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Quantitative mapping of global land degradation using
Earth observations
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Land degradation is a global issue on a par with climate change and loss of
biodiversity, but its extent and severity are only roughly known and there is little
detail on the immediate processes — let alone the drivers. Earth-observation methods
enable monitoring of land degradation in a consistent, physical way and on global
scale by making use of vegetation productivity and/or loss as proxies. Most recent
studies indicate a general greening trend but improved datasets and analysis also
show a combination of greening and browning trends. Statistically based, linear
trends average out these effects. Improved understanding may be expected from
data-driven and process-modelling approaches: new models, model-integration,
enhanced statistical analysis and modern sensor imagery at medium spatial
resolution should substantially improve the assessment of global land degradation.

* Corresponding author. Email address: Rogier.deJong@wur.nl

1. Introduction

Recent discussions on competition for land resources suggest that claims on fertile
land and even on degraded land, have never been higher (Tilman et al. 2009,
Rathmann et al. 2010). In the context of ever-growing human population, the
global area under food crops has peaked at the end of the last century and there is a
growing requirement for land for production of bio-fuels. This puts land
degradation on the global agenda as an economic, security and environmental issue
(Dent et al. 2007) and a strong focus is land use change science (Turner et al.
2007). The IPCC argues that climate change will drive certain types of land
degradation by more extreme weather events and a likely increase in total area
affected by drought (Trenberth et al. 2007). At the same time, land degradation
interacts with atmospheric processes (Cracknell and Varotsos 2007) and may drive
climatic change through increasing greenhouse gas emissions and reducing carbon
fixation in soils and biomass (Schlesinger et al. 1990). Mitigation and adaptation
require the ability to predict and monitor land degradation; UNEP’s GEO4 report
urges governments to respond with ‘effective early warning, assessment and
monitoring — combine remote sensing with field surveys of key indicators;
measure indicators consistently at different scales over the long-term.’
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This poses scientific and technical challenges. The distribution and intensity
of land degradation are only roughly known; assessments have been local, or based
on expert opinion and qualitative classifications (Oldeman et al. 1990, Dregne
2002). Satellite remote sensing using time-series imagery with a regular
acquisition interval is the only viable option to provide quantitative estimates of
degradation at global scale. Quantitative and physically-based models can then be
applied, independently of the scale or expert knowledge used in the assessment. In
reviewing the currently available datasets and findings of recent, broad-scale
research on land degradation, we aim to indentify knowledge gaps, key ecological
indicators and successful methods that have not yet been exploited to their full
potential. Several disciplines are involved but our focus is on satellite remote
sensing data and methods for monitoring land surface dynamics at a global scale.

1.1 Definitions

Land degradation is defined by different schools according to their interests. Land
is shorthand for the system made up of soil, water, the biota and, also, the man-
made landscape and their biophysical processes (Dalal-Clayton and Dent 2001).
Loss of its ‘usefulness for human beings’ (Wasson 1987) is considered as
degradation. This is generally considered to be synonymous with soil degradation
(Lal et al. 1989). FAO (1979) defined land degradation as ‘a process which lowers
the current and/or potential capacity of soils to produce’; the Millennium
Ecosystem Assessment (MEA 2005) defined it as ‘the reduction in the capacity of
the land to perform ecosystem goods, functions and services that support society
and development’. The term desertification has been adopted as a synonym of land
degradation in dry lands (UNCCD 1994, Reynolds ef al. 2007), but common usage
implies desert encroachment into adjacent regions (Lamprey 1988).

Both economic loss and ecological degradation may be considered and
measured against the capacity to satisfy human needs (Kassas 1995) and this is a
common viewpoint of agriculture-oriented research (FAO 1979, Dent and Young
1981). Standing apart from human interest, land degradation has also been defined
as deterioration in the physical and chemical properties of the soil as result of
environmental change (Imeson and Emmer 1992) and, embracing both viewpoints,
as ‘a long-term reduction in ecosystem function and productivity from which the
system cannot recover unaided’ (UNEP 2007).

Despite the lack of a common definition, there is consensus that land
degradation is widespread, has severe financial and social consequences and may
sometimes be irrecoverable on a human time scale at manageable cost (Okin et al.
2001). Also, it can be self-accelerating so the cost of rehabilitation rises
exponentially as it advances (Glantz and Orlovsky 1983) and, in some forms, it has
a reciprocal relationship with climatic systems (Schlesinger et al. 1990, Prospero
and Lamb 2003), causing significant changes in global biogeochemical cycles.

1.2 Processes and drivers

The most common perspective on land degradation is what farmers see happening
to their land — symptoms such as soil erosion and salinity. That something bad is
happening might be obvious but links with the driving processes may not be. These
processes may be categorized as biological, physical or chemical (Lal et al. 1989)
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— though rarely political (Blaikie 1985) — and each may have natural or man-
induced causes, also called factors, that are agents or catalysts of the mentioned
processes (Lal et al. 1989). Figure 1 shows examples of these categories.

FIGURE 1 about here

Whether land degradation is mainly man-induced, natural, or both, is a moot
point (Evans and Geerken 2004). Early researchers focused on human-induced
land (or soil) degradation (Aubreville 1949, Dregne 1986). Emphasising the impact
of man on geology and ecology, Vitousek et al. (1997) state that we live on a
human-dominated planet and Crutzen (2002) proposed the name Anthropocene for
the current geological epoch. More recently, fluctuating climatic conditions have
been considered a significant cause (UNCCD 1994, Puigdefabregas 1998,
Nicholson 2000, EI Hassan 2004, IPCC 2007); a change of view brought about by
the Sahelian droughts of the 1970s and 80s (Glantz and Orlovsky 1983) and drying
of the Aral Sea (Micklin 1988, Small et al. 2001) and Lake Chad (Haas et al.
2009). Climatic variations are believed to be a greater factor in, for instance,
biodiversity in arctic and boreal areas, whereas land use change is considered a
greater factor in other biomes (Chapin III ef al. 2000). Most authors agree that
various human and environmental processes interact along complex pathways and
that both biophysical and socio-economic indicators should be considered jointly
(Lambin et al. 2001, Baartman et al. 2007). Despite this, biophysical variables
other than climatic change have received relatively little attention as causal factors
of land degradation (Turner et al. 2007). The interaction of the human and the
biophysical sub-systems on the land system and the schematic positioning of land
degradation within the latter is depicted in Figure 2. The biophysical sub-system
interacts with the human sub-system by delivering environmental goods and
services (Turner et al. 2007) that might be diminished by land degradation as
defined by UNEP (2007).

FIGURE 2 about here

Land degradation, in this sense, is an issue beyond the field scale and has
become part of the emerging land change sciences (LCS). Research is undertaken
by various disciplines including remote sensing, resource economics, landscape
ecology and biogeography. It is a challenge to capture the whole system with its
interrelationships between acting processes and to scale-up understandings gleaned
from field studies to regional, biome and global perspectives.

1.3 Classification methods

Land degradation may be assessed qualitatively or quantitatively. The first
approach, using expert opinion, may be able to embrace several processes in a
single assessment that usually considers the consequences or symptoms of
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degradation — such as decline of land quality, biomass or vegetation health. The
quantitative approach uses proxy measures like spectral reflectance. Remote
sensing methods are most frequently employed and depend on establishing
relationships between the proxy and the real thing. Most land degradation
processes affect the vegetation cover, for which reason vegetation dynamics, which
is relatively easy to quantify using earth observation, has been widely adopted as
an indicator of land degradation at regional to global scales; this approach has the
strength of being repeatable and transferable between scales and regions.

In the beginning, qualitative research included systematic and detailed soil
survey. Two approaches emerged (Bergkamp 1996, Boer 1999): one focusing on
the sensitivity of /and mapping units to external changes which imposes limitations
to the farmers’ freedom of action; the other focusing on the actual change induced
by external factors. The first is represented by the well-known Land Capability
Classification (Hockensmith and Steele 1949, Klingebiel and Montgomery 1961)
which defines land capability classes, each having a defined degree of limitation or
conservation problems. This is a rules-based approach, depending on expert
judgment. Similarly, the FAO Land Quality Classification relates risk of
degradation to crop yields and management factors like germination conditions
(FAO 1976). The second approach is represented by the Global Assessment of
Human-induced Soil Degradation (Oldeman and van Lynden 1997), an expert
assessment of land degradation by classes applied to a common base of landform
units depending on the degree (light-severe) and the frequency (percentage
occurrence within the mapping unit) of degradation by soil erosion, nutrient
depletion, salinity and chemical contamination. Experts are comfortable with both
of these approaches; they deliver a familiar perspective of land degradation but
they are time-bound and not reproducible.

Air photo interpretation was employed extensively from the 1960s and, later,
satellite imagery. In the beginning these were used in a qualitative way. Later,
more quantitative methods emerged which often employ several indicators in
combination with modelling (Kirkby et al. 2004) or statistical methods, like fuzzy
inference, to define the contribution of various processes (Feoli et al. 2002,
Riedler and Jandl 2002, Stroppiana et al. 2009). For instance, Vargas et al. (2007)
used a fuzzy clustering algorithm to calculate classes combining loss of vegetation,
soil chemical degradation and soil physical degradation and employed a decision
tree to derive a land degradation map.

Various criteria for monitoring ecological status have been proposed
respecting  scalability,  reproducibility,  consistency,  cost-effectiveness,
transferability and statistical rigor (Boer 1999); remote sensing meets many of
these criteria.

2. Earth observation datasets and methods

2.1 Time-series datasets of global vegetation status

Land degradation is often linked to a decline in biomass or vegetation cover, which
may be measured in terms of biomass productivity, or undesirable changes in
composition (Bertiller et al. 2002, Hanafi and Jauffret 2007, Wessels et al. 2007,
Salvati and Zitti 2009, Zika and Erb 2009). Green vegetation has a
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characteristically high reflectance in the near-infrared (NIR) and a low reflectance
in the red part of the electromagnetic spectrum. Many broadband vegetation
indices (VI) using this characteristic have been developed. They may be
categorized as ratio indices, orthogonal indices or a combination of both, hybrid
indices (Dorigo et al. 2007). Ratio indices are usually based on the NIR and red
reflectance, whereas orthogonal indices were introduced to reduce background
effects like soil reflectance and include other wavelengths for this purpose.

The most common ratio VI is the normalized difference vegetation index
(NDVI), which is a normalized ratio between NIR and red reflectance (Tucker
1979). It is sensitive to the amount of photosynthetically active vegetation and,
therefore, is useful for monitoring biomass (Tucker et al. 1985, Prince and Tucker
1986). Correlation with biomass is highest in the mid-range of NDVI values
(Asner et al. 2004, Phillips et al. 2008). In areas of dense vegetation, the NDVI
signal saturates and other, orthogonal or hybrid, indices, like EVI (Enhanced
Vegetation Index) and SAVI (Soil-adjusted Vegetation Index) or hyperspectral
measures perform better (Huete ef al. 2002a, Asner et al. 2004). NDVI has also
been used as a proxy for vegetation water content and drought stress but its
reliability decreases with mixed vegetation types (Ceccato 2001).

Frequently-acquired imagery from the advanced very high resolution
radiometer (AVHRR) has yielded unprecedented insights into our changing planet,
by analyses of land cover dynamics, biomass and primary production (Tatem et al.
2008). The availability of a long time-series of consistent global NDVI data and
detailed studies of its relationship with leaf area index (LAI) and net primary
productivity (NPP) have prompted the use of NDVI trends as a proxy for land
degradation. It has already been used extensively to study vegetation change and
its interactions with climate (Townshend 1994, Loveland et al. 2000), global
primary production (Prince and Goward 1995), land cover (DeFries et al. 1995)
and yield prediction and crop modelling (Chen et al. 2008, Stockli et al. 2008,
Boschetti et al. 2009). An 8-km spatial resolution — a characteristic of many
AVHRR datasets — is considered to be suitable for global vegetation monitoring
(Justice et al. 1985, Moulin et al. 1997, Pinzon et al. 2004, Tucker et al. 2005) and
constrains the spatial variability between different NDVI products (Tarnavsky et
al. 2008). The problem for land degradation studies is to discount false alarms
raised by other factors, notably fluctuations in rainfall, rising temperatures,
atmospheric CO; and nitrate precipitation and land use change — which may not be
accompanied by land degradation as commonly understood (Bai ef al. 2008).

Global VI time-series datasets are available from several sensors; Table 1
lists the most commonly used examples. The longest run consists of AVHRR
NDVI maximum-value composites (Holben 1986). The Global Inventory
Modelling and Mapping Studies (GIMMS) dataset has been compiled from daily
AHVRR 4-km Global Area Coverage (GAC) data, geometrically and
radiometrically corrected to produce fortnightly 8-km resolution NDVI data from
1981 through 2006 (Tucker et al. 2005). These NDVI values are comparable to
NDVI products from other sensors such as MODIS, SPOT Vegetation, SeaWiFs
and Landsat ETM+ (Brown et al. 2006). Other AVHRR NDVI datasets include
Fourier-Adjusted, Sensor and solar zenith angle corrected Interpolated and
Reconstructed monthly time-series (FASIR - Los ef al. 2000), Pathfinder AVHRR
Land (PAL - James and Kalluri 1994) and Global Vegetation Index (GVI - Goward
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et al. 1993). Although the various datasets started with nearly identical composited
AVHRR measurements, different processing has produced absolute NDVI values
that can differ substantially, especially in the tropics and northern high latitudes
(Hall et al. 2006). Also, compared with new-generation time-series data like the
MODerate resolution Imaging Spectrometer (MODIS), there are limitations
including orbital drift, atmospheric interference, wide spectral bands and
discontinuities due to platform changes (de Beurs and Henebry 2004, Fensholt et
al. 2009, Nagol et al. 2009).

TABLE 1 about here

Shorter time-series of about 10 years are available from MODIS, SPOT and
SeaWiFs. MODIS imagery is acquired every three days, providing aggregated
products every 3-16 days. MOD13 is an NDVI dataset with a spatial resolution of
250-1000m and appears to be more accurate than NOAA AVHRR, especially in
areas with high atmospheric water vapour content (Huete et al. 2002a). MODIS
also provides a continuous NPP dataset (Running et al. 2004) derived from the
fraction of absorbed photosynthetically active radiation (fPAR), which is a more
direct physical measurement than NDVI (Phillips et al. 2008). The spectral bands
used are narrower than for the AVHRR NDVI product so there is less interference
with (water) absorption features; importantly, the derived NPP is less sensitive to
saturation by dense vegetation. On the other hand, fPAR is generally overestimated
in semi-arid areas (Fensholt et al. 2004, Turner et al. 2006). The French Satellite
Pour 1'Observation de la Terre provides global vegetation datasets (SPOT VGT) of
1 km resolution. Replacement of SPOT VGT1 by VGT2 in 2003 involved a change
in the spectral response functions of channels 1 and 2 (Figure 3b) but, after
correction, the NDVI products of AVHRR and SPOT are comparable, except for
regions with high biomass (Swinnen and Veroustraete 2008). In semi-arid areas,
however, Fensholt et al. (2009) show that GIMMS and MODIS NDVI agree better
than SPOT VGT, as a result of the SPOT discontinuity (Figure 3a). The OrbView-
2/SeaWiFs (Sea-viewing Wide Field-of-view Sensor) was originally designed to
monitor the colour of the oceans, but thanks to convenient spectral bands and a
detector and amplifier that does not saturate over land, it also allows monitoring of
the land surface (Gobron et al. 2001). Differences between SeaWiFs and AVHRR
NDVI data can be neglected for land degradation studies, especially in drylands
(Laneve and Castronuovo 2005).

FIGURE 3 about here

Many other remotely sensed datasets have been used for regional land
degradation studies. It is beyond the scope of this review to list them all and,
therefore, we restrict ourselves to radar remote sensing and satellite based imaging
spectroscopy which we expect to be useful to global land degradation research in
the near future. For other sensors, the reader is referred to a recent review by
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Metternicht et al. (2010) of remote sensing for land degradation assessments,
including local to regional scales.

2.2 Space-borne radar and imaging spectroscopy

Radar was brought into space in the 1980s and has the advantage over optical
remote sensing that it can sense through cloud cover and without daylight.
Synthetic Aperture Radar (SAR) interferometry has been investigated for
identification of potential degradation sites (Liu et al. 2004), for monitoring of
wind erosion (Del Valle et al. 2010), for measurements of soil water (Walker et al.
2004) and carbon stock (Goetz et al. 2009), for crop monitoring (Baghdadi et al.
2009) and to study ecological processes (Kasischke et al. 1997). The latter include
vegetation mapping and above-ground biomass estimation which, in combination
with change detection methods, can provide information on land degradation. For
instance, SAR using multiple frequencies and polarizations is better for estimating
woody biomass in tropical forest than optical remote sensing (Wang and Qi 2008).
There are more and more radar instruments in orbit, especially in C and X bands,
with recent launches of TerraSAR-X and COSMO-SkyMed and forthcoming
launches of TanDEM-X and SAOCOM. However, consistent time-series needed
for land degradation assessment are not yet available.

Methods have been proposed for broad-scale degradation assessment by
space-borne imaging spectroscopy. At the moment, Hyperion (on board NASA
EO-1 launched in 2000) has been successfully tested for land degradation research
(Huete et al. 2002b, Asner and Heidebrecht 2003). The Spectral Analyses for
Dryland Degradation (SAND) mission was proposed to specifically target dryland
degradation (Mueller et al. 2001, Kaufmann et al. 2002) but not realized; it was
followed up by the German Environmental Mapping and Analysis Program
(EnMAP) to be launched in 2013 (Kaufmann et al. 2006). The lauch of the Italian
counterpart PRecursore IperSpettrale della Missione Applicativa (PRISMA) is
planned for 2010. All these sensors have a spatial resolution of about 30m which
currently limits global applications by the welter of data that attend high
resolution. Preliminary results from plant physiological studies, however, indicate
the potential power of using imaging spectroscopy for monitoring chlorophyll
fluorescence emission as a measure for heat or drought stress (Krumov et al. 2008,
Soukupova et al. 2008). Recently, ESA published plans for the FLEX
(Fluorescence Explorer) mission, which will comprise weekly global mapping of
fluorescence at 300m spatial resolution (Rascher et al. 2008). Potential pigment
shifts as indicators for plant stress and plant community composition change are
also available at leaf and canopy level (Kokaly et al. 2009) from imaging
spectrometer data. Data assimilation techniques (Dorigo et al. 2007) and angular
sampling (Schaepman 2007, Verrelst 2010) will further improve the use of
imaging spectrometer data in process modelling for land degradation.

2.3 Climatic and land use / land cover data

Various complementary global datasets may be used in concert with satellite
imagery to constrain index-based assessment of land degradation. Global or near-
global climatological datasets are available from satellites, including tropical
rainfall measuring mission (TRMM) and the AVHRR-based PATMOS-x project

http://mc.manuscriptcentral.com/tres Email: IJRS-Administrator@Dundee.ac.uk



OCoONOOOPR~WN =

328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364

365

366
367
368
369
370
371
372
373

International Journal of Remote Sensing

and also from long-term, station-based observations (Beck et al. 2004, Mitchell
and Jones 2005). From these, rain-use efficiency RUE (ratio of NPP to rainfall),
light-use efficiency and energy-use efficiency can be calculated (Le Houérou 1984,
Goetz et al. 1999, Bai et al. 2008). If productivity is limited by rainfall, RUE
accounts for variability of rainfall and, to some extent, local site characteristics.
The combination of NDVI and rainfall or RUE has been widely applied (Hein and
de Ridder 2006) but direct use of RUE has its critics (Holm et al. 2003, Prince et
al. 2007).

Soil characteristics and variability are important variables in land
degradation studies (Nicholson and Farrar 1994), but the available datasets such as
the Soil map of the World (FAO-UNESCO 1988), the Harmonized World Soil
Database (Nachtergaele et al. 2008) and SOTER (Van Engelen and Wen 1995) are
hardly compatible with earth observation data; the only rigorous application at a
regional scale has been in China under the Global Assessment of Land
Degradation and Improvement (Bai and Dent 2009). Improved global soil and
terrain datasets are being developed in the eSOTER project (e-SOTER website
2010) and the GlobalSoilMap.net project (Sanchez et al. 2009).

Land use and management have a big influence on land degradation and
certain land use changes make land degradation more or less likely (Vacca et al.
2000); information about land use and land cover change is therefore essential for
studying land degradation. Global land cover maps have been derived from several
remotely-sensed datasets including AVHRR (IGBP-DIS), SPOT-VGT (GLC2000),
ENVISAT MERIS (Glob-Cover) and MODIS (Herold et al. 2008). At finer
resolution, Landsat-based land cover datasets include NLCD2001 (USA), CORINE
(Europe) and AfriCover (Africa). However, each is specific to its own date and
data; they are not mutually comparable. In China, a SPOT VGT-based land cover
classification has been used to detect areas at risk of desertification (Huang and
Siegert 2006) and is claimed to be superior to GLC2000 and MODIS Land Cover
products but, for establishing the causes, the use of higher resolution, Landsat or
ASTER, imagery was recommended. The same SPOT data were used to monitor
land cover changes in West-Africa by NDVI and SAVI (Lupo et al. 2001). Several
climate-driven processes of land-cover change were detected but it was also
concluded that the data suffered from an incomplete cloud mask and sensor noise.
There have been efforts to derive dynamic land cover maps from AVHRR or
MODIS time-series (Julien and Sobrino 2009) and there is need for reliable,
readily-available products.

3. Broad-scale land degradation studies

Global assessments of land quality and dynamics became feasible with the first
AVHRR images (Justice et al. 1985). Since then, studies using time-series of
satellite imagery have mainly focussed on the areas generally considered to be
prone to degradation. The Sahel attracted attention because of a succession of
severe droughts since the 1960s, with driest years in the early 1980s (Nicholson
2000, Anyamba and Tucker 2005, Govaerts and Lattanzio 2008). It is an important
validation site for general circulation models because of the uncertainty about the
system’s reaction (Cook 2008) and of human-environment models because of the
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disputes about human influences on land degradation in the Sahel (Helldén 2008).
It has often been asserted that the Sahara is encroaching as a result of human
activities (Cloudsley-Thompson 1974, Lamprey 1988) but assessment of time-
series imagery in the Sudan showed no systematic advance of the desert or
reduction in vegetation cover (Hellden 1984). This was confirmed by Tucker et al.
(1991) and Schlesinger and Gramenopoulos (1996) who found that vegetation
density on the margins of the Sahara varies with rainfall, by Seaquist ez al. (2008)
who found no relation between demographics and model-based vegetation
dynamics and by Prince et al. (1998) on the basis of rain-use efficiency (RUE).
Still, Hein and de Ridder (2006) argue for human-induced vegetation degradation
over the last two decades based on temporal RUE variability — an interpretation
disputed by Prince et al. (2007). A systematic increase in vegetation productivity
around the Sahara has been measured using satellite imagery (Anyamba and
Tucker 2005, Herrmann et al. 2005, Olsson et al. 2005, Heumann et al. 2007,
Karlsen et al. 2007). Probably, much of what has been identified as human-induced
land degradation is a response to climatic fluctuations (Nicholson 2000).

There is also controversy about land degradation in South Africa, both about
the existence of severe degradation and about the causes. Several studies identified
land degradation, mainly in rangelands (Ross 1963, Adler 1985, Hoffman and
Simon 2000), but Dean et al. (1995) found no evidence for increasing degradation
and other studies in South Africa and surrounding countries concluded that
vegetation change could be attributed to natural conditions such as drought and
restrictive soil conditions (Dahlberg 2001). In Zimbabwe, Prince et al. (2009)
recently concluded that locations of degradation were unrelated to natural
conditions and thus caused by human land use. Wessels et al. (2007), in South-
Africa, used the trends of the residuals of NDVI trends (RESTREND) to
distinguish human-induced land degradation. They concluded that observed
changes could have resulted from several processes, including natural ecological
processes and land use changes. Not explicitly assigning causes, Bai and Dent
(2007) found that almost half of the cultivated land experienced a decline in
productivity over the last quarter century and one third of the whole country,
mostly rangeland, showed increasing productivity.

Broad-scale assessments using NDVI in several other parts of the world show
a general greening trend (Table 2), but also regions of decline. Like the Sahel, the
northern hemisphere has become greener during recent decades (Myneni et al.
1997, Slayback et al. 2003, Hiittich et al. 2007), although a browning trend was
found between 1994 and 2002 (Angert et al. 2005). Pouliot et al. (2009), in
Canada, found that AVHRR NDVI data compared well with Landsat data and
show an overall positive trend since 1985. Alcaraz-Segura et al. (2009), also in
Canada, confirm this but remark that AVHRR NDVI exhibit other greening and
browning trends than the CCRS (Canadian Centre for Remote Sensing) NDVI
dataset. In Australia, an increase in vegetation cover, especially in winter, recorded
by fPAR derived from AVHRR PAL has been attributed to an increase in available
moisture (Donohue et al. 2009).

TABLE 2 about here
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NDVI has proved capable of assessing vegetation dynamics and relations to
land degradation. However, assessment of land degradation at global scale remains
a challenge. One of the first attempts was Dregne’s 1977 map of the status of
desertification for the UN Conference on Desertification which was based on
expert opinion and restricted to dry lands; the later Global Assessment of Human-
Induced Soil Degradation (GLASOD - Oldeman et al. 1990) provided full global
coverage, also based on expert opinion. The situation has been revolutionised by
the availability of more than 25 years of consistent Earth-observation data. These
are the basis of the first quantitative assessment of global land degradation and
land improvement (GLADA) which applies trends analysis to the GIMMS dataset
and corrects for trends in rainfall using rain-use efficiency and temperature using
energy-use efficiency (Bai et al. 2008). The GLADA map detects potential
degradation hotspots (Figure 4) and yields quantitative estimates of lost
productivity in terms of NPP. However, much potential information in the dataset
is not revealed by the linear regression of yearly aggregated values.

FIGURE 4 about here

Assessments of land degradation using NDVI focused mainly on areas where
the NDVI signal does not saturate, such as semi-arid and temperate regions with
relatively low LAI. But land degradation is not confined to these areas and also
occurs in humid tropical and sub-tropical areas with dense vegetation.
Deforestation is one of the most common kinds of human-induced land
degradation but there are many other facets that may be referred to as forest
degradation (Kohl et al. 2009) — monitoring of which is technically more
challenging than monitoring deforestation (DeFries et al. 2007). The estimated
extent of deforestation in humid tropic forests is 1.4% of the total area (2000-
2005) and another 20% is affected by some kind of logging (Asner et al. 2009).
Accurate broad-scale estimations are difficult because clearing mostly occurs at a
fine scale but MODIS data have been used to create indicator maps (Hansen et al.
2008). The impact of natural factors like droughts has also been assessed using
MODIS. For instance in the Amazon there has been debate about whether the 2005
drought caused greening (Saleska et al. 2007, Samanta et al. 2010). Both studies
used EVI but the latter concluded that the data were corrupted by atmospheric
factors that explained the apparent greening effect. At global scale, FAO
undertakes a decennial forest resource assessment but there is no global forest
degradation inventory.

Biogeochemical models can assess changes in vegetation productivity with
and without human activity: a decline in productivity that cannot be explained by
climatic variations might be attributed to human influences (Seaquist et al. 2008).
At global scale, Nemani et al. (2003) applied a biome-specific production
efficiency model and two AVHRR datasets (GIMMS and PAL) and found that
global climatic and atmospheric changes have eased several constraints on NPP,
which had increased by 6 per cent over the period 1982-1999 (Figure 5). Similarly,
Cao et al. (2003), in China, used AVHRR data and two biogeochemical models to
estimate inter-annual variations of NPP. One of the models, the global production
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efficiency model (GLO-PEM) uses only remotely-sensed input data and, thus,
delivers independent estimates of NPP (Goetz et al. 2000). They concluded that, in
contrast with the global trend, the net ecosystem production in China decreased in
the past decades because of stronger warming than the global average. Seaquist et
al. (2003) built a LUE model for estimation of GPP in the Sahel, which was
parameterized with satellite data (PAL). In a follow-up they used the model to
disentangle the effects of climate and human influence and concluded that the
identified changes could not be correlated to human activity (Seaquist et al. 2008).
To address human appropriation of NPP (HANPP) at global scale, Haberl et al.
(2007) used the Lund-Potzdam-Jena (LPJ) dynamic global vegetation model for
calculating potential NPP. They concluded that almost 24% of yearly potential
NPP was lost due to human activities (based on the year 2000) including
harvesting (53%) and land-use change (40%). These data have also been used to
focus on human-induced dryland degradation at global scale (Zika and Erb 2009).
The extent of degrading areas was taken from a compilation of mainly qualitative
land degradation assessments, including GLASOD. They found a loss in NPP of
1.6% with respect to the global terrestrial NPP but emphasized, that results are
hard to interpret because of uncertainties in the underlying assumptions. Another
model that has been regularly used in combination with earth observations for
modelling of NPP is the Carnegie-Ames-Stanford (CASA) biogeochemical (BGC)
model (Potter and Klooster 1997, Yu et al. 2009).

FIGURE 5 about here

In this review, biomass decline has so far been considered as a gradual
process on the human time scale, but it may equally well be considered a
catastrophic shift caused by gradual environmental change (Scheffer et al. 2001,
Rietkerk et al. 2004). The latter effect is caused by positive feedback mechanisms
like the effect of vegetation on soil erosion and the other way around (Janssen et
al. 2008). Mid-Holocene desertification in North Africa has been identified as such
a catastrophic shift (Dakos et al. 2008) but assessment of catastrophic land
degradation using remote sensing is yet an unexplored field of research.

4. Broad-scale monitoring of physical and chemical land degradation
processes

Soil erosion by runoff water is considered to be the most widespread process of
land degradation (Eswaran et al. 2001, Vrieling 2007). Most commonly, it is
assessed by measuring or modelling the detachment of particles by rain splash and
overland flow and up-scaling to the catchment. Vrieling (2006) and Metternicht et
al. (2010) review the application of satellite remote sensing, which can show the
larger erosional features such as rills, gullies and land slips. Smaller features like
crusting or soil compaction may be spectrally distinguishable on bare ground
(Goldshleger et al. 2001) but attempts to quantify them in remotely sensed imagery
have been limited to small plots. The same holds for monitoring of gully erosion
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(Marzolff and Poesen 2009) and quantification of soil properties (Summers et al.
2009), which are mostly done using high-resolution, often airborne, remote
sensing. However, a recent modelling approach for soil erosion at continental scale
for sub-Saharan Africa by Symeonakis and Drake (2010) found that the estimates
are within the same order of magnitude as field measurements. In dry lands, wind
is an important agent of erosion and deposition (Ravi et al. 2010) but it is hard to
quantify at broad scales (Symeonakis and Drake 2004). Radar remote sensing has
been tested for mapping of wind-driven land degradation by mapping its primary
factors: surface roughness, soil moisture, local incidence angle and vegetation
cover (Del Valle ef al. 2010). The acute processes of chemical land degradation are
salinization and chemical contamination. Salt accumulation may arise from
groundwater, coastal flooding or irrigation; chemical contamination may be
natural, for instance in volcanic areas, or, most often, man-made (Gardner et al.
2004). Salinity may be detected with relatively high-resolution imagery like
Landsat (Chen and Rao 2008) but comparison with the GLADA assessment at 8km
resolution shows some sensitivity at the broader scale as well (Figure 6). However,
the coarse resolution of most satellite imagery compared with the variability of salt
concentrations in the soil and the interference of other soil properties with the
detected signal limit its value for detailed mapping (Mougenot et al. 1993, Ben-
Dor 2009). At the same time, high-resolution data impose a practical constraint on
broad-scale mapping. Metternicht and Zinck (2003, 2009) give an overview.

FIGURE 6 about here

5. Future steps for Earth observations

There is broad agreement that efficient action to arrest land degradation requires
‘effective early warning, assessment and monitoring — combining remote sensing
with field surveys of key indicators’ (UNEP 2007); but it remains a contentious
field (Bai et al. 2008). Field observations and experiments combined with expert
synthesis measure physically different things at a different scale from those
measured by remote sensing. Expert judgment of ‘the real thing’ is local and time-
bound and it is hardly possible to validate 25 years of NDVI measurements in the
field, after the event, at 8-km resolution. Remote sensing can take us several steps
towards accurate and consistent monitoring of land degradation at the global scale,
but interpretation of imagery and derived products comes with challenges. Some
important steps towards better understanding of time-series of satellite imagery are
listed below.

5.1 Advanced time-series analysis

The value of a 25-year + time-series of AVHRR can hardly be over-stated. Land
degradation nearly always affects vegetation and NDVI is one of the few,
consistent indicators available at global scale over the long term. In spite of the
limitations of AVHRR data already discussed, data-driven approaches can derive
several biophysical variables (Goetz et al. 2000). Since 2000, MODIS, SPOT VEG
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and SeaWiFS provide improved datasets in terms of accuracy or spatial resolution.
Each dataset contains information on inter- and intra-annual variability,
phenological cycles, frequency and shift of growing seasons and distinction
between gradual and abrupt changes (Azzali and Menenti 1999, Jonsson and
Eklundh 2002, Zhang et al. 2003, Verbesselt ef al. 2010) which might be linked to
climatic changes, changes in land use and management and/or land degradation.
Current assessments eliminate intra-annual information by reducing the temporal
resolution, while existing methods can account for phenological variation without
averaging to yearly values, for instance by harmonic analysis of NDVI time-series
(Jakubauskas et al. 2001, Hird and McDermid 2009). For this purpose, the HANTS
algorithm (Verhoef ef al. 1996, Roerink et al. 2000, Jun et al. 2004) performs well
in comparison with several others (White ef al. 2009). If more measurements are
maintained in the analysis, it is also possible to capture trend breaks or shifts. For
instance, certain regions exhibit combined greening and browning trends (Angert
et al. 2005), which are averaged out by simple linear trends analysis.

When using vegetation dynamics as indicator for land degradation, it is
essential to account for phenological variation and, when using regression to
quantify trend slopes, it is essential to deal with trend shifts and breaks. The
analysis of the full temporal domain of AVHRR and other datasets is needed to
achieve these goals.

5.2 Spatial contextual analysis

The spatial contextual approach, which includes the pixel location and interaction
with adjacent pixels as source of information, is relatively unexplored. For coarse
resolution data, this might include stratification by phenological zones, while at
finer resolution changes in land use may be incorporated (Friedl et al. 2002, Lupo
et al. 2007). In any case, the spatial resolution of the imagery should correspond
with the scale at which the processes act. In case of climate-driven land cover
changes (e.g. warming, change in precipitation) a 1-km resolution will suffice,
whereas most human-driven land cover changes (e.g. land transformation, logging,
over exploitation) occur at 250m-500m scale (Townshend and Justice 1988).
Patchiness, or spatial configuration, of vegetation is often used to study ecosystem
health or degradation (Bastin et al. 2001, Ludwig et al. 2007). In water-limited
ecosystems, patchiness might be self-organizing due to a positive feedback relation
between vegetation and water availability (Rietkerk ef al. 2004): dense vegetation
allows for high water infiltration into the soil and lower soil evaporation. As a
result, vegetation may persist where it is already established but bare soil does not
allow for vegetation to establish. The catastrophic shift between vegetated patchy
state and bare homogeneous state, e.g. due to overgrazing, might have severe
consequences for land degradation in drylands (von Hardenberg et al. 2001). It is a
challenge and urgent issue to anticipate these changes using earth observation and
include these in dryland degradation models (Kéfi et al. 2007).

5.3 Modelling

Satellite-based Earth observation methods are confined to physical measurement -
in most cases radiances or reflectance factors (Schaepman-Strub et al. 2006).
Mapping of indicators of land degradation relies on empirical models, mostly using
statistical methods, to establish relations between the physical measurement and
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the degradation process. Models that aim to predict catastrophic shifts need a long
time-series of sufficient quality and resolution to capture the dynamics of the
system (Dakos et al. 2008). Currently available remotely sensed time-series enable
trend analysis of some fast-reacting sub-systems but large climatic systems are
known to react over centuries (deMenocal 2008). At shorter time-scales, remotely
sensed data can be coupled to outputs from vegetation dynamics or light-use
efficiency models like Biome-BGC (White ef al. 1999), LPJ (Bonan et al. 2003),
CASA (Potter et al. 1999) or crop growth simulation models (Jongschaap 2006);
differences between observed productivity and simulated productivity without
human interference might indicate land degradation. Although many studies have
shown the potential of this approach, it remains a challenge to combine these
models with others, e.g. soil erosion models (Symeonakis and Drake 2010) and
land change models / human-environment models (Turner et al. 2007, Helldén
2008) into a generic land degradation model.

5.4 Validation

Validation is crucial for remote sensing studies. We have consistent satellite data
of the past 30 years, but no compatible field data. Field validation is hardly
feasible for pixels ranging from 1-8 km (Running and Nemani 1988) and, because
of heterogeneity on the ground, extrapolation is often problematic. Every study of
scalability issues deals with the trade-off between local precision, which is
improved by on-the-spot assessment (Baartman et al. 2007) and global accuracy
which needs a consistent, world-wide overview but which is hard to recognize in
the field. The AVHRR dataset captures the typical length of time on which
degradation processes occur, whereas the new generation sensors capture the
typical spatial scale (Townshend and Justice 1988). If the 1981-2006 AVHRR data
were to be processed in a manner quantitatively comparable to that of the new
generation of sensors, many advantages of MODIS and SPOT Vegetation data
could be realized while retaining historical information (Tucker ef al. 2005). Many
regional and national studies will remain essential to validate broad-scale
degradation estimates — either qualitative or quantitative.

6. Conclusions

Land degradation is a global environmental and development issue but there is no
consensus on its causes, severity and extent. Many scientific and political fields
are involved in research and policy making and there is agreement about the need
for up-to-date, quantitative information at national and global scales to support
mitigation. This requires consistent monitoring of key indicators at a range of
scales. Loss of vegetation productivity or cover has been widely used to quantify
land degradation, not least because of the availability of long-term NDVI time-
series. Broad-scale studies show a general greening trend over recent decennia but,
also, regions of productivity decrease, e.g. in south China. The first quantitative
global assessment of land degradation and improvement (GLADA) used yearly
averaged linear trends in NDVI, translated in terms of NPP as a proxy measure.
However, the results of global studies are disputed because they are different from
traditional expert assessments and they are hard to validate in the field. At the
same time, local assessments are only snapshots of small areas, generally too
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detailed for global application. Steps towards improvement of broad-scale
assessments include more advanced time-series analysis, integration of state
assessments using statistical methods with model based links to processes or
drivers, the use of spatial-contextual information and validation using regional
assessments. The first might include recognition of intra-annual variation, non-
linear trends and breaks or shifts in greening and browning trends. The others
might include the use of regional studies at medium spatial resolution, for instance
land degradation assessments, but also dynamic land use mapping and other land
dynamics or land change studies for validation and identification of driving
processes. A truly global assessment, empirical or deterministic, requires more
than NDVI measurements which have limited application in humid, densely
vegetated (high LAI) regions. Integration with a future global forest degradation
assessment is needed.

The long-term AVHRR NDVI record provides an invaluable historical record
but there is still a gap in the methodology to couple this dataset to the datasets
from the new generation of improved sensors. Using the full potential of all
available datasets — in all temporal, spectral and spatial dimensions — will be a
significant step towards global-scale assessment of land degradation. Advances in
satellite-based remote sensing will improve its measurement, but further
development of physically-based process models is needed to establish cause-and-
effect relationships. Until then, Earth observation-based mapping of indicators will
continue to reveal ambiguities.
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Figure 5. Linear trends in yearly accumulated net primary production (NPP) from 1982-1999 using a
global production efficiency model. Reproduced from Nemani et al. (2003).

Figure 6. Salinization study in China: middle- Landsat image of study area, overlaid by GLADA NDVI
trend (Figure 4); right - red indicates degradation and blue improvement (1988-1996). Modified after
Chen and Rao (2008).

26

http://mc.manuscriptcentral.com/tres Email: IJRS-Administrator@Dundee.ac.uk



Page 27 of 31

Table 1. Most commonly used time-series of vegetation imagery for broad-scale land degradation studies, limited to datasets with a high temporal resolution and global

coverage.

International Journal of Remote Sensing

Dataset / Product

Sensor

Platform

Time range

Spatial res.

Indicator

Temporal resolution

Pathfinder Land
(PAL)

OCOoONOOOPRWN =

Global Vegetation
Index (GVI)

GIMMS

FASIR

AVHRR

NOAA
satellites

1981-2006

8 km
(GVI 16km)

NDVI

10-day MVC

Weekly MVC

15-day MVC

15-day MVC

MOD13/MYD13

MOD17A2/
MYDI17A2

MODIS

Terra / Aqua

2000-present

250 m-1
km

NDVI/
EVI

8 or 16-day MVC

1 km

GPP

8-day composite

VGT-S10

VGT

SPOT-4

1998-present

1 km

NDVI

10-day synthesis

L3-SMI NDVI

SeaWiFS

OrbView-2

1997-present

4.63 km

NDVI

Weekly MVC
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Table 2. Selected studies of broad-scale vegetation trends.

International Journal of Remote Sensing

Extent Indicator Resolution | Time range | RS data Conclusion Reference
Global NPP (PEM) | 0.5 deg 1982-1999 PAL/ 6% increase in global Nemani et al. (2003)
GIMMS NPP
Global NPP 1 deg 1983-1988 FASIR Increase in global NPP, 6- | Potter et al. (1999)
(CASA) month to 1-year offset in
timing of anomalies
Global NDVI 8 km 1981-2003 GIMMS Greening and browning Bai et al. (2008)
trends globally
Northern NDVI 8 km 1982-1999 GIMMS/FA | Significant greening Slayback et al. (2003)
hemisphere SIR trends (61% of vegetated Tucker et al. (2001)
area) Zhou et al. (2001)
Northern NDVI 1 deg 1982-2002 GIMMS Shifting greening and Angert et al. (2005)
hemisphere browning trends, net
greening
Northern Eurasia | NDVI 1998-2005 SPOT VGT | Greening trend Hiittich et al. (2007)
Northern high NDVI 8 km 1981-1991 PAL/ Photosynthetic activity Myneni et al. (1997)
latitudes GIMMS increased, suggesting
increase in plant growth
Sahel NDVI/ 8 km 1982-1990 GIMMS No evidence of Prince et al. (1998)
RUE desertification
Sahel NDVI/ 8 km 1982-2003 GIMMS Greening trend Herrmann et al. (2005)
rainfall
Sahel NDVI 8 km 1982-1999 PAL Greening trend Olsson et al. (2005)
Sahel Albedo 1984 v 2003 | MeteoSAT | Greening associated with | Govaerts and Lattanzio (2008)
decreasing albedo
Australia fPAR 0.08 deg 1981-2006 PAL Increase in vegetation Donohue et al. (2009)
cover
South America fPAR / 1981-2000 AVHRR Overall increase of 1.3% Paruelo et al. (2004)
NDVI
China NPP (PEM) | 0.5 deg 1981-2000 AVHRR Increase in NPP (0.32% / | Cao et al. (2003)

year), decrease in net
ecosystem productivity
between 80s and 90s due
to global warming
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biological

physical

chemical

anthropogenic

Figure 1. Examples of land degradation. Top: (a) Man-induced soil erosion on agricultural fields
(Volker Prasuhn, website); (b) Secondary (man-induced) salinity in farmland, California (USDA
Agricultural Research Service); (¢) Loss of forest cover through shifting agricuture, Wau district,
Sudan (UNEP website). Bottom: (d) Soil erosion induced by snowmelt (Volker Prasuhn); (e) Acid
sulphate scald caused by drainage change (Gardner et al. 2004) which may be natural or man-made; (f)
Drought -induced vegetation decline and soil erosion (WMO).
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Figure 2. The positioning of land degradation within the land change science framework. Modified
after Turner et al. (2007).
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Figure 3. Comparison of GIMMS, MODIS NDVI and SPOT VGT for a test site in Senegal.
Reproduced from Fensholt et al. (2009).
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Figure 4. Linear trends in net primary production (NPP) from the global assessment of land
degradation and improvement (GLADA). Reproduced from Bai ez al. (2008).
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21 Figure 5. Linear trends in. yearly aécumulafed net primary production (NPP) from 1982-1999 ﬁsing a
22 global production efficiency model. Reproduced from Nemani ez al. (2003).

45 NDVI trend (Figure 4); right - red indicates degradation and blue improvement (1988-1996). Modified
46 after Chen and Rao (2008).
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