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One important task of site monitoring is change detection from

aerial images. Change, in general, can be of various types. In this

paperwe address the problem of developmental change at a site. For

instance, we would like to know about new construction at a pre-

viously undeveloped site and possibly monitor its progress. Model

based approaches are not suited for this kind of change as it usually

happens in unmodeled areas. Since it is difficult to infer construc-

tion activity by predicting and verifying specific local features, we

rely on more global statistical indicators.

The thesis of this paper is that the change induced by human

activity can be inferred from changes in the organization among

the visual features. Not only will the attributes of the individual

image features change but also the relationships among these fea-

tures will evolve. With the progress of construction we expect to

see increased structure among the image features. We exploit this

emerging structure, or organization, to infer change. In this paper,

we propose four measures to quantify the global statistical proper-

ties of the individual features and the relationships among them.

We base these measures on the theory of graph spectra. We pro-

vide extensive analysis of the robustness of these measures under

various imaging conditions and demonstrate the ability of these

organization-based measures to detect coarsely incremental devel-

opmental changes. c© 1998 Academic Press

CONTENTS

I. Introduction.

II. Theory: Graph spectra. A. Eigenvalues of graphs. B. Variation of Eigenval-

ues with graph structure. 1. Random perturbations. 2. Statistical parameter

changes.

III. The relation graph. A. Gestalt relations: Computation. B. Gestalt relations:

Quantification. C. Gestalt relations: Combination.

∗ This research is supported in part by a RADIUS Phase-II seed grant

from Lockheed-Martin and National Science Foundation CAREER Grant IRI-

9501932.

IV. Effect of imaging conditions on the Eigenvalues of the relation graph.

V. What do the Eigenvectors give us? Eigenclusters.

VI. Measures for change detection.

VII. Results. A. Detecting drastic change. B. Detecting coarsely incremental

changes. C. Variation with edge detection parameters. D. Variation with

relation graph parameters. E. Limitations of the approach. F. Execution

times.

VIII. Conclusion.

I. INTRODUCTION

Manmade objects are organized; even their placement tends

to be regular. For example, buildings exhibit geometric forms,

road widths vary slowly, airplanes are parked parallel to one an-

other, and a full parking lot has a regular structure. This 3D world

structure manifests as regular 2D image feature organizations.

We explore the role of this emergent structure or organization

among the 2D image features in change detection. Specifically,

we address the problem of detecting new construction at a pre-

viously undeveloped site and possibly monitoring its progress.

This kind of change, by its very nature, is usually not predictable;

it may occur in unmodeled areas such as forests. Thus, traditional

approaches based on prior models do not work well. We suggest

global statistical approaches as opposed to those which rely on

model based local prediction and verification.

We detect changes associated with construction activity by

monitoring the statistics of significant regular groupings of im-

age features. Change induced by human activity can be inferred

from change in the organization among the visual features. For

example, as vehicles move in and out of parking facilities, the

regularity of the visual structure waxes and wanes. New con-

struction of buildings, roads, or airfields is also accompanied

by the emergence of regular groupings. Bomb damage will as-

sociate with the disappearance or rapid change of organization.

Thus, the appearance and disappearance of patterns or orga-

nizations offer clues to detecting change and can guide more
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MEASURES OF CHANGE BASED ON FEATURE ORGANIZATION 111

FIG. 1. A fully constructed building site overlaid with the constant curvature edge segments.

specialized image understanding algorithms or signal image an-

alysts to quantify and characterize that change. We propose sta-

tistical measures to capture both the individual geometric at-

tributes of the image features and the regularity of the relation-

ships among these features. Changes in the proposed measures

provide evidence for construction activity.

Figures 1 and 2 show a fully developed site and an undevel-

oped forest site, respectively. The gray level images are overlaid

with constant curvature edge segments. Note the difference in

the organization among the edge features. The edges in the fully

developed site exhibit more parallelism, continuity, closure, and

perpendicularity than those in the undeveloped site. Also, the

edge segments in the fully developed site are generally larger

than those in the undeveloped site. We quantify these qualitative

FIG. 2. An undeveloped forest site overlaid with the constant curvature edge segments.

differences using measures which capture both the statistics of

the individual edge features and the relationships among them.

The underlying theory is based on the spectra (eigenvalues and

eigenvectors) of graphs. The relationships among the image edge

features are represented as a relation graph. The eigenvalues and

the eigenvectors of the adjacency matrix of this graph provide

us with measures which capture the global relationship among

the edge features.

The use of eigenvalues and eigenvectors in computer vision is

not new. The concept of eigenvalue has been used for edge detec-

tion [1], nonrigid motion estimation [2], face recognition [3], and

region segmentation [4]. However, the usage has been mostly at

the signal level, except for Shapiro and Brady [5] and Sengupta

and Boyer [6, 7]. Shapiro and Brady used the eigenvectors of a
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FIG. 3. (a) An example arrangement of edge features. (b) The relation graph with nodes corresponding to the individual edge segments and the links denoting

pairwise compatibility. (c) The adjacency matrix corresponding to the relation graph.

proximity graph to establish correspondence between two sets of

features. Sengupta and Boyer used the eigenvalues of a connec-

tivity relation matrix of a 3D model to extract global attributes

of an object. In this paper, we generalize the previous use of

eigenvalues and apply it for a very different purpose. We also

provide an extensive study of the stability and the robustness of

the eigenvalues.

Previous work in the area of change detection includes the

contributions by Huang, Mundy, and Rothwell [8] who attacked

the problem of focused change detection in the context of a site

model. The three types of change they monitored are parking lot

occupancy, counting of buildings in a region given their mod-

els, and detecting door states of a building (again) given the site

model. Benjamin, Huertas, Medioni, and Nevatia [9] also tack-

led the problem of model-based change detection. The algorithm

has three parts. First, they registered a given image with the site

model using shadows. Second, the model features were matched

to image features. And third, the model objects were validated.

Among other change detection algorithms are pixel based dif-

ferencing algorithms [10, 11] which obviously suffer from the

problem of being unable to differentiate between imaging con-

dition changes and those due to important structural changes and

which require precise registration or common camera position

and orientation.

The organization of this paper is as follows. In Section II,

we discuss the theory of graph spectra. The construction of the

relation graph is discussed in Section III. Section IV presents

empirical results on the stability of the eigenvalues with respect

to imaging condition changes. Section V introduces the concept

of eigenclusters. We propose the measure for change detection

in Section VI. Section VII describes the use of the eigenvalues

in change detection. We conclude with Section VIII.

II. THEORY: GRAPH SPECTRA

The global relationship among image features can be very

effectively captured in the form of a graph whose nodes repre-

sent the image features and whose links denote compatibility

between the features. Two image features are said to be compat-

ible if they exhibit pairwise organization, e.g., the two structures

are of the same type, similar size, and have similar orientation

(generalized parallelism). We call this graph the relation graph.

Consider Fig. 3a which shows an example arrangement of

constant curvature edge segments. The associated relation graph

along with its adjacency matrix are shown in Figs. 3b and 3c,

respectively. The graph nodes represent the constant curvature

segments and the links denote compatibility. We assume that

compatibility is a crisp relationship only for this example. In

practice, the links in the graph are weighted according to the

degree of compatibility between two nodes. Our task is to for-

mulate measures which capture global properties of this relation

graph. Eigenvalues and eigenvectors of the relation graph pro-

vide exciting possibilities as a basis for such measures. The

concept of graph eigenvalues is motivated as follows [12].

A. Eigenvalues of Graphs

Let us consider the task of finding node clusters in a weighted

graph G of n nodes. Given a node cluster, we can motivate a

cluster cohesiveness measure in the following way.
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TABLE 1

Eigenvalues and the Corresponding Eigenvectors for the Edge Segments Shown in Fig. 3

Eigenvectors (nodes)

Eigenvalues 1 2 3 4 5 6 7 8 9 10 11 12

−1.7 x1 −0.17 −0.17 −0.17 0.64 0.0 0.0 0.0 0.0 −0.64 0.17 0.17 0.17

−1 x2 0.03 0.03 −0.05 0.0 −0.80 0.46 0.37 −0.04 0.0 0.08 −0.08 0.01

−1 x3 −0.01 −0.01 0.03 0.0 0.25 −0.16 0.61 −0.69 0.0 0.13 −0.21 0.07

−1 x4 0.03 0.03 −0.07 0.0 −0.04 −0.15 −0.08 0.27 0.0 0.17 −0.73 0.57

−1 x5 −0.04 −0.04 0.07 0.0 0.07 0.34 −0.14 −0.28 0.0 −0.67 0.11 0.56

−1 x6 0.02 0.02 −0.03 0.0 −0.21 −0.61 0.47 0.34 0.0 −0.41 0.25 0.16

−1 x7 0.79 −0.57 −0.22 0.0 0.02 0.01 −0.01 −0.02 0.0 −0.02 0.02 0.0

−1 x8 −0.20 −0.58 0.78 0.0 −0.07 −0.03 0.03 0.08 0.0 0.06 −0.06 0.0

−0.3 x9 0.25 0.25 0.25 −0.57 0.0 0.0 0.0 0.0 −0.57 0.25 0.25 0.25

2.8 x10 0.37 0.37 0.37 0.29 0.0 0.0 0.0 0.0 −0.29 −0.37 −0.37 −0.37

3.0 x11 0.0 0.0 0.0 0.0 −0.50 −0.50 −0.50 −0.50 0.0 0.0 0.0 0.0

3.3 x12 0.33 0.33 0.33 0.43 0.0 0.0 0.0 0.0 0.43 0.33 0.33 0.33

Let us represent a node cluster using a column vector, x, whose

kth entry captures the participation of node k in that cluster. If a

node does not participate in a cluster, the corresponding entry is

zero. We allow for a graded membership of a node in a cluster. We

also impose the restriction that the norm of this weight vector x

be one or xT x = 1. Then, based on the link weights of the graph,

wi j , we can define the measure for the cohesiveness of the node

cluster as

n
∑

i=1

n
∑

j=1

wi j xi x j = xT Ax, (1)

where A is the weighted adjacency matrix. Note that since the

entries in x corresponding to the nonparticipating nodes in a clus-

ter are zero, only a submatrix of A will be essentially involved in

the above equation. The more well connected the cluster nodes

are, the larger is the cluster cohesiveness.

A maximally cohesive cluster x can be found by maximizing

the above expression. The Rayleigh–Ritz theorem [13, p. 176]

states that the maximum value of the above expression will be

λmax, the maximum eigenvalue1 of A, and the corresponding

eigenvector will be the optimal x. In fact, the theorem also im-

plies that the minimum value will be λmin, the minimum eigen-

value of A.

In general, we will have n eigenvalues, which is the total

number of nodes in the graph. The (nondecreasing) ordered set

of eigenvalues {λ1, . . . , λn} is referred to as the spectrum of

the graph. An interpretation for all the eigenvalues and eigen-

vectors of A can be given using the Courant–Fischer theorem

[13, p. 179], which is a generalization of the Rayleigh–Ritz the-

orem. Let {xλn
, . . . , xλn−k+1

} denote the set of eigenvectors cor-

responding to the (k − 1) largest eigenvalues, (λn, . . . , λn−k+1),

1 For any N × N matrix A, eigenvalues are constants (λ) such that Ax = λx

for a column vector x, the corresponding eigenvector.

respectively. Then,

λn−k = max
x⊥{xλn ,...,xλn−k+1

}
xT Ax. (2)

Thus, the kth largest eigenvalue, λn−k , is the maximum value

of the cluster cohesiveness measure for all node weight assign-

ment vectors x that are orthogonal to the eigenvectors with the

(k − 1) largest eigenvalues. For example, the components of

the eigenvector with the second largest eigenvalue give a cluster

weight assignment which is orthogonal to the cluster weight as-

signment (eigenvector) with the largest eigenvalue. In practical

terms, we can use this orthogonality constraint to define disjoint

clusters.

Thus, we see that the spectrum of a graph provides us with a

natural clustering of its nodes. The components of an eigenvector

denote the node participations in the associated cluster, while the

corresponding eigenvalue denotes the coherency of the cluster. If

the nodes participating in a cluster are all connected to each other

with weight one (a perfectly coherent group), then its eigenvalue

is the maximum possible, the number of nodes in the group

minus one. The eigenvalue decreases as the interconnections get

sparser. Thus, the larger the eigenvalue, the greater the coherence

and the size of its associated cluster.

In general, the components of an eigenvector will not be all

positive. Eigenvectors with negative components are not mean-

ingful in the above physical interpretation of a graph spectrum

since the membership of a node in a cluster cannot be neg-

atively valued. Thus, in this paper, we consider only positive

eigenvectors. An eigenvector xi is said to be positive if all the

components of xi or −xi are positive and its corresponding eigen-

value is positive. (Note that if x is an eigenvector then so is −x.)

We call the collection of nodes corresponding to the nonzero

components of a positive eigenvector an eigencluster. For the

above example, the graph in Fig. 3b has the eigenvalues and

the eigenvectors of its adjacency matrix shown in Table 1. We

have two positive eigenvectors, x11 and x12. The eigenclusters
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are (1, 2, 3, 4, 9, 10, 11, 12), and (5, 6, 7, 8). Note that nodes 4

and 9 are “stronger” members of the first cluster since they have

the largest node valency.

The eigenclusters will in most cases be disjoint. Recall that

the clusters are derived from the nonzero components of the

positive eigenvectors and from matrix theory we know that the

eigenvectors of a Hermitian matrix (A = ĀT) with all distinct

eigenvalues are orthogonal to each other. As formulated in this

paper, the underlying relation matrix will be Hermitian and we

have found that in practice the eigenvalues are distinct. However,

as we will see in Section V, in practice we relax the definition

of a “positive” eigenvector to allow for clusters with small (up

to 5%) overlaps.

The graph spectrum also captures other important structural

properties of the graph. We summarize a few of those proper-

ties here. The average node valency of an unweighted graph is

less than the maximum eigenvalue, λmax. For the example in

Fig. 3, the average valency is 3.15 and λmax is 3.3. A complete

unweighted graph of n nodes has n − 1 eigenvalues equal to

−1 and one eigenvalue equal to n − 1. Two isomorphic graphs

have the same spectrum. However, two graphs with the same

spectrum need not be isomorphic. There are other graph proper-

ties which can be computed from the graph spectrum such as its

interior stability, the chromatic number, the number of complete

subgraphs, and bipartiteness. The reader is referred to [12] for

more details.

B. Variation of Eigenvalues with Graph Structure

For the spectrum to form the basis for stable measures we need

to study its sensitivity to two basic forms of change, namely, the

addition or deletion of links and the increase or decrease of the

link weights. We start with a randomly generated graph of 100

nodes with a sparseness index of 0.025, a typical value for rela-

tion graphs from real images according to our method of build-

ing them. We define the sparseness as the ratio of the number

of links to the total possible number of links. We conducted two

studies. In the first study we randomly perturbed the links and

the weights of the graph. In the second study we systematically

changed the adjacency graph.

1. Random perturbations. Since the eigenvalues are con-

tinuous functions of the graph link weights, we have reason to

believe that if these weights are perturbed by small values, then

the eigenvalues should not change too drastically. In fact, Weyl’s

theorem can be used to provide us with a bound on the variation

of the eigenvalues [13, p. 367]. Let A and the perturbation matrix,

E, be two real symmetric matrices with λ1 ≤ λ2 ≤ · · · λn and

λ1(E) ≤ λ2(E) ≤ · · · λn(E) as their respective ordered spectra.

Let λ̂1 ≤ λ̂2 ≤ · · · λ̂n be the ordered eigenvalues of A+E. Then

it can be shown that

λ1(E) ≤ λ̂k − λk ≤ λn(E) for all k = 1, 2, . . . , n. (3)

Thus, the variation of the eigenvalues of a perturbed matrix is

bounded by the maximum and the minimum eigenvalues of the

perturbing matrix. We can use the Hoffman and Wielandt the-

orem [13, p. 368] to derive the following more comprehensive

bound on the perturbations to all the eigenvalues.

(

∑

k

|λ̂k − λk |
2

)1/2

≤ ‖E‖2, (4)

where ‖E‖2 is the Euclidean norm (square root of the sum of

the squared entries of E) of the perturbing matrix E .

We verified these theoretical results by considering two types

of perturbations, namely, random variations in the graph links

and their weights. The random variation of link weights is sim-

ulated by considering weights which are uniformly distributed

between 0 and 1. We started from a random unweighted graph

of sparseness 0.025 and generated 100 weighted (mutually in-

dependent) graphs from it by replacing the nonzero links with

uniformly distributed weights, over 0 to 1. From Fig. 4a we see

that the variation of the eigenvalues is low and tightly bounded.

The solid plots in Fig. 4 refer to the mean spectra and the circles

mark the minimum and maximum variations in the eigenvalues.

The horizontal axes denote the order of the eigenvalues in the

graph spectra: the smallest eigenvalue is represented by 1 and the

largest eigenvalue is represented by 100. Note that this does not

mean that there is little information about the weighting struc-

ture in the graph spectrum, but rather that graphs with similar

weight distribution will tend to have similar spectra. However,

differences in the nature of the distribution of the link weights

will tend to be reflected in the eigenvalues, as we shall see in the

next section.

To model the random addition and deletion of graph links we

randomly generated graph adjacency matrices whose nonzero

entries occur with a probability of 0.025, the sparsness index. We

constructed 100 such matrices and Fig. 4b shows the variation

of the eigenvalues. Note the tight bound.

2. Statistical parameter changes. In practice we would like

the eigenvalues to change systematically if the graph links and

their weights show systematic change. With progress in con-

struction activity we expect not only the emergence of new re-

lationships between image features but we also expect the rela-

tionships to grow stronger. In this section, we study the effect

of these two types of change on the eigenvalues. First, we con-

sider an unweighted relation graph and study the effect of adding

new links. Second, we consider a weighted relation graph with

a static link structure, but change the link weights. Third, we

study the effect of varying both the links and their weights.

An independent, identical, and uniformly distributed random

variable is a poor model of the new links added during construc-

tion. The emergence of new links is dependent on the existing

links. Although the exact statistics depend on the particular type

of construction, we can, in general, observe that new construc-

tion follows a “crystal growing” pattern. For example, a hangar

is not constructed by randomly building parts of it, but by adding

new structures around a core. First the access roads are built, the
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FIG. 4. Variation of eigenvalues with random variation in (a) the link weights and (b) the links. The horizontal axes denote the order of the eigenvalues in the

graph spectra: the smallest eigenvalue is represented by 1 and the largest eigenvalue is represented by 100. The solid plot depicts the mean spectrum and the circles

denote the maximum and the minimum variation under random perturbations.

foundations are laid, then the walls come up, next the roofs are

built, followed by construction of parking lots around the hangar.

This sequence of concentrated activities manifests itself as new

image features emerging around existing ones, and in organized

relationships with them. We model this kind of change by vary-

ing the probability of addition of a new link according to the

local graph structure.

New links are added to the relation graph according to

P(wi j = 1) =

(

∑

i wi j +
∑

j wi j

2n

)2

, (5)

where n is the total number of nodes and wi j is the link be-

tween nodes i and j . (We assume only unweighted graphs in

this simulation, thus, wi j = 0 or 1.) The probability of adding

a new link between two nodes increases with the valency of the

nodes. The square in the expression models the accelerated na-

ture of development. The rate of growth of emergent structures

during the development process is not a constant but it increases

with time. We start with a random unweighted graph of 100

nodes with a sparsness index of 0.015. We evolve the graph for

50 generations. At each generation we process the whole graph

and add links according to the above probabilities. With time,

the graph will exhibit increased structure as is reflected in the

adjacency matrix entries shown in Fig. 5. Figure 6a shows the

change in the ten largest eigenvalues with time. Note that the in-

crease in graph structure is reflected in the increase of the eigen-

values.

Next, we vary the link weights. With construction, we ex-

pect the average link weight to increase, signifying an increased

image structure. In a later section we explain how we capture

the image structure and organization using these weights. For

the present experiment, we model the weight increase using a

skewed unimodal probability density whose mode can be varied,

such as the beta density function. The choice of a beta density is

only for experimental purposes. We consider link weights, wi j ,

distributed according to the following density function:

P(wi j = w) =
(n + 1)!

k!(n − k)!
wk(1 − w)n−k 0 ≤ w ≤ 1. (6)

The parameters of the distribution are k and n. (This n is not

the number of nodes in the graph.) Typical plots of the beta pdf

are shown in Fig. 6b. Note the dependence of the mode of the

distribution with k; the mode is at k/n. We chose n = 10 for

our experiments and changed k from 1 through 9 to generate a

set of randomly weighted graphs. The graphs with a high value

for k will have high average link weight simulating progress

in construction. Figure 6c shows the monotonic increase of the

ten largest eigenvalues with k. Thus, the eigenvalues do reflect

systematic change in the link weights, as well.

In the third study, we combined both kinds of effects; we

added new links as well as varied their weights. Thus, with

time new links appear, and their weights increase, modeling

the emergence of structure in the underlying image. The value

of the parameter k in the beta distribution was increased by

one every sixth generation to model the increase in the link

weights. The variation of the ten largest eigenvalues is shown

in Fig. 6d. As expected, we observe a systematic change in the

eigenvalues.

In summary, we find the eigenvalues to be stable with respect

to modest unstructured perturbations of the graph structure, but

responsive to systematic changes in the statistics underlying the

graph.
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FIG. 5. The adjacency matrices of a graph evolved according to the scheme discussed in the text. (a) The starting adjacency matrix. The adjacency matrices after

10, 20, 30, 40, and 50 generations are shown in (b), (c), (d), (e), and (f), respectively.
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FIG. 6. Variation of the ten largest eigenvalues with systematic variation in (a) the links, (c) their weights, and (d) both the links and their weights. For

(a) the links were randomly added with probabilities dependent on the local graph structure. The x-axis in (a) represents the progress of time. For (c) the weights

were varied according to a beta probability distribution shown in (b). The x-axis in (c) refers to the parameter k of the beta distribution (see text). For (d) we both

added new links and changed their weights according to a beta distribution.

III. THE RELATION GRAPH

We now consider the construction of a graph that captures the

underlying image structure and organization. The final objec-

tive is to use the eigenvalues of this graph to quantify the image

structure. For this purpose, we define a relation graph whose

nodes denote primitive image features and whose links denote

relationships between the image features. In this paper we con-

sider constant curvature edge segments as the primitive image

features. The weighted links between the features capture the

regular Gestalt-inspired relationships of proximity, parallelism,

closure, strands, perpendicularity, and continuity. A closure re-

lationship (N-ary) exists among a set of edge segments if they

enclose a region. A strand relationship (N-ary) exists among a

set of edge segments if they form a contiguous chain of segments

without completely enclosing a region, e.g., any three sides of a

rectangle.

A. Gestalt Relations: Computation

We use the bottom-up algorithm described in [14] to find the

Gestalt relationships and quantify their significance as described

later. The algorithm uses graph operations and voting methods.

Regularities among the edge segments based on the Gestaltic

principles of proximity, similarity, smooth continuity, and clo-

sure are detected by the voting methods, which effect a search

procedure over the image tokens and are shown to be superior
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FIG. 7. A sample output of the bottom up organization module. (a) Gray level image. (b) The parallel symmetry axes are drawn in a shade lighter than the

participating edge segments. (c) The perpendicular relations between edge segments are shown as small right angles in a shade lighter than the edge segments.

(d) The continuous segments are joined with light shaded straight edges. (e) The edges forming a closed boundary. (f) The strands of edges.

to conventional techniques in an average execution time sense.

The Gestaltic associations among tokens are represented by a

set of Gestalt graphs, which let us apply sophisticated graph

theoretic techniques. The outputs are elementary organizations

such as parallel symmetries, strands, closures, perpendiculars,

and continuous lines. Examples of these structures are shown

in Fig. 7. The relationships are represented by a shade lighter

than the edge segments. Thus, the parallel symmetry axes are

drawn in a lighter shade than the participating edge segments.

The perpendicular relationship is represented by a small right

angle in light shade. Continuous segments are joined with light

shaded straight edges.

B. Gestalt Relations: Quantification

We quantify the Gestalt relationships of proximity, paral-

lelism, closure, strand, perpendicularity, and continuity using

measures which incorporate the significance of the constituent

edge segments. In the following discussion we denote the i th

edge segment by ei . The relations are illustrated in Fig. 8.

1. Constant curvature edge segments: The significance

of an edge segment, ei , is determined by its length, li , and the

least root mean squared fit error, Erri (in units of pixels), of

a constant curvature segment to it. Mathematically, the signifi-

cance is quantified by

Sig(ei ) =
li

li + Erri

. (7)

The value is one if the fit error is zero and it decreases with

increasing fit error. The significance increases with the segment

length. See Fig. 8a.

2. Proximity: The significance of proximity between two

edge segments is quantified using the ratio of the minimum

distance (dmin) between the end points of two segments to the

length of the smaller segment (as shown in Fig. 8b). Note that

the minimum distance between all points in the two segments is

not considered because of increased complexity of computing

such a measure. We have found the minimum distance between

end points to be sufficient as a measure of proximity for our

purposes.

Sigprox(ei , e j ) = 1 − min

(

1,
dmin

min(li , l j )

)

, (8)

where li and l j are the lengths of the two edge segments. Note

that the measure ranges from a maximum of 1 for two edge

segments without a gap to 0 for two edge segments which are

separated by a distance greater than the length of the smaller

segment.
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FIG. 8. The Gestalt-like relationships between two edge segments captured in the relation graph. (a) Individual edge segment, (b) proximity, (c) parallelism, (d)

closure, (e) perpendicularity, (f) continuity. The figures illustrate the concepts in the corresponding expressions used to capture their significances (see text). The

strand relation uses concepts similar to the closure relation.

3. Parallelism: The significance of a parallelism relation be-

tween two edge segments, ei and e j , is determined by the differ-

ence in length between the constituting edge segments, lo, the

length of the symmetry axis, lsym, the average width, µw, and

variation, σw, of the parallel strip, and the minimum fit error,

Errsym, of a constant curvature segment to the symmetry axis.

The mathematical form is given by

Sigpara(ei , e j )

= min

(

Sig(ei ), Sig(e j ),
µw

µw + σw

,
lsym

lsym + Errsym

,
lsym

lsym + lo

)

.

(9)

The symmetry axis is computed as described in [15]. One edge

segment is warped onto the other with a constant warping fac-

tor proportional to the ratio of their lengths. This allows for

skew symmetries. The midpoints of the lines joining the mapped

points form the symmetry axis and the lengths of the joining lines

are the local widths of the symmetry axis (as shown in Fig. 8c).

The average value of the local widths is µw and their standard

deviation is σw. The last term in the above expression captures

the difference in length between the constituting edge segments;

lo = |li − l j |.

Each of the terms on the right side of the equation capture

an essential component of the parallelism definition. The over-

all significance is determined by the minimum value. Also, the

above measure works for straight parallel symmetries as well as

for curved parallel symmetries.

4. Closure: The significance of a closure relationship among

a set of edge segments, {ei , . . . , ek}, is determined by the sig-

nificance of the constituent edge segments, the convexity of the

enclosed region, and the amount of edge support we have for

the perimeter of the enclosed region. The convexity of a re-

gion is quantified by the ratio of the actual area, aactual to the

area of its convex hull (smallest convex polygon circumscribing

the region), ahull. The ratio is one for a convex region and de-

creases with the amount of concave indentations we have along

the boundary. The amount of edge support is determined by the

length of the perimeter of the region (lp) enclosed by the edge

segments and the total gap (lg) between the end points of the

consecutive edge segments forming the boundary (as shown in

Fig. 8d). The mathematical expression capturing the above is

Sigclo(ei , . . . , ek)

= min

(

Sig(ei ), . . . , Sig(e j ),
lp

lp + lg

,
aactual

ahull

)

. (10)

Note that the closure and strand (defined next) are N-ary whereas

regular graphs capture binary relationships. We will discuss in

Section III(C) how we capture N-ary relations using regular

graphs.

5. Strand: Like the closure relationship, the strand relation-

ship among a set of edge segments, {ei , . . . , ek}, is determined

by the significance of the constituent edge segment and by the

amount of edge support we have for the boundary. Mathemati-

cally, we capture this using

Sigstr(ei , . . . , ek) = min

(

Sig(ei ), . . . , Sig(e j ),
lp

lp + lg

)

. (11)

6. Perpendicularity: The perpendicular relation is defined

between two straight edge segments (as inferred by the con-

tour segmentation algorithm), ei and e j . The significance of the
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relation is determined by the significance of the individual edge

segments, the minimum gap between the end points of the edges

(dgap), and the angle, θp, between them (as shown in Fig. 8e).

We use the following expression

Sigper(ei , e j )

= min

(

Sig(ei ), Sig(e j ),
li + l j

dgap + li + l j

, sin2(θp)

)

, (12)

where li and l j are the lengths of the edge segments. Note that

sin2(θp) is one for strictly perpendicular lines and gradually falls

to zero as the angle between them decreases. The perpendicular

relation encompasses both L- and T-junctions. However, the sig-

nificance of a T-junction, as computed by the above expression,

will be lower than for an L-junction; everything else remaining

constant.

7. Continuity: The continuity relation is defined between

two edge segments ei and e j . We decide on the continuity be-

tween two edge segments by considering the straight line joining

the nearest end points of the two segments. We denote the length

of joining the straight line by dgap, the gap between the edge seg-

ments. We also find the maximum difference in slope between

the joining straight line and the slopes at the two end points of the

fitted constant curvature segment, θc (as shown in Fig. 8f). Ide-

ally, dgap and θc should be zero. We use the following expression

to quantify the significance.

Sigcon(ei , e j )

= min

(

Sig(ei ), Sig(e j ),
li + l j

li + l j + dgap

, cos2(θc)

)

, (13)

where li and l j are the lengths of the two segments. The cos2(θc)

term is one for perfectly continuous lines and gracefully goes

to zero as the lines become discontinuous. Note that the above

definition of continuity holds between any combination of edge

segment types, straight or curved.

C. Gestalt Relations: Combination

Next, we combine the quantified Gestalt relations to generate

the link weights of the relation graph. The link weight w(ei , e j )

between two nodes is given by

w(ei , e j ) = Sigprox(ei , e j ) • [C1Sigpara(ei , e j )

+ C2Sigclo(ei , e j ) + C3Sigstr(ei , e j )

+ C4Sigper(ei , e j ) + C5Sigcon(ei , e j )]. (14)

Note that the relations involved in Eq. (14) are binary, except for

the closure and strand relationships. However, the link weights,

w(ei , e j ), are defined pairwise. To facilitate this for N-ary rela-

tions, we use the following convention: Sigclo(ei , e j ) = Sigclo

(ek1
, . . . , ek2

) for every {i, j | i, jǫ(k1, . . . , k2)}. That is, all pairs

of the edges involved in an N-ary (N > 2) relation are assigned

a significance value equal to that for the whole set.

Another important aspect of the combination rule in Eq. (14)

is that the proximity factor multiplies the sum of the other fac-

tors. Thus, if the proximity factor, Sigprox, between two features

is zero, the final weight is zero irrespective of the values of the

other factors. The multiplication effects ANDing of the prox-

imity term with the other terms which are ORed together using

addition. This has the effect of giving priority to local relations.

The contribution of the individual terms in the expression can

be varied using the weights Ci . In the experiments we found

that C1 = 1.2, C2 = 1.2, C3 = 0.2, C4 = 1.2, and C5 = 1.2 gave

us good results. As we shall see in Section VII(D) perturbation

of these weights do not significantly change the performance.

IV. EFFECT OF IMAGING CONDITIONS ON THE

EIGENVALUES OF THE RELATION GRAPH

For the eigenvalues of the relation graph to be useful as mea-

sures of change they need to exhibit invariance (at least quasi-

invariance) with respect to imaging conditions such as view-

point, resolution, time of day, and weather. The variation of the

eigenvalues will depend on the variation of the weights in the

adjacency matrix of the relation graph. In Section II(C) we saw

that the eigenvalues of a graph are stable under random per-

turbations of the weights. So, as long as the variations of the

weights of the graph are small, the eigenvalues will not change

significantly.

The variations of the weights of the relation graph depend on

the variations of the Gestalt relationships of parallelism, continu-

ity, perpendicularity, and closure. While these Gestalt relations,

except for continuity, are not strictly invariant with respect to

viewpoint, they are quasi-invariant. The perspective projection

of a set of 3D curves satisfying the closure (or strand) rela-

tionship will also be closed. While it is possible in general for

the attributes (such as the area) of this projected shape to differ

with viewpoint, we do not expect this variance to be significant

in the present domain. For aerial imagery we can approximate

the imaging geometry as being perspective with objects close

to the optic axis. Similarly, the attributes (such as the differ-

ence in orientation) of a projected 3D (relaxed) parallelism (or

perpendicularity) will also vary slightly with small variation in

viewpoint. Variations with respect to the time of day might arise

because of presence or absence of shadows. However, as we shall

see, the effect of shadows on the eigenvalues is not significant.

We do not expect to see drastic change in the eigenvalues with

mild changes in the weather as long as the salient structures

in the image are visible. However, severe weather conditions

such as a snow storm will (understandably) affect the eigen-

values.

While it is difficult to theoretically analyze the variance of the

eigenvalues with the imaging conditions, we can offer empirical

evidence for their stability. We considered 14 aerial images of

the same building under different viewpoints, resolutions, times

of day, and cloud conditions, as shown in Fig. 9. Note that Fig. 9d

was taken in the early morning and has visible shadows. Figure 9j
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FIG. 9. Database of a fully developed site. The image set encompasses variations in viewpoint, resolution, and time of day.

was also taken in the morning but (apparently) under cloud cover

since the shadows are not visible. The resolutions of Figs. 9m

and 9n are higher than the others and their viewpoints are also

different.

For each of the images we computed the edges, the Gestalt

graphs, the relation graph, and its associated eigenvalues. The

plot in Fig. 10 shows the variation of some of the positive

eigenvalues. The horizontal axis denotes the position of the

eigenvalues in the spectrum; the first being the largest eigen-

value. We show error bars at one standard deviation on either

side of the mean value. The x-axis of the plot corresponds

to the ranking of the eigenvalues, the largest eigenvalue be-

ing considered first. Note that the variation is modest given

the range of imaging conditions we consider. For eigenvalues
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FIG. 9—Continued

greater than one, the average ratio of the standard deviation to

the mean for each eigenvalue is 0.22. For eigenvalues less than

one, the variation ratio is larger at 0.59. In practice, eigenval-

ues less than one do not represent meaningful underlying clus-

ters.

FIG. 10. Variation of the eigenvalues (ordered) corresponding to the site shown in Fig. 9. The center values correspond to the mean eigenvalues and the error

bars denote one standard deviation to either side.

V. WHAT DO THE EIGENVECTORS GIVE US?

EIGENCLUSTERS

Eigenvalues embody important structural aspects of a graph,

but what do the eigenvectors give us? As we saw in Section II,
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FIG. 11. Examples of eigenclusters. (a) Gray level image. The eigenclusters detected with eigenvalues (b) 12.1, (c) 8.4, (d) 11.3, (e) 10.3, 10.2, 10.2, 10.1, 8.7,

5.4, and (f) 9.3. The intensity of an edge segment is inversely proportional to the weight of the corresponding component in the eigenvector. Thus, a strongly

participating edge segment appears dark.

we can consider each eigenvector as representing a weighted

clustering of the graph nodes. The greater the magnitude of a

component of an eigenvector, the greater the participation of the

feature represented by the respective node in the cluster. Strictly,

meaningful clusters correspond to positive eigenvectors, those

having all positive or all negative components. We will now

relax this definition of positive eigenvectors.

We refer to the components of an eigenvector which account

for most (95%) of its total squared value as the dominant com-

ponents. We call the features corresponding to these dominant

components the active features participating in the eigenvector.

The eigenvector is said to be positive if its dominant components

are all positive or all negative, and if the associated eigenvalue

is positive. (Recall that if x is an eigenvector then so is −x.) We

refer to the set of active features corresponding to the dominant

components of a positive eigenvector as an eigencluster. The

relative weight of each active feature in a cluster is determined

by the modulus of the corresponding component value in the

eigenvector. This weight is a measure of how much a feature

“belongs” to an eigencluster; it measures the participation of the

part in the whole.

The cohesiveness of an eigencluster is determined by the

eigenvalue associated with the positive eigenvector. A com-

pletely cohesive cluster of n nodes has an underlying graph

structure which is complete with all link weights equal to 1 and

the associated eigenvalue is the maximum possible, n − 1. For

a completely incohesive cluster the underlying graph structure

will consist only of isolated nodes and the associated eigenvalue

will be low.

Figures 11b–11f show some eigenclusters detected in Fig. 11a.

Note that the eigenclusters correspond to the salient edge group-

ings in the image. The gray level encodes the participation of an

edge segment in an eigencluster. A strongly participating edge

appears dark. The eigenvalues are shown in Fig. 12a.

The eigenvector corresponding to the eigencluster in Fig. 11c

is shown Fig. 12b. Note the few nonzero components corre-

sponding to the structures in the cluster. The constant curvature

segments have been marked in Fig. 11c. The participation of

an edge segment in a cluster is proportional to the correspond-

ing component (marked as dots) in the eigenvector. The four

left-most positive components of the eigenvector correspond to

the top-most strip of edge segments in Fig. 11c. And the four

right-most positive components correspond to the bottom-most

strip. Because of the small size of the bottom-most strip, its

participation is low in the eigencluster.

Another example is shown in Fig. 13, which displays four

eigenclusters detected in the image shown in Fig. 1. Again, the

darkness of an edge segment in a cluster is proportional to the

participation of the segment. Note that the eigenclusters corre-

spond to salient structures such as buildings and roads.

We also observe that there is overlap between the eigenclusters

in the above examples. However in Section II(A), we claimed
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FIG. 12. (a) Spectrum of eigenvalues (ordered) of the relation graph for the World Cup Soccer logo image. (b) Eigenvector corresponding to the eigencluster

shown in Fig. 11c.

that since the eigenvectors of a Hermitian matrix are orthogo-

nal, the eigenclusters, which are based on positive eigenvectors,

will be disjoint. This is not contradictory. The observed over-

lap between the clusters is because of our relaxed definition of

positive eigenvectors to include up to 5% negative components.

Thus, although any two eigenvectors are still orthogonal, the

corresponding eigenclusters may have overlap between them

over the nodes corresponding to the negative elements of the

eigenvectors. But, the amount of overlap will be restricted to

(weighted) 5% of the total cluster weight.

FIG. 13. Eigenclusters detected in Fig. 1. The eigenclusters detected with eigenvalues (a) 5.8, (b) 4.6, (c) 3.9, and (d) 3.5. The intensity of an edge segment is

inversely proportional to the weight of the corresponding component in the eigenvector. Thus, a strongly participating edge segment appears dark.

VI. MEASURES FOR CHANGE DETECTION

With the structural change occurring at a site we will observe

not only change in the individual image feature attributes, but

also in the evolution of relations among these features. We have

seen in the previous sections that the eigenvalues of the relation

graph are a good and stable indicator of its structure. Also, the

eigenvectors corresponding to these eigenvalues provide us with

information about the salient clusters. We use these eigenvalues

and eigenvectors to formulate four measures to monitor change.
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1. lc
tot: This is given by

lc
tot =

(
∑Nc

i=1

(
∑ni

j=1 li j

)

Nc

)

N , (15)

where li j is the length of the j th edge segment in the i th eigen-

cluster, normalized by the square root of the image area to ac-

count for differences in image resolution. We denote the total

number of edge segments by N and the total number of clusters

by Nc. The ratio in parentheses will be high for images with

small numbers of large clusters as in a fully developed site and

will be small for images with large numbers of small clusters

as in an undeveloped site. The multiplication by the total num-

ber of edge segments in the image takes into account the edge

segments which do not participate in any eigencluster. Thus, the

measure can capture the difference between two images with

similar sized eigenclusters but with different total number of

edge segments.

2. Nc: This is the total number of eigenclusters in the im-

age. We expect the number of clusters to change with develop-

ment.

3. λ+: We consider the sum of the positive eigenvalues in

the spectrum of the relation graph. This is an indicator of the

total amount of structure in the image. This should be large for

a fully developed site.

4. Dist(Gt1 ,Gt2 ): This distance measure compares the spec-

tra from two images. Let Gt1 and Gt2 be two relation graphs of n1

and n2 nodes with {λ1, . . . , λn1
} and {µ1, . . . , µn2

} as their spec-

tra, respectively. The difference between the spectra provides us

with a distance measure between two graphs [16]. However, not

all eigenvalues in the spectrum are of equal importance. The

positive eigenvalues are of particular importance in our case be-

cause they capture the amount of structure in an image. Hence

we consider the difference between only the 20 largest eigenval-

ues from the two images. We normalize this difference as shown

below:

Dist
(

Gt1 ,Gt2

)

=

(

∑20
i=1(λi − µi )

2

min
(
∑

i λ2
i ,

∑

j µ2
j

)

)1/2

. (16)

The choice of 20 largest eigenvalues is based on empirical stud-

ies. We found that there is little new information to be gained

from eigenvalues beyond the first 20; the distributions of the

smaller eigenvalues have significant overlaps.

We use the above four measures to infer change at a site. We first

compute the difference between the measures computed from the

images taken at two time instants, t1 and t2. These differences

are then normalized to formulate four classification features with

which we categorize the image pair into two classes: change or

no-change. The four classification features are given by:

f1(t1, t2) =

∣

∣l
t1
tot − l

t2
tot

∣

∣

min
(

l
t1
tot, l

t2
tot

)

f2(t1, t2) =

∣

∣N t1
c − N t2

c

∣

∣

min
(

N
t1
c , N

t2
c

)

f3(t1, t2) =

∣

∣λ
t1
+ − λ

t2
+

∣

∣

min
(

λ
t1
+, λ

t2
+

) (17)

f4(t1, t2) = Dist
(

Gt1 ,Gt2

)

.

Note that the Dist measure is normalized as formulated. These

four classification features form the feature vector which is used

in a Bayesian classifier. The Bayesian classifier places each im-

age into one of two classes, change or no-change, based on

the assumption that the feature vectors for each class exhibit a

multivariate normal distribution. For more details on Bayesian

classification we refer the reader to Duda and Hart [17]. We

chose Bayesian methods because they constitute a fundamen-

tal statistical approach to pattern classification and they suffice

to illustrate the change detection strategy of this paper. Other

forms of classifiers such as neural networks, decision trees, and

nonparametric techniques can be topics of future research.

VII. RESULTS

We first investigate the ability of the proposed eigenvalue

based classification features (Eq. (17)) to detect drastic change

at a site. We then explore the possibility of detecting coarsely in-

cremental change. One might argue that simple statistics might

suffice for change detection and that a costly method based

on eigenvalues constitutes overkill. To allay this skepticism we

also compare the performance of the eigenvalue based approach

against a simple statistical detector based on the number of par-

allel, continuous, and perpendicular segments. We show that the

eigenvalue-based method outperforms the simple change detec-

tor.

We formalize the simple statistical detector as follows. Let

the number of parallel, continuous, and perpendicular relations

be denoted by Npara, Ncont, and Nper, respectively. We denote

the total number of edge segments by N . Then, three simple

measures of change can be formulated to be the ratios npara =
Npara

N
, ncont = Ncont

N
, and nper =

Nper

N
, denoting the fraction of edge

segments exhibiting the respective relations. A simple statistical

change detector can be designed using differences of these ratios

between images taken at two time instants, t1 and t2.

F1(t1, t2) =

∣

∣nt1
para − nt2

para

∣

∣

min
∣

∣n
t1
para, n

t2
para

∣

∣

F2(t1, t2) =

∣

∣n
t1
cont − n

t2
cont

∣

∣

min
∣

∣n
t1
cont, n

t2
cont

∣

∣

(18)

F3(t1, t2) =

∣

∣nt1
per − nt2

per

∣

∣

min
∣

∣n
t1
per, n

t2
per

∣

∣

We use these simple classification features in a Bayesian
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FIG. 14. Database of an undeveloped site at different times and days.

decision scheme to decide whether there is change or no-change

between two time instants.

A. Detecting Drastic Change

First, we demonstrate the ability of the proposed measures to

detect drastic change from an undeveloped site to a fully devel-

oped one. As a test bed we consider the images of the fully con-

structed site shown in Fig. 9 and the undeveloped forest site im-

ages shown in Fig. 14. The image sets account for different view-

points, different resolutions, different times of the day, and dif-

ferent cloud conditions. Note the partial cloud cover in Fig. 14b,

the long shadows in Fig. 14d, and the fog cover in Fig. 14j.
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FIG. 14—Continued

Since an undeveloped site exhibits significantly less struc-

ture than a fully developed site we expect the eigenvalues of the

relation graph for an undeveloped site to be significantly differ-

ent from those for a fully developed site. Figure 15 shows the

statistics of 25 largest positive eigenvalues for the two classes.

The error bars correspond to one standard deviation. Note that

the eigenvalues for the two classes are significantly different

from each other. This demonstrates that the eigenvalues can act

as basis for discriminating measures. Also, note that the distri-

bution of the eigenvalues in the spectra for each class tend to

overlap for smaller values. Thus, the range for the 15th largest

eigenvalue overlaps with that for the 16th largest eigenvalue.

There is little new information in considering eigenvalues be-

yond the first 20. This justifies the use of 20 largest eigenvalues

in formulating the fourth measure of change, Dist(Gt1 ,Gt2 ) in

Section VI.

Table 2 lists the values of three of the four proposed mea-

sures, the total lengths of the edges in the eigenclusters (ltot),

the number of Eigenclusters (Nc), and the sum of the positive

eigenvalues (λ+) for a fully developed site and an undeveloped

site, respectively. The tables also list the 95% confidence inter-

vals for the means of the measures. Note that the confidence

intervals for the fully developed sites are clearly separated from

those of the undeveloped ones.

As we saw in Section IV (Eq. (17)), the indicators for change

on the ground are based on fractional changes in the proposed
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FIG. 15 Variation of the positive eigenvalues over 11 images from the undeveloped site and 14 images from the developed site. The top plot corresponds to the

fully developed site and the bottom plot corresponds to the undeveloped forest site.

TABLE 2

The Total Length of the Edges ( l
c

tot), the Total Number of Clus-

ters (Nc), and the Sum of the Positive Eigenvalues (λ+) for the

Images of (a) the Fully Developed Site Shown in Fig. 9 and (b) the

Undeveloped Forest Site Shown in Fig. 14

Images lc
tot Nc λ+

a

(a) 6.614 20.000 273.230

(b) 9.916 16.000 326.814

(c) 6.911 19.000 398.514

(d) 6.666 26.000 263.939

(e) 9.961 14.000 382.496

(f) 11.012 18.000 394.622

(g) 9.625 21.000 337.004

(h) 10.219 15.000 323.417

(i) 7.917 16.000 305.675

(j) 6.333 26.000 319.922

(k) 7.577 20.000 327.342

(l) 5.847 30.000 310.811

(m) 4.309 41.000 256.921

(n) 5.903 32.000 524.623

Mean 7.772 22.429 338.95

95% Conf 6.596–8.949 17.975–26.882 298.92–378.98

Std. Dev. 2.037 7.713 69.33

b

(a) 0.280 17.000 62.258

(b) 0.246 12.000 42.326

(c) 0.186 18.000 67.754

(d) 0.171 8.000 48.476

(e) 0.209 20.000 59.717

(f) 0.207 14.000 49.009

(g) 0.200 19.000 83.539

(h) 0.244 16.000 57.053

(i) 0.255 18.000 82.183

(j) 0.175 11.000 51.185

(k) 0.268 16.000 58.869

Mean 0.222 15.364 60.215

95% Conf 0.196–0.248 12.863–17.865 51.291–69.139

Std. Dev. 0.038 3.72 12.284

measures. So next we investigate the distribution of

these classification features, f1(t1, t2), f2(t1, t2), f3(t1, t2), and

f4(t1, t2) for the two classes: change and no-change. The dis-

tribution of the classification features are shown as 3D scatter

plots in Fig. 16. The red crosses represent change and the blue

circles denote no-change. Note that the distributions are very

well separated.

From Fig. 16 we see that the means of the classification fea-

tures for the two classes, change and no-change, are well sepa-

rated. As mentioned before (Section VI), we signal change be-

tween two images using a Bayesian classifier. If we assume that

the classification features are from a multivariate Gaussian distri-

bution, the Bayesian classifier results in a hyperquadric discrim-

inant surface in the feature space [17]. Discriminant surfaces

partition the feature space into regions belonging to each class.

To analyze the performance of the change detector we esti-

mate the parameters of the Bayesian classifier on a subset of the

data and test the classifier on another data subset. This method of

estimating performance is also known as cross-validation [18].

Cross-validation maximizes the use of the available data by

reusing data subsets for training and testing. For example, in

our case we have 14 images of a fully developed site and 11 im-

ages of an undeveloped site. Thus, we have 300 pairs of images

of which 154 are pairs of images with change. We randomly

divide these 300 image pairs into 5 disjoint subsets of roughly

equal size. We estimate the parameters of the Bayesian clas-

sifier using four of these subsets and test the performance on

the one left out. Since there are five different ways of choosing

the four training subsets, we test the performance five times. The

average over the five tests captures the classifier performance.

This method is also known as 5-way cross-validation.

We characterize the performance of the Bayesian classifier in

terms of the false alarm and true detection rates. A false alarm

occurs when a change is flagged in the presence of a no-change.

A true detection occurs when a change is correctly flagged in

the presence of an actual change. For each test data point the
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FIG. 16 The joint distribution of the classification features f1(t1, t2), f2(t1, t2), f3(t1, t2), f4(t1, t2) (Eq. (17)) for the two classes, change and no-change, are

shown above. The red crosses denote measurements for the change-class and the blue circles denote the no-change class. The individual scatter plots are for:

(a) f1(t1, t2), f2(t1, t2), and f3(t1, t2), (b) f2(t1, t2), f3(t1, t2), and f4(t1, t2), (c) f3(t1, t2), f4(t1, t2), and f1(t1, t2), (d) f4(t1, t2), f1(t1, t2), and f2(t1, t2).

Bayesian classifier computes the probability of the data being in

a target class. We threshold this probability with different values

to generate different false alarm and detection rates. We plot

these rates to form the receiver operating characteristics (ROC).

The area under these ROCs characterizes the performance of an

algorithm and can form a basis for comparing two algorithms.

Ideally, the area under the ROC should be one. The optimal ROC

curve consists of the lines corresponding to a zero false alarm

rate and a detection rate of one. In the worst case, the area is 0.5

corresponding to the straight ROC curve with slope 1 passing

through the origin.

The ROCs of the eigenvalue based approach and the simple

statistical approach are shown in Fig. 17. The left plot corre-

sponds to the eigenvalue based approach and the right plot is

for the simple statistical approach. Note that these ROCs are

the averages of the five different cross-validations. We see that

the eigenvalue based approach clearly outperforms the simple

statistical approach for drastic change detection at a site. The

area under the ROC for the eigenvalue approach is 1, whereas,

the area under the ROC for the simple statistical approach is

0.972.

B. Detecting Coarsely Incremental Changes

In the previous section we saw that the proposed measures can

be used to detect drastic changes from no to full development.

Here we explore the ability to discriminate between coarsely

incremental change. We define coarse change as change which

affects at least 5 to 10% of the image. This is as opposed to fine

change which affects just a small fraction of the image such as

the changing door states of a big warehouse building.
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FIG. 17 Receiver operating characteristics for the proposed eigenvalue-based

approach and the simple statistical approach in the context of drastic change

detection. The vertical axis is for the true detection rate and the horizontal axis

represents the false alarm rate.

We expand the data set from 25 to 104 images. This expanded

set includes real images of construction activity in the pub-

licly available RADIUS imagery and manually altered images.

Figure 18 shows images of a construction site on different days.

The total duration is 42 days. Figure 18a corresponds to the

ground clearing stage and Fig. 18k shows the same site when the

construction has advanced to the laying of the foundation walls.

This set of images covers the preliminary construction stage. Due

to the paucity of real images of a site undergoing change, we

also generated sets of images by incrementally “erasing” build-

ings and road in images of fully constructed sites. Figure 19

shows such a sequence of changes. Such changes might occur

because of construction activity or demolition. The set of 104

images also includes three other fully developed sites viewed on

different days and under different weather conditions. In total,

the database consists of images from 11 different sites.

We compute the ROCs on these 104 images using 5-way cross

validation as described earlier. The ROCs are shown in Fig. 20.

The left plot is for the proposed eigenvalue-based approach and

the right plot is for the simple statistical approach. Note that the

performance of the eigenvalue approach is clearly better than

the simple statistical approach. The area under the ROC for the

eigenvalue approach is 0.954 and that for the simple statistical

approach is 0.845. For a given detection rate, the eigenvalue

approach will result in far fewer cases to be falsely classified

as changes. This is not surprising. The eigenvalues capture the

global structure more comprehensively than the statistics of lo-

cal relations. Thus, the low false alarm rate justifies the added

expense of computing eigenvalues.

C. Variation with Edge Detection Parameters

The input to the change detection algorithm consists of edge

segments. This led us to question the sensitivity of the algorithm

with respect to the choice of the edge detection parameters. All

the results shown so far in this paper are with the Canny detector

for a σ of 1.0. In this section we study the effect of the variation

of this smoothing parameter over a range of values: 1.0, 1.2,

1.5, 2.0, 2.5, 3.0, 5.0, 6.0, 7.0, and 10.0. For each value we

compute the ROC on the test image database of 104 images.

Figure 21 shows the various ROCs for different σ s. We see

that in general the performance decreases with increasing edge

detector scale. However, the variation in performance over the

range 1.0 to 3.0 is small. Performance degradation for large edge

detector scales is not surprising. The proposed eigenvalue-based

change detector uses edge structure built out of relations such as

perpendicularity and parallelism as cue for change. And it is a

well-known result that at larger scales the Canny edge detector

tends to “round off” corners and other sharp 2D features. This,

in turn, leads to reduced organized geometric structure (of the

kind we are looking for) in the edge image, hence, the decreased

performance. However for a reasonable range of edge detector

scales (1.0 to 3.0) we can conclude that the performance of the

eigenvalue approach is stable.

D. Variation with Relation Graph Parameters

As we saw in Section III(C), the link weights of the relation

graph are weighted combinations of the significance of the in-

dividual Gestalt relations (see Eq. (14)). For all the experiments

presented so far the weights are chosen to be: C1 = 1.2, C2 =

1.2, C3 = 0.2, C4 = 1.2, and C5 = 1.2. To test the robustness

of the algorithm with respect to these weights we considered

10 different combinations. In Fig. 22 we present the ROCs for

five of these 10 weights to illustrate the range of variation. The

ROCs of the other five images were within the variation shown;

we omit them in the plot for clarity. Note that the performance of

the eigen approach is stable with respect to the change in the Ci s.

The worst performance (lower-most ROC curve) was with the

second combination shown in Table 3 where the cycle, strand,

and perpendicular relations are weighted more than parallelism

and continuity.

E. Limitations of the Approach

As we have seen, the proposed eigenvalue-based measures

can very effectively detect change, both drastic and coarsely

incremental, at a site. However, it is unable to detect fine incre-

mental changes such as those observed between Figs. 18j and

18k where there are some trailers in the lower left corner of one

TABLE 3

Various Combinations of the Weights, Ci s, of Eq. (14)

C1 C2 C3 C4 C5

Set1 1.2 1.2 0.2 1.2 1.2

Set2 0.2 1.8 1.8 0.2 1.0

Set3 1.0 1.0 1.0 1.0 1.0

Set4 1.8 1.8 0.2 0.2 1.0

Set5 1.8 0.2 1.8 0.2 1.0
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FIG. 18 A site under construction at different times and days: (a) 8/24 at 1700 h, (b) 8/26 at 1300 h, (c) 8/30 at 1150 h, (d) 8/31 at 810 h, (e) 9/2 at 1121 h,

(f) 9/3 at 1230 h, (g) 9/7 at 945 h, (h) 9/9 at 1046 h, (i) 9/29 at 1426 h, (j) 9/30 at 845 h, and (k) 10/5 at 1122 h.

image and not in the other. This is not surprising because the pro-

posed measures capture global change in the image. To monitor

incremental change we have to do fine-scale feature matching.

Another scenario where the proposed algorithm might fail is

when we replace old objects with new ones having same gen-

eral structure as the old ones. For example, we demolish a build-

ing and build a new one with a different style but preserving

the similar characteristics, i.e., preserving the gross rectilinear

structure. Both the old and new building would tend to have

the same gross structural characteristics. Again, in this case to

solve the problem we need to conduct fine-scale feature corres-

pondences.
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FIG. 18—Continued
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FIG. 18—Continued

F. Execution Times

The algorithm is implemented in C and has been tested on

a Sun Ultra Sparc workstation. The average (total) execution

time over all the images in this paper was 50 s including file

I /O. The average (total) CPU time was 40 s. Of this, an av-

erage of 6 s was spent on edge detection and segmentation,

and 11 s of CPU time was spent on preattentive organization.
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FIG. 19 A site with simulated change.
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FIG. 20 Receiver operating characteristics of the proposed eigenvalue-based

approach and the simple statistical approach in the context of incremental change

detection. The vertical axis is for the true detection rate and the horizontal axis

represents the false alarm rate.

The average CPU time spent computing the eigenvalues and

eigenvectors was 23 s. The software to compute the eigenvalues

and eigenvectors was obtained from the archives of the Cornell–

IBM Joint Study on Computing for Scientific Research project.

The statistical study was conducted using the SAS software.

VIII. CONCLUSION

In this paper we proposed four measures for image organi-

zational change which can be used to monitor site change. The

FIG. 21 Receiver operating characteristics of the proposed eigenvalue-based

approach for different values of the edge detection smoothing parameter, σ . The

vertical axis is for the true detection rate and the horizontal axis represents the

false alarm rate.

FIG. 22 Receiver operating characteristics of the proposed eigenvalue-based

approach for different Relation graph weight combinations shown in Table 3.

The vertical axis is for the true detection rate and the horizontal axis represents

the false alarm rate.

measures are based on the change in the relationship among im-

age features. These relationships are captured by the eigenvalues

and eigenvectors of the relation graph embodying the organiza-

tion among the image features. We demonstrated the ability of

the measures to distinguish between drastic and coarsely in-

cremental change at a site using a Bayesian classifier. We also

found the eigenvalue approach to be stable with respect to edge

detector scales and algorithm parameters. The performance of

the eigenvalue approach was also shown to be superior to simple

statistical approaches.
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