 

published between 2002 and 2017 on Medline elec-

tronic databases. Of 249 titles identified, 38 fulfilled the 

inclusion criteria, with 14 articles related to quantifiable 

imaging parameters (heterogeneity, vascularity, di�u-

sion, cell density, infiltrations, perfusion, and metab-

olite changes) and 24 articles  relevant to molecular 

biomarkers linked to imaging. 

Results:  Genes found to correlate with various imaging 

phenotypes were EGFR, MGMT, IDH1, VEGF, PDGF, TP53, 

and Ki-67. EGFR is the most studied gene related to 

imaging characteristics in the studies reviewed (41.7%), 

followed by MGMT (20.8%) and IDH1 (16.7%). A summary 

of the relationship amongst glioma morphology,  gene 

expressions,  imaging characteristics, prognosis and 

therapeutic response are presented. 

conclusion: The use of radiogenomics  can provide 

insights to understanding tumour biology and  the 

underlying molecular pathways. Certain MRI character-

istics that show strong correlations  with EGFR, MGMT 

and IDH1 could be used as imaging biomarkers. Knowing 

the pathways involved in tumour progression and their 

associated imaging patterns may assist in diagnosis, 

prognosis and treatment management, while facilitating 

personalised medicine.

advances in knowledge:   Radiogenomics can  o�er 

clinicians better insight into diagnosis, prognosis, and 

prediction of therapeutic responses of glioma. 
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grading serves as the gold-standard but su�ers from several 
drawbacks such as intra- and interobserver variability, sampling 
error, tumour heterogeneities, and risk of surgical complications 
in patients.10 Quantitative imaging biomarkers derived from 
advanced MRI techniques, namely di�usion-weighted imaging, 
perfusion-weighted imaging, di�usion tensor imaging, di�usion 
kurtosis imaging and magnetic resonance spectroscopy  are used 
to de�ne tumour morphology and functionality.4,11,12

Glioma detection and grading at its earliest stage is crucial for 
early intervention to improve prognosis and minimise neuro-
cognitive risks. �e problem of grading glioma accurately is not 
trivial. High diversity of tumour properties, even within a single 
tumour, is a big challenge to determine the grades and subtypes. 
�e heterogeneous nature of the tumours further complicates 
histopathological observations and this can a�ect treatment 
decisions and management. To cap the complexity of the disease, 
di�erent responses to treatments among patients are o�en seen 
due to the di�erences in the genetic pro�les of the tumours.13,14 
Hence, the use of radiogenomic biomarkers may provide a 
holistic approach for the treatment of glioma.

Radiogenomics is an evolving new �eld that studies the link 
between gene expression patterns and imaging phenotypes for 
diagnosis, prognosis, and prediction of therapeutic responses in 
cancer.15,16 �e underlying inter- and intratumoral gene expres-
sion patterns that steer the unique characteristics and morpho-
logical manifestation of glioma can be captured by quantitative 
imaging.5,9,15–19 Radiogenomics holds the potential for targeted 
therapies, whereby therapeutic treatments are tailored to the 
individual tumour’s genetic pro�le based on indications from 
imaging features. �ere is a need to identify biomarkers that 
can re�ect genetic pro�les to better characterise the tumours, 
so that clinicians can make better decisions when administering 
treatment.

While there have been a number of studies looking at this aspect 
in glioma grading, it is still unclear which genes or pathways o�er 
the most comprehensive personalised approach in practice.20,21 
�is paper aims to provide a systematic review of these recent 
studies speci�cally looking at the use of MRI biomarkers in char-
acterising glioma. We plan to stratify radiophenotypes that could 
serve as molecular surrogates to infer speci�c gene expression 
patterns from the review.

methoDS anD mateRialS

Eligibility criteria and search strategy

We performed a systematic review of imaging biomarkers 
(radiogenomics) of  glioma literature according to the 
PRISMA  (Preferred Reporting Items for Systemic Review and 
Meta-Analyses) guidelines.22,23 Our review comprised of a 
detailed set of research questions and a search strategy that 
included screening criteria for titles and abstracts, followed by 
the selection of full-text articles. �e detailed research questions 
were established using the patient, intervention, comparator, 
outcome and study design approach. �e questions were devised 
as follows: what are the key genes associated with imaging char-
acteristics of gliomas? What are the changes in  gene expression  

of the tumours? Are   gene expression patterns linked to speci�c 
MR imaging features? What are the correlations between the 
radiogenomic biomarkers associated with the tumours and the 
phenotypes re�ected by MRI?

�e inclusion criteria for full-text article assessment were 
randomised or cohort MRI studies of glioma patients. �e exclu-
sion criteria were studies on paediatric populations, radiotherapy 
or chemotherapy studies and drug studies such as clinical trials, 
animal experiments, biopsies or histopathological studies, 
cell culture, and toxicity tests. Pubmed and Google Scholar 
were used to search the Medline database. �e keywords used 
in Medline included “glioma”, “magnetic resonance imaging”, 
“MRI”, “biomarkers” and “glioblastoma multiforme”. Full-ar-
ticle assessments were conducted to determine the compliance 
of the studies with the inclusion and exclusion criteria. �e 
searches were done  by PS and reviewed by NR, JHDW, and AAA 
respectively.

Study selection and data extraction

Only studies published in English a�er 2002 were selected and 
the last search was on 30 October 2017. Relevant data regarding 
imaging features and molecular pro�les were extracted from each 
article. �e data collected were categorised into gene groups, 
associated with di�erent imaging characteristics of tumour. 

ReSultS

Study selection

�e literature search and study selection showed 59 records 
were included in the �nal stage of the literature review where 
38 full  text articles investigated on quanti�able biomarkers 
(Figure 1). From the records, 14 articles were related to quanti�-
able imaging parameters (Table 1) while 24 articles investigated 
the relations between imaging biomarkers and genetic pro�les 
(Table 2). �ere were overlaps in both of the tables as some of the 
studies investigated several parameters. �e main �ndings of the 
studies were also recorded (Supplementary Material 1) while the 
PRISMA checklist was provided as Supplementary Material 2.

Findings

Table 1 lists the quantitative MRI biomarkers that are reported 
in the literature reviewed. Figures 2–6 show the structural and 
functional images of di�erent glioma  grades acquired from 
conventional and advanced MRI techniques, in relation to gene 
expression. We list the gene expression pro�les linked to glioma 
characteristics  in Table 2.

The key genes

�e gene expression pro�les found to be associated with the 
imaging features are listed in the following sections. �e order 
of the gene expression pro�les discussed is according to numbers 
of studies done, rather than their interpretive signi�cance. 
Figure 7 is a schematic diagram to summarise the relationship 
between glioma morphology, imaging features, and gene expres-
sion pro�les, which can be inferred from MRI techniques. From 
the �gure, a complex pattern of involvement is evident as a 
single gene may have roles in di�erent tumour characteristics, 
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meanwhile, a single tumour characteristic could be due to many 

di�erent genes.

Epidermal growth factor/receptor (EGFR)

EGFR is the receptor for epidermal growth factor, and ampli�-

cation/overexpression of the EGFR locus is found in about 42% 

of primary glioblastoma multiformes (GBM).35 EGFR ampli-

�cation in histologically pure anaplastic oligodendroglioma 

(ODG) is indicative of GBM. EFGR overexpression indicated 

poor outcome and correlated with decreased overall survival 

in GBM.7,55 �e strati�cation of GBM into four distinct molec-

ular subtypes (classic, mesenchymal, neural and proneural) are 

di�ered by distinct prognoses and responses to therapy based on 

gene expression.56 �e classic subtype has a strong association 

with astrocytic signature with EGFR ampli�cation.

EGFR was identi�ed as a signi�cant glioma biomarker in 41.7% 

of the studies reviewed. �e pathway activation of EGFR is asso-

ciated with increased motility, invasion, angiogenesis, tumour 

cell proliferation, reprogramming of tumour metabolism, and 

inhibition of apoptosis.36,37,57

Contrast enhancement of the solid region of tumour in T1W 

(T1 weighted) is o�en related to the aggressiveness of lesions,4,6,9 

however, many low-grade gliomas show enhancement and 

one-third of non-enhancing gliomas are malignant.6 �e solid 

region of the tumour and its surrounding tissues are comprised of 

actively proliferating cells such as invasive tumour cells, microg-

lial cells and reactive astrocytes.31 In terms of enhancement, EGFR 

ampli�cation/overexpression was associated with higher T1 +C 

(post-contrast) and T2/FLAIR hyperintense volume, higher ratio 

Figure 1.  Literature assessment. Flow diagram of literature assessment.
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of the contrast enhancing volume to the necrotic tumour volume 
and greater ratio of T2-bright volume to T1-enhancing volume 
(including internal necrosis) in GBM35,36,38,39,51,58 (Figure  2). 
EGFR ampli�cation/ overexpression/ mutation is related to 
angiogenesis, with a resultant increase in cerebral blood volume 
(CBV), cerebral blood �ow (CBF), plasma volume and contrast 
transfer coe�cient in MR perfusion.36,40,41 Metabolite changes 
such as reduced N-acetyl-aspartate (NAA) levels, lower creatine 
(Cr) and lower myoinositol (MI) in high-grade gliomas (HGG) 
and increased lactate proportionally with volumes of necrosis 
lesion,11,31,49,59–62 and restricted water di�usion36,37 are also 
related to EGFR ampli�cation/ overexpression/ mutation.

O6-methylguanine-DNA-methyltransferase (MGMT)

�e second gene that appears most frequently in the studies 
reviewed (20.8%) is the MGMT gene and has been reported 
for 30–60% in GBM. �e MGMT gene encodes a DNA repair 
protein that is involved in cellular defense against mutagen-
esis and toxicity from alkylating agents.43 GBM with MGMT 
promoter methylation demonstrated more favourable prognosis 
in terms of longer median survival.6,48,51,63,64 GBM with MGMT 
promoter methylation showed better treatment response6,51 due 
to decreased MGMT protein expression that reduces DNA repair 
activity against temozolomide, a DNA alkylating agent. �us, the 
sensitivity to therapy improves due to the increase in endothelial 
permeability that facilitates the penetration of drugs and their 
delivery.43,63

Hypermethylated MGMT tumours tend to have mixed-nod-
ular enhancement, non-temporal lobe lesions, and o�en show 
radiation or treatment-induced pseudo-progression.44 On the 
contrary, unmethylated MGMT tumours have high occurrences 
of temporal lobe lesions, ring enhancement, and true progres-
sion35 (Figure 3). Tumour characteristics such as cellular density, 
treatment response, and texture features are linked to MGMT 
methylation status.9,43,45,53,59 Increased apparent di�usion coef-
�cient (ADC) values derived from DWI implicate changes in 
tumoral water di�usion incited by necrosis or apoptosis,49 and 
a  higher degree of spatial heterogeneity has been observed in 
contrast-enhancing unmethylated MGMT tumours.4,9,29 Treat-
ment responses were apparent in in�ltrative low-grade gliomas 
(LGG) as re�ected by changes in DTI metrics such as pure 
isotropic components of di�usion (p) and mean di�usivity (MD) 
at the tumour borders.32

Isocitrate dehydrogenase 1 (IDH1)

IDH1  encodes a metabolic enzyme known as IDH1, which catal-
yses the conversion of isocitrate to alpha-ketoglutarate. Muta-
tions in IDH1 are frequently seen in di�use LGG and secondary 
GBM.3,61–64 IDH1 mutations are also one of the genetic features 
related to the proneural subtype of GBM51 that carry better clin-
ical prognosis in terms of overall survival and progression-free 
survival,48 and bear favourable overall survival in di�use astro-
cytomas and anaplastic astrocytoma.3,61

Table 1.  Quantitative MRI biomarkers mentioned in the studies

Characteristics Imaging biomarkersa Techniques Number of studies Ref

Heterogeneity Enhancement and necrosis MRI 1 4

Vascularity Uncorrected CBV ratio and FPS ratio MRI + PWI (DSC / DCE) 6 24

Min and max relative CBV and 
relative CBF

11,25,26 

Ktrans and Ve
27

Peak height in ET & non-ET 28

Non-Gaussian di�usion/Cell 
density/ cellularity

ADC, slow di�usion coe�cient 
(Dslow), DDC and heterogeneity 
index (α)

MRI + DWI/IVIM 3 4,29,30

In�ltrations along WM 
tracts/ micro-vascularity

FA, MD, and tensor decomposition p 
& q maps & fDM

MRI + DTI 6 26,31,32 

Relative anisotropy and radial 
di�usivity

33 

Di�usion trace in ET 28

Metabolite changes Lip/tCho MRI + MRS 3 11 

Cho/Cr, MI/Cr, Lac/Cr, NAA/Cr 31

Lipid quanti�cation: Signal loss ratio 
in solid and cystic subregions

MRI + MRS+IOP 34

Kurtosis Mean kurtosis DKI 1 11

ADC, apparent di�usion co-e�cient; CBF, cerebral bloodflow; CBV, cerebral blood volume; Cho, choline; Cr, creatine; DDC, distributed di�usion 

coe�cient; DWI, di�usion-weighted imaging; DTI, di�usion tensor imaging; ET, enhancing tumour; IVIM, intravoxel incoherent motion; FA, fractional 

anisotropy; fDM, functional di�usion map; FPS, first pass slope; Ktrans, volume transfer constant;  IOP,  in and opposed-MRI; Lip, lipid; MD, mean 

di�usivity; MI, myo-inositol; Lac, lactate; MRS, magnetic resonance spectroscopy; NAA, N-acetyl aspartate; PWI, perfusion-weighted imaging; Ve, 

volume of extravascular extracellular space per unit volume of tissue; WM, white matter.

MRI refers to structural MRI [T1-weighted, T2-weighted and Fluid Attenuation Inversion Recovery (FLAIR) sequences].
aonly biomarkers that are statistically significant (p < 0.05) are reported.
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Table 2.  The radiogenomic biomarkers linking imaging features/phenotypes to gene expression patterns in the studies

Genes/Molecular 

biomarkers
Characteristics Imaging biomarkers

Number of 

studies
Ref

EGFR Di�usion relative CBV, PSR 10 13

Morphology Anatomic location (radiogenomic 
maps)

35,36 

Percentage of CE, NE, necrosis & 
oedema and largest diameter on 
lesion

7

Morphology, di�usion & interaction 
with ECM

Border sharpness, restricted water 
di�usion, ADC

37

Gene expressions CE, necrosis, mass e�ect, oedema, 
cortical involvement, CE:N volume 
ratio, T2 heterogeneity

38

In�ltration, proliferation, 
neurogenesis and synaptic 
transmission

39

Perfusion VP & Ktrans
40

Normalized CBV & CBF 41

Mean & relative TBF 42

MGMT methylation status Perfusion Ktrans 5 43

Normalized CBV 44

Morphology Anatomic location 35,36 ]

Textures Correlation, energy, entropy
& local intensity

45

IDH1 Morphology Location 4 35

Metabolite changes Percentage of CE, NE, necrosis & 
oedema and largest diameter on 
lesion
2-hydroxyglutarate (2HG)

7

[46,47

Perfusion TBF 48

TP53 Morphology Percentage of CE, NE, necrosis & 
oedema and largest diameter on 
lesion

2 7

Gene expressions CE, necrosis, mass e�ect, oedema, 
cortical involvement, CE:N volume 
ratio, T2 heterogeneity

38

PTEN loss Morphology Anatomic location 2 36

Percentage of CE, NE, necrosis & 
oedema and largest diameter on 
lesion

7

Ki-67 index Di�usion, perfusion, metabolite 
change & genomics

relative CBF, FA, ADC, Cho/Cr, 
NAA/Cho, NAA/Cr, Lac/Cr & MI

3 49,50 

Gene expressions CE, necrosis, mass e�ect, oedema, 
cortical involvement, CE:N volume 
ratio, T2 heterogeneity

38

VEGFR Morphology and textural Shape, texture, edge sharpness of 
necrotic core and surrounding CE 
rim

2 51

Vascularization CBV 52

1p/19q codeletions Vascularization relative CBV 1 53

GAP4 and WWTR1 genes Intensities (ROI), sharpness of lesion 
boundaries, boundary shapes

Edge sharpness of necrotic portion 1 18

(Continued)
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GBM with IDH1 mutations tend to be in the le� frontal lobe, 
larger at diagnosis, may be multifocal, have a high prevalence of 
non-enhancing tumours, cystic and di�use components, greater 
frequency of contact with brain ventricles with less necrosis 
detection and extent of oedema, less frequent vascular abnormal-
ities, increased oligodendroglial morphology and also metab-
olite changes35,46,60,64 (Figure  4). Glioblastomas without IDH1 
mutations showed larger volumes of contrast enhancement seen 
in T1W + C.21,35 �e conversion to alpha-ketoglutarate by IDH1 
gene is observable using MRS as the elevation of 2-hydroxyglu-
tarate (2HG) co-detected at 2.25ppm and 4.02 ppm that re�ect 
changes in tumour cellularity.46,47

1p/19q codeletion status

�e combined loss of  1p and 19q chromosome  arms is 
uncommon in glioma and is considered the earliest genetic hall-
mark of ODG, whereby it is seen in 50–70% of the neoplasms.65 
20 �e complete loss of both chromosomes is associated with 

good prognosis, longer progression-free survival and increased 
sensitivity to chemotherapy in ODG and oligoastrocytoma.66,67

In conventional MRI studies, ODG with 1p/19q loss is more likely 
to have indistinct borders on T1W images, mixed-signal intensi-
ties on T1W and T2W, paramagnetic susceptibility e�ect, calci�-
cation and in�ltrative growth patterns65,68 (Figure  5). Elevated 
relative CBV with 1p/19q codeletions suggested increased 
neovascularity in glioma with oligodendroglial components.67 
�e increased ADC values in ODG and 1p/19q codeleted mixed 
oligoastrocytomas (OA) were associated with the fraction of the 
tumour cells (relative number of tumour cells per total cells) and 
degree of axonal disruption in tumour subregions.66

TP53
TP53 is a tumour suppressor gene, which encodes a tumour 
suppressor protein that responds to cellular stresses by inducing 
cell cycle arrest, apoptosis, senescence, DNA repair or metabolism 

Genes/Molecular 

biomarkers
Characteristics Imaging biomarkers

Number of 

studies
Ref

HRAS copy number variation Contrast enhancement and genetic 
expressions

Proportion of enhancing tumour & 
T1/FLAIR ratio

1 8

Periostin and miR-219 Cellular invasion Edema/invasion FLAIR volumes 1 54

Molecular subclasses of GBM Hemodynamics relative CBV 1 52

ADC, apparent di�usion coe�cient;  CBF, cerebral blood flow;CBV, cerebral blood volume;  CE, contrast enhancement; 
CE:N, contrast-enhancing volume to the necrotic tumour volume ratio; ECM, extra cellular matrix; EGFR, epidermal growth factor 

receptor; Cho, choline; Cr, creatine; FA, fractional anisotropy; IDH1, isocitrate dehydrogenase1; Ki-67antigen; Ktrans, volume transfer 
constant; Lac, lactate; MGMT, O6-methylguanine-DNA-methyltransferase; MI, myo-inositol; NAA, N-acetyl aspartate; NE, non-en-
hanced; PDGFA, platelet-derived growth factor; ROI, region of interest; PSR, percent signal recovery; PTEN, phosphatase and 

tensin homolog; TBF, tumour blood flow; TP53, tumour protein p53; VEGFR, vascular endothelial growth factor receptor; VP, 
plasma volume.

Table 2.  (Continued)

Figure 2.  A case of grade IV GBM with EGFR amplification/overexpression. MRI features showing greater ratio of T2 bright vol-

ume to the enclosed T1 enhancing volume in GBM: (a) CUBE FLAIR images depicting perilesional oedema, (b) calculated 3D-T2 

bright volume (147.62 cm3), (c) T1W post-contrast showing Rt parietal enhancing GBM with internal necrosis, and (d) calculated 

3D-T1-enhancing volume including internal necrosis (41.03 cm3). EGFR, endothelial growth factor receptor; GBM, glioblastoma 

multiformes.
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changes.7,51,69 TP53 mutations are mainly found in astrocytomas 
and are associated with poor survival.61 High incidence of IDH1 
mutations are seen in TP53 mutations in early gliomagenesis of 
LGG.61 GBMs with TP53 mutations were reported to be smaller 
in size compared to the wild type, presented as areas that were 
hyperintense on T2W FLAIR images.7

Ki-67 protein

�e Ki-67 antigen is a nuclear protein encoded by MKI67 gene, 
that is used as a histopathological indicator of cellular prolifer-
ation and growth.62,63 Ki-67 is identi�ed in para�n-embedded 
sections made with the monoclonal antibody MIB-1.62,63,70 �e 

Figure 3.  MRI post-gadolinium images of various grade IV GBM with hypermethylated and unmethylated MGMT. Imaging features 

showing: (a) mixed-nodular in a patient with hypermethylated MGMT and (b) ring enhancement in unmethylated MGMT. Another 

two cases demonstrating (c) preferential location of grade IV GBM with hypermethylation of the MGMT promoter located in 

parietal and occipital lobes, and (d) unmethylated of the MGMT promoter in the temporal lobes. GBM, glioblastoma multiformes; 

MGMT, O6-methylguanine-DNA-methyltransferase.

Figure 4.  MRI features of various grade IV GBM patients with IDH1 mutation. The features included T2W images showing (a) large 

size at time of diagnosis (b) multifocality, and (c) cystic components. (d) Post-gadolinium T1W showing non-enhancing solid 

tumour component, (e) greater frequency of contact with the ventricles, and *(f) usually less necrotic (<50% of tumour volume, 

and (g) T2 FLAIR showing less perilesional oedema (<50% of tumour volume). GBM, glioblastoma multiformes; IDH1, isocitrate 

dehydrogenase 1.

http://birpublications.org/bjr
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Figure 5.  MRI features of grade III ODG patients with of 1p/19q co-deletion. Imaging findings showing: (a) indistinct borders 

on T1W, (b) GRE sequence with paramagnetic susceptibility and calcification and, (c-d) mixed signal intensities on T1W and 

T2W. GRE, gradient echo; ODG, oligodendroglioma.

Figure 6.  The MRI images of a grade IV GBM with prominent palisading necrosis, microvascular proliferation, Ki-67 index ~15–20% 

in a few cellular areas. Imaging findings showing: (a) relative CBV colour map where high blood volume was seen at the rim area, 

(b) decreased ADC shown as hypointense area compared to CSF in tumour region, (c) the voxel placement in SVS, and (d) the 

corresponding brain spectra acquired using LC Model where MI, Cho, Cr, NAA & Lip peaks are labelled. Elevated lipid peaks and 

Cho, with decreased NAA were apparent in the spectrum. ADC, apparent di�usion co-e�cient; CBV, cerebral blood volume; Cho, 

choline; Cr, creatine; CSF, cerebrospinal fluid; GBM, glioblastoma multiformes; Lip, lipid; MI, myo-inositol; NAA, N-acetyl aspartate; 

SVS, single voxel spectroscopy.

http://birpublications.org/bjr
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Ki-67 index is measured as the percentage of positively stained 

nuclei.71 A high Ki-67 index correlates positively with tumour 

grades and prognosis (overall survival).30

High proliferation activities suggested as the elevation of Ki-67 

index  are related to higher relative CBV in GBM.13 In linkage 

with water mobility heterogeneity, an inverse correlation is seen 

between Ki-67 index with ADC across glioma grades9,30,70,71 

(Figure 6). Positive correlations are also seen between metabolite 

alterations of choline (Cho/Cr), lactate over creatine ratio (Lac/

Cr) and MI with Ki-67 index.49,71,72 Elevated Cho with cell prolif-

eration and malignancy was linked to oncogenic transformation 

triggered by hypoxia19,31,49,55,62 while the decrease in Cho levels 

was related to necrosis. Lac is the product of anaerobic glycolysis 

while MI is a marker for glial cells.

Other candidate genes as radiogenomic markers

Although less signi�cantly associated, other genes have also been 

linked as potential radiogenomic markers and are discussed 

below.

Vascular endothelial growth factor (VEGF) gene, encodes the 

vascular endothelial growth factor, promotes endothelial prolif-

eration, new blood vessel formation and growth of the new 

vessels into interstitial tissues.9,11,38,62 Overexpression of VEGF 

has been linked to ODG progression7 and associated with 

contrast-enhancing tumours, hypoxia, angiogenesis, and oedema 

in GBM.9,33,73 Areas of non-enhancing tumour in GBM imply 

decreased vascular permeability corresponded with low VEGF 

levels.60,74 Upregulated VEGF is also associated with malignancy 

and microvascular density75 although no direct approach to 

quanti�able parameters found.

Platelet-derived growth factor (PDGF) is a growth factor 

that regulates cellular di�erentiation and responses to tissue 

damage.76 PDGF overexpression has been reported for 11% in 

glioma of all grades76,77 and indicates enriched oligodendro-

cytic signature in the proneural subtype of GBM.39,51 In GBM, 

PDGF is linked to intratumoural heterogeneity evaluated using 

histogram and texture analysis by assessing the spread of the 

grey level values of image voxels and the spatial relationship of 

the pixels.45,78–81

Figure 7.  Radiogenomic approach for glioma characterisation. A schematic diagram to illustrate the relationship of glioma mor-

phology with gene expressions and imaging characteristic. Black arrows indicate associations between di�erent glioma mor-

phology while blue arrows represent the linking between glioma morphology and MRI. The images displayed are for visual 

guide only. ADC, apparent di�usion co-e�cient;  BBB, blood-brain barrier; CBF, cerebral blood flow;CBV, cerebral blood volume; 

CDKN2A,cyclin-dependent kinase inhibitor; Cho, choline; Cr, creatine; DCE, dynamic contrast-enhanced; DSC, dynamic suscep-

tibility contrast; DWI, di�usion-weighted imaging; DTI, di�usion tensor imaging; EGFR, endothelial growth factor receptor; FA, 

fractional anisotropy; IDH1, isocitrate dehydrogenase 1; IOP, in and opposed-MRI; Ktrans, volume transfer constant; Lac, lactate; Lip, 

lipid;  MD, mean di�usivity;  MGMT,O6-methylguanine-DNA-methyltransferase; MRS,  magnetic  resonance spectroscopy; NAA, 

N-acetyl aspartate; PCNA, proliferating cell nuclear antigen; PDGF, platelet-derived growth factor; PTEN, phosphatase and tensin 

homolog; SLR, signal loss ratio; VEGF, vascular endothelial growth factor; VP, plasma volume. 
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PTEN (Phosphatase  and  tensin  homolog)   regulates cell prolif-
eration, adhesion, invasion, apoptosis and DNA damage 
repair,7,36,51 is downregulated in brain tumours. PTEN loss is 
frequently  observed  in the frontal lobe of the brain (86.3%), 
while PTEN de�ciency is signi�cantly higher in the le� lateral 
ventricle (42.9%) of GBM patients.35

Cyclin-dependent kinase inhibitor (CDKN2A) codes for a protein 
that acts as a tumour suppressor by regulating the cell cycle.69 
CDKN2A deletions were reported at 42.6% in necrotic tumour 
of GBM patients.7 �e classic subtype of GBM also has a strong 
association with CDKN2A deletion (92%).51

Proliferating cell nuclear antigen (PCNA) codes a protein that aids 
leading strand synthesis during DNA replication. Overexpres-
sion of this gene has been implicated as an indicator of malig-
nancy and poor prognosis in glioma.39,49

Another gene of interest is Periostin, where its upregulation 
is correlated with cellular invasion and oedema in GBM.73 It 
induces invasion probably through epithelial-mesenchymal 
transformation, where high expression is observed in the mesen-
chymal GBM subtype that leads to poor survival. CpG island 
methylator phenotype (CIMP)-positive is also associated with 
poor prognosis and treatment response.53

DiScuSSion

�is review discusses the recent advances in correlating genomic 
changes with imaging phenotypes. �is may help clinicians to 
further appreciate the use of genomic information for character-
isation of glioma and discrimination of glioma grades in facili-
tating treatment planning and management. While more work is 
needed to explore the molecular pathways further so that better 
correlations can be established, together with validation by other 
studies, this approach serves as an important and emerging area 
for an applied clinical use.

Targeted therapy

Tumour molecular heterogeneity not only varies across patients 
but also throughout a single tumour, indicating broad genetic 
alterations and adaptation to the microenvironment.15 Genomic 
heterogeneity can cause treatment resistance and highly hetero-
geneous tumours have a higher tendency for tumour progres-
sion.5 �e radiogenomic approach enables identi�cation of 
genes that are directly involved in cell growth, in�ltration, prolif-
eration, di�erentiation, apoptosis, neurogenesis, and synaptic 
transmission.39 Activated oncogenic signalling pathway via 
genetic mutations in EGFR/P13K/Akt and Ras/RAF/MEK path-
ways are major drivers for tumorigenesis.52 Targeting signalling 
pathway with tyrosine kinase inhibitors and using bevacizumab 
as a VEGF inhibitor are the targeted therapies being studied in 
GBM.53,82 Inhibition of genes that regulate lipid metabolism to 
induce cell death makes a promising molecular target in treating 
malignant glioma.82

�is review provides insights into possible radiogenomic markers 
that could reliably link the imaging features to molecular signa-
tures of the tumours. �e imaging features are potentially useful 

markers as non-invasive molecular surrogates to infer genetic 
expression pro�les of tumour. �e restructuring of WHO guide-
line recognises the importance of incorporating genetic features 
(i.e., IDH1 status and 1p/19q codeletion status) into histology for 
classi�cation of the di�use glioma.2,3

Current research indicates:

(1) EGFR amplification/overexpression are associated with 
contrast enhancement in GBM, increase in perfusion metric, 
metabolite changes, and restricted water diffusion. High-
grade gliomas, which are mostly heterogeneous with the 
presence of solid enhancing rim and cystic portion implies a 
higher possibility of EGFR amplification.

(2) Hypermethylated MGMT tumours showed mixed-nodular 
enhancement, non-temporal lobe lesions, and often show 
radiation or treatment-induced pseudo-progression. 
Treatment management can be facilitated by assessment 
of MGMT methylation status of the patient to ensure 
effective treatment response in concomitant and adjuvant 
chemoradiotherapy with temozolomide.

(3) Astrocytomas and ODG that harbour IDH1 mutation exhibit 
more favourable prognosis and response to chemotherapy 
compared to the wild types. Thus, patients that benefit 
from chemotherapy could be identified. GBM with IDH1 
mutations are larger at diagnosis, may be multifocal with 
left frontal lobe predominance, may be non-enhancing, have 
cystic and diffuse components, have a  greater frequency 
of contact with brain ventricles, infrequent vascular 
abnormalities, less extent of necrosis and oedema.

(4) ODG with 1p/19q loss demonstrated indistinct borders 
on T1W images, mixed-signal intensities on T1W & T2W, 
paramagnetic susceptibility effect, calcification, elevated 
CBV, and infiltrative growth patterns.

(5) Increased proliferation as indicated by elevated Cho/Cr 
ratio, restricted diffusion and increased  lipid correspond 
with higher Ki-67 index in relation to increased proliferation 
activities.

Recommendations for future research

Integration of molecular imaging with MRI techniques o�ers 
insights into the genetics in glioma. Genetic changes lead to 
metabolic reprogramming of the biosynthesis of glucose, gluta-
mine, lipids, protein, DNA, and RNA for rapid growth and cell 
division of the tumour.52 Metabolite characteristics of GBM 
include enhanced glycolysis, elevated glutaminolysis and exacer-
bated lipogenesis. Potential  research includes inhibiting glucose 
metabolism as regulated by HK2, PKM2, and IDH; and lipid 
metabolism as regulated by sterol regulatory element binding 
protein, acetyl-CoA carboxylase, fatty acid synthase and low-den-
sity lipoprotein receptor52  as target for personalised treatment. 
�e linkage between the genetic pro�le and imaging pheno-
type to implicate metabolite regulations is another potential 
radiogenomic study. �e presence of lipid in brain tumours has 
sparked new interest in glioma lipidomics using lipid quanti�-
cation.34,82,83 Lipids have roles in necrosis, apoptosis,84 cellular 
membrane breakdown55 and signal transduction. �e elevated 
lipid fractions quanti�ed using MRS and in- and opposed-phase 
(IOP) are related to tumour aggressiveness.11,31,34 
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