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MRI-guided radiotherapy systems have the potential to bring two important concepts in
modern radiotherapy together: adaptive radiotherapy and biological targeting. Based on
frequent anatomical and functional imaging, monitoring the changes that occur in volume,
shape as well as biological characteristics, a treatment plan can be updated regularly to
accommodate the observed treatment response. For this purpose, quantitative imaging
biomarkers need to be identified that show changes early during treatment and predict
treatment outcome. This review provides an overview of the current evidence on
quantitative MRI measurements during radiotherapy and their potential as an imaging
biomarker on MRI-guided radiotherapy systems.
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INTRODUCTION

At the turn of the century, two novel concepts were introduced in radiation oncology that
acknowledged the complexity of tumor biology and that presented the challenges that must be
met to improve the outcome of radiotherapy. Recognizing that tumors can respond rapidly to
fractionated treatment, Yan et al. introduced the concept of adaptive radiation therapy (1). Instead
of delivering the entire treatment with a single treatment plan based on pre-treatment imaging, the
proposal was to create a closed-loop process where the treatment plan could be modified based on
observed changes in the patient. To date, with state-of-the-art linear accelerators, on-board imaging
equipment and software for image processing and treatment planning, we see this concept come to
fruition (2, 3). The second concept, introduced by Ling et al., addressed the biological heterogeneity
of a tumor (4). Using biological images that reveal metabolic, functional, physiological, genotypic,
and phenotypic data, a biological target volume could be defined. This could be used to ‘paint’ a dose
distribution that matched the biological heterogeneity. Since then, many imaging biomarker studies
have been conducted, essentially trying to establish how radiosensitivity can be visualized non-
invasively (5). It was shown that while tumors indeed are quite heterogeneous, this heterogeneity
changes during the course of fractionated radiotherapy (6, 7).

At this stage, it becomes clear that, considering the biological characteristics of the tumor as well
as its dynamic nature during treatment, the two concepts of biological targeting and adaptive
radiotherapy need to be merged. Based on frequent imaging, monitoring the changes that occur in
volume, shape as well as biological characteristics, a treatment plan can be updated regularly to
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accommodate the observed response (8). While the logistical
challenges for biological image-guided adaptive radiotherapy
(BIGART) made the concept almost infeasible to carry out in
practice, the emergence of MRI-guided radiotherapy (MRIgRT)
platforms may be a game changer (9, 10).

For this purpose, imaging biomarkers need to be identified
that show changes early during treatment and predict treatment
outcome. Quantitative MRI (qMRI) techniques can be used to
assess tumor morphology, biology and function. Therefore, they
are promising imaging biomarkers for BIGART (9). In this
review, we summarize the current evidence on repeated qMRI
measurements during radiotherapy and the potential for such an
approach with MRIgRT systems.
QUANTITATIVE MANETIC RESONANCE
IMAGING BIOMARKERS

The majority of MRI biomarker studies investigate the potential
of a measurement prior to the onset of treatment to predict
Frontiers in Oncology | www.frontiersin.org 2
outcome (11–13). In addition, promising evidence has emerged
showing changes in qMRI values during radiotherapy. This
suggests that qMRI parameters are prognostic for outcome and
might be potential biomarkers for BIGART (9). In this section
the literature is discussed in which measurements during the
course of radiotherapy were reported (Table 1). Studies with
only pre- and post-treatment measurements were out of the
scope of this review.

Diffusion weighted imaging (DWI) has been the most
investigated technique so far. The apparent diffusion coefficient
(ADC) derived from DWI data has been associated with the cell
density of the tissue. Radiotherapy results in breakdown of
cellular membranes and finally necrosis (13, 100). As a result
the cell density is reduced, which will be observed as an increase
in ADC. For many tumor sites, changes in ADC parameters early
during radiotherapy have been reported, including rectal cancer
(14–20), cervical cancer (26–38), head and neck cancer (40–47),
esophageal cancer (49–56), brain cancer (58), lung cancer (59),
and liver cancer (60). The majority of the studies report a larger
increase in average ADC values for responders compared to
TABLE 1 | Summary of MR imaging techniques for which changes during the course of radiotherapy have been investigated.

MR imaging technique qMRI metric Tissue characteristics Studies investigating
changes during RT

DWI ADC Tissue cell density Rectum (14–25)
Cervix (26–39)
Head-and-neck (40–48)
Esophagus (49–57)
Brain (58)
Lung (59)
Liver (60)
Prostate (61, 62)
Sarcoma (48)

DCE-MRI semi-quantitative measurements (e.g. peak
enhancement)
quantitative parameters derived with pharmacokinetic
modeling (e.g. Ktrans, ve)

Perfusion and vascular permeability of tumor
microenvironment

Cervix (32, 63–65)
Head-and-neck (44, 66, 67)
Esophagus (50)
Liver (68)

IVIM f, D, D* Tissue perfusion and cell density Cervix (69–74)
Esophagus (75, 76)
Head-and-neck (77, 78)
Brain (79, 80)

Relaxometry T2, T1, PD, T2* Tissue relaxation times Prostate (61, 62)
Brain (81, 82)

Spectroscopy e.g. choline to creatine ratio Metabolism Brain (83–86)
Cervix (35)
Head-and-neck (87)

OE-MRI O2 concentration Hypoxia Lung (88)
Saturation transfer MRI
(MT, CEST)

e.g. MTR, qMT, MTRasym, MTRamide Tissue macromolecular content (e.g. lipids,
proteins, peptides)

Brain (81, 89, 90)
Head-and-neck (91)

Fat composition PDFF, %PDFF Fat content Bone marrow (92)
Radiomics Histogram features, local textural features Tissue heterogeneity Cervix (93, 94)

Rectum (95, 96)
Head-and-neck (97)
Sarcoma (98)
Pancreas (99)
January 202
Papers were searched on PubMed with search terms “early response” and “radiotherapy” or “radiation oncology” as well as measurements during treatment mentioned in title or abstract.
Only studies in humans and in English were included. Reference list of the included papers were checked to identify other relevant papers.
DWI, diffusion-weighted imaging; ADC, apparent diffusion coefficient; DCE-MRI, dynamic contrast-enhanced MRI; Ktrans, volume transfer constant between blood plasma and
extravascular extracellular space; ve, fractional volume of extravascular extracellular space; IVIM, intravoxel incoherent motion imaging; f, perfusion fraction; D, diffusion coefficient; D*,
pseudo-diffusion coefficient; T2, T2 relaxation time mapping; T1, T1 relaxation time mapping; PD, proton density mapping; R2*, R2* mapping; OE-MRI, oxygen-enhanced MRI; MT,
magnetization transfer; CEST, chemical exchange saturation transfer; MTR, magnetization transfer ratio; qMT, quantitative magnetization transfer; MTRasym, magnetization transfer
asymmetry; MTRamide, magnetization transfer ratio of amide protons; PDFF, proton density fat fraction.
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non-responders (15–20, 29, 33, 36, 41, 44–47, 49, 51, 54–56, 60).
Some studies observed a significant increase for responders and
not for non-responders (14, 35, 43). Only a few studies did not
observe a significant difference in the changes in ADC values
between responders and non-responders (34, 52). For example,
in a study with 108 cervical cancer patients there was no
difference in the increase in ADC values between complete and
partial responders (34).

Dynamic contrast-enhanced (DCE-) MRI indirectly measures
the tissue perfusion and vascular permeability of the tumor
microenvironment and has been proposed as a biomarker for
radiotherapy (101, 102). The enhancement reflects the abnormal
microvasculature in tumors (102). Changes during treatment in
DCE-MRI have been investigated to a lesser extent than DWI.
Most studies have been performed for cervical cancer (32, 63–
65). One of the first studies showed with a semi-quantitative
analysis that an increase in enhancement early during treatment
was predictive for local recurrence (63). Gong et al. observed
similar results, as they found a significant relation between the
change in mean enhancement and tumor regression rate (64).
This was confirmed in a larger patient population showing that
patients with an improved perfusion during treatment have a
more favorable outcome (65). Quantitative analysis of DCE-MRI
data showed an increase in Ktrans (volume transfer constant
between blood plasma and extravascular extracellular space) and
ve (fractional volume of extravascular extracellular space) during
treatment, both in week 1 and week 4 (32). Ktrans decreased 1
month after treatment again. The changes in Ktrans and ve during
treatment were not correlated to changes in tumor volume. In a
small group of head and neck cancer patients a larger increase in
Ktrans and ve was observed in responders than in non-responders
(44). Similarly Baer et al. reported that changes in Ktrans and the
area under the curve were predictive for survival (66). In
addition, patients that have large persistent subvolumes with
low blood volume within the primary tumor have a higher
probability of local failure (67). For esophageal cancer, a
decrease in Ktrans was reported in complete responders (50).
For liver metastases, an increase in slope and peak at week 2 was
associated with an improved local response (68).

A limitation of DCE is that contrast agent needs to be injected
intravenously. This could present logistical challenges and might
not be amenable for repeated imaging. Alternatively, intravoxel
incoherent motion (IVIM), based on multi-b-value diffusion, has
been investigated for probing microscopic perfusion (103). By
modeling the diffusion data with a perfusion component that
predominantly affects low b-value data, a surrogate for tissue
perfusion can be calculated (104). Studies in cervical cancer have
reported changes in IVIM parameters during treatment (69–74).
The perfusion fraction (f) first increased early during treatment
and decreased later during treatment (72). Early increases in f
have been associated with good response (70, 73). In esophageal
cancers, responders showed a larger mid-treatment increase in
the diffusion coefficient (D) of the tumor compared to non-
responders (75, 76). Head-and-neck cancer patients with
regional failure showed higher D values and larger reductions
in f than patients with regional control (77).
Frontiers in Oncology | www.frontiersin.org 3
For other qMRI techniques changes during treatment have
been investigated only on a small scale so far. Spectroscopy has
mainly been applied in brain (83–86). Changes in choline and
lactate metrics during treatment were significantly related to
outcome in patients with glioblastoma (83) and glioma (84). In
two other studies only changes after treatment were significantly
related to outcome (85, 86). For cervical cancer, changes in
choline metrics could not predict treatment outcome (35). For
head-and-neck cancer, choline metrics were stable in the first
two weeks of treatment in responders and non-responders (87).
Magnetization transfer (MT) and chemical exchange saturation
transfer imaging (CEST) can be used to characterize the
macromolecular content of tissue (105, 106). Changes during
treatment have been investigated in glioblastoma (81, 89, 90) and
head-and-neck cancer (91). All studies demonstrate the
promising value of MT or CEST parameters as possible
biomarkers for BIGART. Another promising technique is
oxygen-enhanced MRI requiring an oxygen challenge (107).
This technique was used in lung cancer patients to assess the
hypoxic volume in the tumor (88). In the second week of the
treatment the hypoxic volume was smaller than before treatment.
Fat quantification could be useful to assess changes in tissue
composition. For example, changes in fat fraction were
correlated with changes in bone marrow composition induced
by radiotherapy (92), which could be useful to assess hematologic
toxicity. A few studies have looked into the potential of
radiomics, where textural features derived from anatomical or
functional images were tested (93–95, 97). Recently, deep
learning approaches have been applied to extract information
from images during treatment for response prediction (95, 108).

The evidence so far is mostly based on one or two
measurements during treatment. Only a few studies used more
than two measurements during treatment (Table 2). The study
of Sun et al. showed in a population with mixed tumor sites that
changes in ADC were correlated with treatment response and
independent of tumor location (21). After the first week of
treatment significant differences between responders and non-
responders were observed, while a change in tumor size was not
visible that early. In a study with cervical cancer patients,
measurement of ADC at two weeks seemed optimal for
monitoring early treatment response (39). Similar results were
found for esophageal cancer (57) and rectal cancer (22). In
contrast, a study with nine rectal cancer patients reported a
decrease in ADC from week 2 onwards (23). Two studies
investigated weekly changes in T2 and ADC values during
treatment of prostate cancer (61, 62). While there were
differences in overall treatment duration between the two
studies, both studies did not observe early changes in either T2
or ADC. Only late ADC changes for the tumor were observed.
However, the relation with treatment outcome was not assessed.
A study in head-and-neck cancer patients investigated whether
changes in IVIM parameters were visible during treatment (78).
They showed a significant increase in ADC and D during
treatment for patients with complete response. No significant
differences were observed for the other IVIM parameters in the
complete responding or non-responding patients.
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Up to this moment, only three studies performed daily
measurements during treatment in humans (24, 79, 80).
Mahmood et al. performed daily IVIM measurements in
patients with brain metastases. They showed that the mean
ADC increased for patients with responding brain metastases
and decreased for non-responding metastases (79). From
fraction seven onwards the distinction between responders
and non-responders became more pronounced. The IVIM
parameters, perfusion fraction f and pseudo-diffusion coefficient
D*, did not show significant prognostic value. In another study,
they showed that the size of the viable tumor delineated on DWI
images and the ADC value of the viable tumor are a better
predictor for outcome than the change in tumor size delineated
on anatomical images (80). In a small, but unique, study with 8
rectal cancer patients, ADC values during treatment overlapped
between complete and partial responders (24). Therefore, no
significant differences in ADC dynamics were observed between
the two groups.

The small number of studies with multiple measurements per
patient may be explained by logistical challenges and the cost of
MRI exams beyond standard-of-care. Here, the MRIgRT systems
provide an opportunity. For patients who are treated on an
MRIgRT system the logistical barrier is much lower as it only
requires some prolonged time for imaging on the table (9). In
fact, as the online adaptive workflow on MRIgRT systems takes
up some time, quantitative imaging can be acquired during this
time period, avoiding an increase in overall time on the table. As
MRIgRT systems have been introduced in clinical practice
recently (10), only a few qMRI studies have been performed so
far. Feasibility of qMRI on MRIgRT systems was first
demonstrated in a pilot DWI study. In this study, longitudinal
DWI was acquired from a cohort of patients with head-and-neck
cancer and sarcoma every 2-5 fractions throughout their
Frontiers in Oncology | www.frontiersin.org 4
treatment courses with different ADC change patterns
observed (48). In a similar way, the feasibility of DWI for
response assessment was shown in three rectal cancer patients
(25). A pilot with four patients with brain tumors showed that
changes in T1, R2* and proton density maps were detectable
during the course of treatment (82). In addition, a few studies
assessed the feasibility of using radiomic features to monitor
response during treatment (96, 98, 99). For sarcoma patients it
was shown that radiomic features derived from longitudinal
DWI can be used to predict post-surgery tumor necrosis score
after radiotherapy (98). The study of Boldrini et al. illustrated
that changes in radiomic features during treatment have the
potential to predict clinical complete response in rectal cancer
(96). In addition, a pilot study showed that radiomic features
could predict outcome for patients with pancreatic cancer treated
with stereotactic ablative body radiotherapy on an MRIgRT
system (99).
TECHNICAL VALIDATION

To integrate an MRI and a linear accelerator, modifications have
been made to the MRI scanners in these systems. As a result,
their technical specifications differ considerably from those of
diagnostic systems. For the MRIdian (Viewray Technologies Inc.
USA), the on-board MRI is a split bore superconducting magnet
with a field strength of 0.35 T (109, 110). There is a 28 cm gap in
between to reduce the number of MR components being in the
radiation beam pathway. In case of the Unity system (Elekta AB,
Sweden), the field strength is 1.5 T, but the gradient coils are
physically split to create a radiation window (111). The 2 x 4
channel receive coil is radiolucent with all electronic components
TABLE 2 | Overview of studies with more than two measurements during treatment.

Paper MRI Technique Tumor site No. patients No. time points

Diagnostic scanners
Sun et al. (21) DWI Lung, esophagus, gastric, rectum, and liver metastases 102 Pre, w1, w3, w6 or pre, w1, w2, w4
Liu et al. (39) DWI Cervix 33 Pre, d3, d7, d14, 1m, and post
Wang et al. (57) DWI Esophagus 38 Pre, weekly (6x)
Cai et al. (22) DWI Rectum 15 Pre, weekly (5x)
Hein et al. (23) DWI Rectum 9 Pre, weekly (4x)
Foltz et al. (61) DWI, T2 Prostate 17 Pre, w2, w4, w6, w8
Van Schie et al. (62) DWI, T2 Prostate 47 Pre, every fraction (5x)
Paudyal et al. (78) IVIM Head-and-neck 34 Pre, weekly (3x)
Mahmood et al. (79) IVIM Brain metastases 29 Pre, every fraction (10x), post
Mahmood et al. (80) DWI Brain metastases 21 Pre, every fraction (10x), post
Bostel et al. (24) DWI Rectum 8 Every fraction (28x)

MRIgRT systems
Yang et al. (48) DWI Head-and-neck, sarcoma 6 Pre, every 2-5 fractions (4-7x)
Shaverdian et al. (25) DWI Rectum 3 Every 3-7 fractions (4-7x)
Nejad-Davarani et al. (82) T1, PD, R2* Brain metastases 4 Pre, weekly (7x), post
Gao et al. (98) DWI Sarcoma 30 Fraction 1, 3, and 5
Boldrini et al. (96) T2*/T1*-weighted Rectum 16 Pre, weekly (5x)
Simpson et al. (99) T2*/T1-weighted Pancreas 20 Every fraction (5x)
January
Papers were searched on PubMed with search terms “early response” and “radiotherapy” or “radiation oncology” as well as measurements during treatment mentioned in title or abstract.
Only studies in humans and in English were included. Reference list of the included papers were checked to identify other relevant papers. From those only papers with more than two
measurements during treatment are presented in this table. Pre, pre-treatment; d, day; w, week; m, month; post, post-treatment; DWI, diffusion-weighted imaging; IVIM, intravoxel
incoherent motion imaging; T2, T2 relaxation time mapping; T1, T1 relaxation time mapping; PD, proton density mapping; R2*, R2* mapping.
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at the edges of the coil (111). The reduced signal-to-noise ratio
and gradient performance for both systems put constraints on
the acquisition protocols and the performance of qMRI
measurements. Therefore, first efforts have been taken to assess
the performance of these measurements on MRIgRT systems
with phantoms (48, 82, 112–114). For the MRIdian 0.35T MRI, a
few DWI studies have been performed, demonstrating the ADC
accuracy and reproducibility, as well as improving DWI spatial
integrity (48, 112). Studies of Nejad-Davarini et al. (82) and
Bydder et al. (113) also explored feasibility and accuracy of T1
mapping, R2* mapping, proton density mapping, and proton
density fat fraction using MRIdian. A multicenter study showed
that consistent ADC, T1, T2, and DCE values can be measured
across institutes with a Unity system (114). The accuracy of the
techniques was similar to previously reported literature on
diagnostic scanners. In addition, the feasibility of these qMRI
techniques was demonstrated for a prostate cancer patient.
Phantom measurements showed that accurate ADC values can
be obtained within a 7 cm radius of the iso-center (115). Outside
this region, ADC values deviated more than 5%. To increase the
time window during which qMRI data can be acquired, the effect
of image acquisition during irradiation has also been
investigated. Phantom images acquired during gantry rotation
were negligibly different from images with a static gantry (116).
However, bulk shifts in the order of one pixel were observed and
the extent of the phantom was gantry angle dependent.
Therefore, DWI with an echo planar imaging sequence may
require special attention to geometrical shifts and distortions.
With test-retest measurements in prostate cancer patients it was
shown that the rotating gantry did not affect the repeatability of
ADC measurements (115).
DISCUSSION

With BIGART two important concepts in radiotherapy are
brought together. Recognizing the dynamic heterogeneity of a
tumor during radiotherapy and adapting the treatment to the
changing characteristics may widen the therapeutic window
between tumor control and treatment-related toxicity.
Although the two concepts have been around for over two
decades, only now the technology is available to integrate daily
biological imaging with online treatment adaptation. While
many qMRI biomarker studies have been conducted, many
more steps need to be taken before BIGART on MRIgRT
systems becomes routine practice.

From a clinical perspective, the first step will be to investigate
daily changes in qMRI values in different tumor sites.
Multicenter observational trials should be initiated to validate
these findings. In particular, it is important to investigate which
qMRI techniques are suitable candidates for BIGART (117, 118).
Frontiers in Oncology | www.frontiersin.org 5
Based on the current and mostly consistent evidence, DWI seems
to be a logical first choice to investigate further. The potential of
DCE needs to be established, but might be very useful in certain
applications (102). IVIM is an attractive alternative to study
perfusion as it avoids administration of a contrast agent.
Although previous studies observed a weak to moderate
correlation between DCE and IVIM parameters (119–123), for
BIGART it might be sufficient if similar trends are visible in the
IVIM and DCE parameters. Other qMRI techniques are also
promising, but must be investigated with larger populations. As
different qMRI techniques reflect different aspects of tumor
biology , a combinat ion of techniques might g ive
complimentary information with a higher predictive value for
early treatment response (50, 53). Another open issue is the time
scale at which changes in qMRI values happen during treatment.
Some studies have reported changes early during treatment,
others later. Monitoring changes on a daily basis, will help
characterize this further. In addition, this will also reveal
whether changes are homogeneous at group level (e.g.
responder or non-responder groups), whether the time scale of
the changes differs on patient-level or even differs within the
tumor of the same patient. Furthermore, the relevance of
observed changes in relation to treatment outcome (e.g.
survival, recurrence, toxicity) needs to be established in order
to identify if a biomarker potentially is predictive and suitable
for BIGART.

Technical validation (124–126) of qMRI measurements on
MRIgRT systems is required to ensure that the results are also
relevant outside the MRIgRT domain, in particular because the
MR-part of the MRIgRT systems is different from diagnostic
systems. Digital and physical phantoms can be used to assess the
accuracy and reproducibility of the qMRI measurements (127–
134). Furthermore, to know which changes in qMRI values can
be attributed to the effect of the treatment, assessment of the
repeatability of the measurements should be performed with
test-retest studies (125). Standardization of qMRI protocols
could assist to improve reproducibility across participating
centers (115).

In conclusion, MRIgRT systems have the potential to bring
adaptive radiotherapy and biological targeting together in
practice. The first step will be to investigate daily changes in
qMRI values in different tumor sites, validated in a multicenter
setting. Then, interventional studies become feasible to
investigate the potential of qMRI as a biomarker for BIGART.
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