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Abstract Metabolomics involves the unbiased quantita-

tive and qualitative analysis of the complete set of

metabolites present in cells, body fluids and tissues (the

metabolome). By analyzing differences between metabol-

omes using biostatistics (multivariate data analysis; pattern

recognition), metabolites relevant to a specific phenotypic

characteristic can be identified. However, the reliability of

the analytical data is a prerequisite for correct biological

interpretation in metabolomics analysis. In this review the

challenges in quantitative metabolomics analysis with

regards to analytical as well as data preprocessing steps are

discussed. Recommendations are given on how to optimize

and validate comprehensive silylation-based methods from

sample extraction and derivatization up to data prepro-

cessing and how to perform quality control during meta-

bolomics studies. The current state of method validation

and data preprocessing methods used in published litera-

ture are discussed and a perspective on the future research

necessary to obtain accurate quantitative data from com-

prehensive GC-MS data is provided.

Keywords Quantitative metabolomics � Method

validation � Data preprocessing � Quality control � Gas

chromatography mass spectrometry

1 Introduction

Functional genomics technologies (transcriptomics, preo-

teomics, metabolomics) are increasingly important in the

fields of microbiology, plant and medical sciences, and are

increasingly used in a systems biology approach. Meta-

bolomics evolved from conventional profiling techniques

and the view to study organisms or biological systems as

integrated and interacting systems of genes, proteins,

metabolites, cellular and pathway events, the so-called

systems biology approach (van Greef et al. 2004a). Meta-

bolomics involves the unbiased quantitative and qualitative

analysis of the complete set of metabolites present in cells,

body fluids and tissues (the metabolome). Biostatistics

(multivariate data analysis; pattern recognition) plays an

essential role in analyzing differences between metabolo-

mes, enabling the identification of metabolites relevant to a

specific phenotypic characteristic.

In analogy with other functional genomics techniques, a

comprehensive, generally non-targeted approach is used to

gain new insights and a better understanding of the bio-

logical functioning of a cell or organism. To answer

biological questions, it is crucial that all steps from the

clear definition of the biological questions, the choice

of a suitable experimental design, the proper sampling
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procedure, sample preparation, data acquisition and data

processing are addressed to obtain quantitative data, which

can be then used for data analysis and final biological

interpretation (Fig. 1). Obviously, optimization, validation

and proper quality control of analytical methods is of key

importance.

1.1 Strategies in metabolomics related research

In present-day research several different analytical strate-

gies are applied for the analysis of a wide range of

metabolites, i.e. metabolic target analysis, metabolic pro-

filing, metabolic fingerprinting, metabonomics and meta-

bolomics (Table 1). Depending on the biological question,

different analytical approaches are required and different

demands are posed on analytical performance (detection

limits, precision, accuracy, etc.).

The terminology in metabolic research is still not stan-

dardized and different definitions of the terms are proposed

in different papers. Metabolic target analysis and metabolic

profiling are commonly used strategies in classically

hypothesis-driven metabolic research, where the interest is

focused on a limited number of metabolites, or a certain

compound class or metabolic pathway. Due to the selective

sample pretreatment and/or sample cleanup used in this

approach, low detection limits and high precision and

accuracy can be achieved. For rapid screening and classi-

fication of samples identification and quantification of each

individual metabolite is not always necessary and metabolic

fingerprinting approaches are commonly applied. Meta-

bolomics is the comprehensive non-target analysis of all (or

at least as many as possible) metabolites in a biological

system. Ultimately, metabolomics analysis would provide

information on the absolute concentrations of all extractable

metabolites in a sample (absolute quantification), as this

would help to make data comparable. However, due to

practical limitations, e.g. the absence of standard reference

materials for metabolomics analysis, metabolites are mostly

quantified using relative quantification, i.e. determining the

response ratio between the metabolite and an internal

standard or other metabolite. In addition, unidentified

metabolites present in a sample can also be quantified using

relative quantification. Metabonomics is sometime distin-

guished as a separate approach in metabolomic research.

Metabonomics is defined as the quantitative measurement

of the dynamic multiparametric metabolic response of liv-

ing systems to pathophysiological stimuli or genetic mod-

ification (Nicholson et al. 1999; Nicholson and Lindon

2008) In practice, the terms metabolomics and metabo-

nomics are often used interchangeably, and the analytical

Fig. 1 Schematic of a typical

workflow in metabolomics

Table 1 Analytical strategies for metabolic research

Metabolite target

analysis

Quantitative (absolute or relative) analysis of one or few target metabolites. Typical strategy: selective sample

pretreatment followed by separation (GC, LC, CE) coupled to sensitive selective detection

Metabolic profiling Quantitative (absolute or relative) and qualitative (identification) multi-component analyses that define or describe

metabolic patterns for a group of metabolically or analytically related metabolites (Horning and Horning 1971).

Typical strategy: sample pretreatment selective for compound class or compounds from certain pathway followed

by separation coupled to MS detection

Metabolic fingerprinting High throughput screening of samples to provide sample classification. Generally no quantification (or only relative

quantification) and no identification of individual metabolites (Dunn and Ellis 2005; Fiehn 2002) Typical strategy:

Simple sample pretreatment followed by NMR, FTIR, or direct infusion mass spectrometry (DIMS).

Metabolomics

(Metabonomics)

Quantitative (mostly relative quantification) and qualitative analysis of the complete set of metabolites present in a

biological system (cells, body fluids, tissues). Typical strategy: generic sample pretreatment followed by separation

coupled to MS detection
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and modeling procedures are the same. Throughout this

review the terminology and definitions as described in

Table 1 are used.

1.2 Analytical techniques in metabolomics research

Development of generic methodologies to analyze the com-

plete metabolome, or at least as many metabolites as possible,

is very challenging considering the complexity of the

metabolome. The extent of the full metabolome is dependent

on the organism studied, varying from a few hundred

endogenous metabolites for microorganisms (Forster et al.

2003; Hall et al. 2002) to a few thousands endogenous human

metabolites (without taking lipids into account). For lipids

tens of thousands different metabolites might be expected,

but a definite estimation is not possible at the moment. In

addition, more than 100,000 small molecules can be expected

to be present in humans due to the consumption of food,

drugs, etc. (Wishart et al. 2007). Moreover, metabolites

consist of a wide variety of compound classes with different

physical and chemical properties and are present in a large

range of concentrations. For example, in human-blood-

plasma samples, normal glucose concentrations are as high as

5000 lM (925 mg/l), while estradiol has a concentration of

approximately 0.00009 lM (24 ng/l) (Wishart et al. 2009),

covering a range of more than seven decades.

Currently, the main analytical techniques used for the

analysis of the metabolome are nuclear magnetic resonance

spectroscopy (NMR) and hyphenated techniques such as

gas chromatography (GC) and liquid chromatography (LC)

coupled to mass spectrometry (MS). In addition, other

combinations are possible, e.g. capillary electrophoresis

(CE) coupled to MS or LC coupled to electrochemical

detection. Alternatively, Fourier transform infrared spec-

troscopy and direct infusion mass spectrometry (DIMS)

have been applied (Dunn and Ellis 2005; van Greef et al.

2004a; Greef and Smilde 2005; Lindon et al. 2007) without

any prior separation, except for eventual sample prepara-

tion. NMR, FTIR and DIMS are high throughput methods

and require minimal sample preparation and may be pre-

ferred techniques for metabolic fingerprinting. However,

the obtained spectra are composed of the signals of very

many metabolites and elucidation of these complex spectra

can be very complicated. In addition, detection limits for

NMR and FTIR are much higher than for MS-based

techniques, limiting the application range to metabolites

present in higher concentrations. Therefore hyphenated

techniques, e.g. GC-MS, LC-MS and CE-MS, are generally

preferred in metabolomics to allow quantification and

identification of as many as possible (individual) metabo-

lites. However none of the individual methods will cover

the full metabolome and a combination of techniques is

necessary to ultimately measure the full metabolome.

1.3 Comprehensive analysis with GC-MS

GC-MS is a very suitable technique for comprehensive

analysis, as it combines a high separation efficiency with

versatile, selective and sensitive mass detection. In Table 2

an overview of GC-based applications in metabolomics

research is presented from different fields of research,

such as microbiology, plant- and medical science (phar-

macology, clinical research). Only papers targeting more

than three different metabolite classes were included in the

table. Nearly all GC-based metabolomics applications

combine GC with MS detection using electron ionization

(EI). As the full scan response in EI mode is approximately

proportional to the amount of compound injected, i.e. more

or less independently of the compound, all compounds

suitable for GC analysis are detected non-discriminatively.

Furthermore, problems with ion suppression of co-eluting

compounds as observed in LC-MS are virtually absent in

GC-EI-MS. Also, the assignment of the identity of peaks

via a database of mass spectra is straightforward, due to the

extensive and reproducible fragmentation patterns obtained

in full-scan mode. In addition, the fragmentation pattern

can be used to identify or classify unknown metabolites.

Volatile, low-molecular-weight metabolites can be sam-

pled and analyzed directly, e.g. in breath analysis often a

direct approach without derivatization is used (Pauling et al.

1971). However, many metabolites contain polar functional

groups and are thermally labile at the temperatures required

for their separation or are not volatile at all. Therefore,

derivatization prior to GC analysis is needed to extend the

application range of GC based methods. The majority of GC

methods reviewed (Table 2) rely on derivatization with an

oximation reagent followed by silylation, or solely silylation.

As silylation reagents are the most versatile and universally

applicable derivatization reagents, these are most suitable for

comprehensive GC(-MS) analysis. Only few authors used an

alternative derivatization, e.g. chloroformates (Qiu et al.

2007) or no derivatization at all. Therefore this review

focuses on GC-MS methods using oximation and subse-

quently silylation or solely silylation prior to analysis.

1.4 Obtaining quantitative data

Ultimately the goal in metabolomics analysis is to identify

and quantify all metabolites in order to find answers to

biological questions. This review focuses on how quanti-

tative data can be obtained from silylation-based GC-MS

methods, thereby covering sample preparation, data

acquisition and data processing. The challenges in com-

prehensive GC-MS based metabolomics analysis are dis-

cussed and recommendations on method development, data

processing, method validation and quality control during

studies are given. Validation and data-processing strategies
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Table 2 Overview of GC(-MS) based metabolomics papers

Authors Technique Focusb Matrix Validation parametersc

Aura et al. (2008) S-GC-MS & S-GC9GC-MS 7 feaces –

Birkemeyer et al. (2005) GC-MS 4 microbial –

Chang et al. (2006) OS-GC-MS 7 plant –

Coucheney et al. (2008) OS-GC-MS 3, 6, 7 microbial 4

De Souza et al. (2006) OS-GC-MS 6 microbial –

Fan et al. (1993) S-GC-MS 7 plant 3, 4

Fan et al. (2001) GC-MS 7 plant –

Fiehn et al. (2000b) OS-GC-MS 5 plant –

Fiehn et al. (2000a) OS-GC-MS 1, 2, 3, 4, 6 plant 2, 4

Fiehn (2003) OS-GC-MS 6 plant –

Fiehn et al. (2008) OS-GC-MS 3, 4, 6, 7 plant –

Gullberg et al. (2004) OS-GC-MS 1 plant 4

Guo and Lidstrom (2008) OS-GC 9 GC-MS 5, 6 microbial 2

Hiller et al. (2009) OS-GC-MS 6 microbial 2a

Hope et al. (2005a) S-GC 9 GC-MS 7 plant –

Huang and Regnier (2008) OS-GC 9 GC-MS 4 serum –

Humston et al. (2010) SPME(HS)- GC 9 GC-MS 6, 7 plant –

Humston et al. (2008) OS-GC 9 GC-MS 6, 7 microbial –

Jeong et al. (2004) OS-GC-MS 7 plant –

Jiye et al. (2008) OS-GC-MS 6, 7 urine –

Jonsson et al. (2004) OS-GC-MS 6 plant –

Jonsson et al. (2005) OS-GC-MS 6 plant –

Jonsson et al. (2006) OS-GC-MS 6 urine –

Koek et al. (2006) OS-GC-MS 1, 2, 3, 4 microbial 2, 3, 4, 5, 6, 7

Koek et al. (2008) OS-GC 9 GC-MS 1, 2, 3, 4 serum/plasma 1, 2, 3, 4, 6

Koek et al. (2010a) S-GC-MS 2, 3, 7 mouse CSF 2, 3, 4, 5

Koek et al. (2010b) OS-GC 9 GC-MS 6, 7 liver 4

Kuhara (2001) OS-GC-MS 7 urine –

Kusano et al. (2007) OS-GC 9 GC-MS 6 plant 4

Lee and Fiehn (2008) OS-GC-MS 1, 7 microbial –

Li et al. (2009) S-GC 9 GC-MS 6 plasma 4

Lu et al. (2008) OS-GC-MS 6, 7 plasma 4

Ma et al. (2008) S-GC-MS 2, 6 plant –

Martins et al. (2004) OS-GC-MS 2, 3 microbial 4

Matsumoto and Kuhara (1996) S-GC-MS 7 urine –

Mills and Walker (2001) SPME(HS)-GC-MS 7 urine –

Mohler et al. (2007) OS- GC 9 GC-MS 6, 7 yeast –

Mohler et al. (2006) OS-GC 9 GC-MS 1, 2, 3, 6 yeast 4

Mohler et al. (2008) OS-GC 9 GC-MS 6 microbial –

Morgenthal et al. (2005) OS-GC-MS 1, 2, 3, 6 plant 4

O’Hagan et al. (2005) OS-GC-MS 3, 4 serum/yeast 4

O’Hagan et al. (2007) OS-GC 9 GC-MS 3 serum –

Oh et al. (2008) S-GC 9 GC-MS 6 serum –

Ong et al. (2009) S-GC-MS 7 liver 4

Pan et al. (2010) OS-GC-MS 1 liver 2, 3, 4, 6, 7

Pasikanti et al. (2008) S-GC-MS 4, 6 urine 2a, 4, 5, 7

Pauling et al. (1971) HS-GC-FID 3, 4 urine, breath 4

Pierce et al. (2006b) S-GC 9 GC-MS 6 plant –
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applied in published comprehensive GC-based metabolo-

mics methods are evaluated. Moreover, a perspective on

the future research necessary to obtain accurate quantita-

tive data from comprehensive GC-MS data is provided.

2 Recommendations on method development, data

processing, validation and quality control

The reliability and suitability of sample preparation, data

acquisition, data preprocessing and data analysis are pre-

requisites for correct biological interpretation in meta-

bolomics studies. The significance of differences between

samples can only be determined when the performance

characteristics of the entire method (from sample prepa-

ration to data preprocessing) are known. Therefore it is

important to perform method validation to assess the per-

formance and the fitness-for-purpose of a method or

analytical system for metabolomic research, including

ultimately error models per metabolite.

In the following sections the challenges and recom-

mendations for method development and data processing

and some commonly used data analysis tools are discussed.

Furthermore, strategies for method validation and quality

control are provided.

2.1 Analytical method development and analysis

The development of silylation based GC-MS methods poses

serious challenges for analytical chemists considering the

large range of compound classes and the large differences in

concentrations within and between biological samples.

Inconsistencies in quantification of metabolites can arise

from many sources during sampling, sample storage, sam-

ple extraction, derivatization, analysis and/or detection. For

example, during sampling, sample storage and extraction of

Table 2 continued

Authors Technique Focusb Matrix Validation parametersc

Pierce et al. (2006a) S-GC 9 GC-MS 6 urine –

Qiu et al. (2007) ECF-GC-MS 1, 2, 3, 4 urine 2, 3, 4, 6

Ralston-Hooper et al. (2008) OS-GC 9 GC-MS 7 invertebrates –

Roessner et al. (2000) OS-GC-MS 1, 2, 3, 4 plant 2, 3, 4

Roessner et al. (2001a) OS-GC-MS 6 plant –

Roessner et al. (2001b) OS-GC-MS 6 plant 4

Schauer et al. (2005) OS-GC-MS 5 all –

Sangster et al. (2006) OS-GC-MS 6 plasma –

Schmarr and Bernhardt (2010) SPME(HS)- GC 9 GC-MS 6 plant –

Shellie et al. (2005) OS-GC 9 GC-MS 6 mouse spleen –

Sinha et al. (2004b) OS-GC 9 GC-MS 6 urine –

Strelkov et al. (2004) OS-GC-MS (polar) ? S-GC-MS (apolar metabolites) 1, 2, 3, 4 microbial 4

Styczynski et al. (2007) MCF-GC-MS 6 microbial –

Tian et al. (2008) S-GC-FID/MS 3, 6 microbial 2a, 3a, 4a, 6a

Tianniam et al. (2008) OS-GC-MS 7 plant –

Vikram et al. (2004) HS-GC-MS 7 apples –

Villas-Bôas et al. (2003) MCF-GC-MS 2, 3 microbial 2, 4, 6

Villas-Bôas et al. (2005) OS-GC-MS/MCF-GC-MS 1 yeast 3

Wagner et al. (2003) OS-GC-MS 5, 6 plant –

Weckwerth et al. (2004a) OS-GC-MS 4, 6 plant –

Weckwerth et al. (2004b) OS-GC-MS 1, 2, 3, 4, 6 plant 3, 4

Welthagen et al. (2005) OS-GC 9 GC-MS 3, 6 mouse spleen 4

Wishart et al. (2008) OS-GC-MS 7 CSF –

Zhang et al. (2007) OS-GC-MS 3, 4 urine 2, 4, 5, 6, 7

O oximation, S silylation, CF chloroformate derivatization, HS headspace sampling, SPME solid phase micro extraction
a Validation parameter only assessed in academic standard, i.e. standard without matrix
b Focus: 1 = extraction, 2 = derivatization, 3 = analysis, 4 = detection/quantification, 5 = identification, 6 = data preprocessing and analy-

sis, 7 = application
c Analytical validation parameters: 1 = selectivity (peak capacity), 2 = calibration model, 3 = accuracy (recovery), 4 = repeatability,

5 = intermediate precision, 6 = LLOQ/LLOD, 7 = stability
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the metabolites, undesired changes in metabolite composi-

tion may occur due to for example enzyme activity, high

reactivity and/or breakdown of metabolites. One way to

avoid this is to use ‘snapshot’ sampling, i.e. fast cooling of

the sample to low temperatures, maintain low storage

temperatures (-80�C) and/or use low temperatures and

appropriate additives to inhibit enzyme activity during

extraction. Furthermore, irreproducible extraction and/or

derivatization as well as degradation of derivatized

metabolites in the analytical system are common problems

that can introduce errors in the quantification. To detect the

occurrence of these problems, an extensive set of test

metabolites with different functional groups, polarity,

molecular mass, etc. is required to optimize the method

performance along the entire trajectory from sampling up to

detection.

In a previous paper we introduced three performance

classes based on the differences in reactivity towards sily-

lation and the stability of derivatized metabolites (Koek et al.

2006) Performance class-1 metabolites are metabolites

containing hydroxylic and carboxylic functional groups,

such as sugars, fatty acids and organic acids. The analytical

performance for these metabolites is generally very satis-

factory with performance characteristics that fit the FDA

requirements for target analysis in bioanalysis. Performance

class-2 type metabolites, metabolites containing amine or

phosphoric functional groups, can also be measured with

satisfactory derivatization efficiencies, repeatability and

intermediate precision. However the analysis of these

metabolites is more critical compared to class-1 metabolites,

when the method is not carried out under ‘optimal’ condi-

tions. Metabolites with amide, thiol or sulfonic functional

groups, so-called performance class-3 compounds, are more

difficult to derivatize and analyze. We recommend using

representative metabolites from all three performance clas-

ses, preferably isotopically labeled and with different vola-

tilities and molecular mass for method optimization and

validation. It should be noted that the mass difference

between the labeled and naturally occurring metabolite must

be sufficient to avoid isotopic interference from the naturally

occurring metabolite in the quantification of the reference

compound. The amount of mass difference needed depends

on the amount of silyl groups after derivatization, the ratio

between the naturally occurring metabolite and the labeled

metabolite and the mass fragmentation of the metabolites.

For example, phenylalanine can be distinguished from

phenylalanine-d5 in most extracts by using mass fragments

m/z 192 (endogenous) and m/z 197 (labeled) for quantifica-

tion, as these fragments contain five deuterium and only one

silicon atom. However, due to the large amounts of endog-

enous glucose in matrices such as blood plasma, the accurate

quantification of glucose-d7 is (almost) impossible due to

isotopic interference, using m/z 319 and m/z 323 (highest

significant mass fragments in EI spectrum) as quantification

masses. By adding labeled metabolites at different stages

during from sample workup till injection, extraction and

derivatization can be optimized to maximize the coverage of

the entire analytical method (and minimize errors due to

insufficient and/or irreproducible extraction and/or deriva-

tization and artifact formation). Silylation has the advantage

of a wide application range (Blau and Halket 1993; Knapp

1979). In metabolomics, trimethylsilylation (TMS) reagents,

such as N-methyltrimethylsilyltrifluoroacetamide (MSTFA)

and N,O-bis(trimethylsilyl)acetamide (BSA), are most

commonly used. Both MSTFA and BSA are general purpose

reagents with a wide application range and comparable

silylation strength. In some cases trimethylsilylchlorosilane

is added as a possible catalyst. Furthermore, several other

reagents or mixes of reagents are available with more

selective reagents, e.g. trimethylsilylimidazole (TMSI) or a

mix of hexamethyldisilazane (HMDS) with TMCS and a mix

of TMSI/BSA/TMCS, all developed to derivatize (sterically

hindered) hydroxylgroups.

Early on in the development of our derivatization method

as described in Koek et al. (2006), several derivatization

reagents were compared, e.g. MSTFA, MSTFA with 1%

TMCS, BSA, TMSI and TMSI/BSA/TMCS 3:3:2 (unpub-

lished data). The byproduct of TMSI, i.e. imidazole, eluted as

a (large) tailing peak in the chromatogram, and TMSI did not

improve the recovery or performance (RSD) for typical

targets such as monosaccharides compared to MSTFA. In

our experiments the best results (highest recoveries and

smallest RSDs) were obtained with MSTFA, the addition of

TMCS did not improve the performance. The results with

BSA were for the most part, comparable with the result for

MSTFA, however, the RSDs for sugars were slightly higher.

In addition, the byproduct of MSTFA is more volatile than

the byproduct of BSA and therefore allows for the quantifi-

cation of more volatile metabolites compared to BSA. A

drawback of silylation reagents is their susceptibility

towards hydrolysis. Therefore extracts should be as dry as

possible before derivatization. As an example, only 1 ll of

water in an extract will use up approximately 20 ll of

MSTFA. In addition, derivatized extracts should be kept free

of water after derivatization to avoid hydrolysis of the

derivatized metabolites. By using a bulkier silylgroup, the

hydrolytic stability of derivatized metabolites can be

improved. However, in experiments with N-methyl-N-(tert-

butyldimethylsilyl)trifluoroacetamide (MTBSTFA), sugars

and some amino acids could not be derivatized completely

(not even under extreme conditions) resulting in several

derivates for one metabolite (unpublished data). In addi-

tion, the elution temperature of derivatized metabolites is

increased compared to TMS derivates, limiting the appli-

cation range for large molecules. Still, the use of MTBSTFA

can be useful for identification purposes. Due to a more

312 M. M. Koek et al.
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favorable fragmentation behavior EI mass spectra of TBS

derivates contain higher characteristic M-57 (loss of tert-

butyl) peak compared to the M-15 (loss of methyl) found

with TMS derivates.

The derivatization efficiency is an important factor, that

should be addressed during the method optimization, as

metabolites can be only be analyzed reproducibly if the

derivatization efficiency is sufficiently large. Due to the

absence of commercially available reference standards that

are silylized, the recovery cannot be determined by com-

paring the response of a metabolite spiked to a sample prior

to derivatization and a standard solution of a reference

standard. However, the derivatization efficiency can be

estimated by using the assumption that the full scan

response of a metabolite is proportional to the amount of

mass injected. By comparing the response for the deriva-

tized metabolites with the response of n-alkanes as refer-

ence compounds, the derivatization efficiency can be

estimated (Koek et al. 2006).

Due to differences in stability of derivatized metabo-

lites, some metabolites, especially derivatized class 3

metabolites, are more prone to degradation during storage

or decomposition in the analytical system. Also, the degree

of adsorption and/or degradation can vary between differ-

ent samples with different biomass concentrations and

different matrix compositions. For example, the presence

of large amounts of extraction buffer components, such as

HEPES or sulfate can significantly decrease the response of

metabolites, while large amounts of other compounds, such

as glucose or urea, can increase the response (unpublished

results). In addition the extend of these effects can vary

depending on the concentration of the matrix compound

and the class and concentration of the metabolite. In Fig. 2

the matrix enhancement effect of glucose on different

metabolites measured on GC 9 GC-MS is illustrated. In

the ‘conventional’ setup, using a narrow bore thin film

column, the response of the same amount of lysine and

citric acids in extracts with low levels of glucose are lower

compared to extracts with high levels of glucose, due to

reduced adsorption of metabolites on active sites in the

analytical system. In the high capacity setup using a more

inert thicker film column in the second dimension virtually

no adsorption of these metabolites occurs. Consequently,

such matrix effects should be evaluated. This also illus-

trates the importance of an inert analytical system (sample

storage vials, injection liners, analytical columns, etc.) to

minimize adsorption and degradation of especially rela-

tively unstable derivatized metabolites.

2.2 Data processing

Prior to statistical analysis the acquired analytical data

needs to be processed such that equal identity is assigned to

the same variable in each sample. For this purpose, essen-

tially three types of methods are available: target analysis,

peak picking and deconvolution. Each method requires its

own tactics to tackle problems such as peak shift and peak

overlap. The main challenges for data processing are (i) the

amount of data (hundreds up to thousands of peaks in one

sample), (ii) unbiased data processing, (iii) alignment of

peaks shifted along the retention time axis and (iv)

obtaining only one entry for each metabolite.

For target analysis, a list is prepared that contains a

specific m/z value and a small retention time window
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Fig. 2 Illustration of the matrix enhancement effect of glucose on

different metabolites measured with two different GC 9 GC-MS

configurations. a ‘conventional’ setup with 30 m 9 0.25 mm 9

0.25 lm HP5-MS in the first and 1 m 9 0.1 mm 9 0.1 lm BPX-50

in the second dimension. b ‘high capacity’ setup with 30 m 9

0.25 mm 9 0.25 lm HP5-MS in the first and 2 m 9 0.32 mm 9

0.25 lm BPX-50 in the second dimension. In the ‘conventional’ setup

in extracts with smaller amounts of glucose, the class-2 metabolite

lysine and, to a lesser extent, citric acid adsorb and/or degrade on active

sites present in the analytical system. In the extracts with high levels of

glucose, the response for these metabolites increases, most probably

because active sites are blocked. In the ‘high capacity’ setup using the

more inert thicker film second dimension column the absorption is not

present even at low levels of glucose in the matrix (Koek et al. 2008)
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within which a certain metabolite is expected to appear in

all data files. Software provided by the instrument vendor is

then able to determine the peak area of each metabolite

based on the so called target list. This results in a peak area

per metabolite and per sample. The advantages of this

method are good precision, identities can be assigned

beforehand and only one entry is obtained per peak. Dis-

advantages are that building the target table is time con-

suming and small peaks overlapping with larger peaks are

easily overlooked.

A more comprehensive method that ensures the inclu-

sion of most peaks, if not all, is peak picking. For peak

picking methods such as the second derivative per

m/z channel are used to detect the location of peaks in a

chromatogram. Often, the peak height is then used as an

estimate of the peak area. Methods for peak picking are

automated and therefore much faster than for instance

target analysis if the target list has to be prepared. There are

however many drawbacks: (i) precision is lower, (ii) mul-

tiple entries per metabolite are usually obtained because

peaks found for all m/z value are reported and (iii) the

quality of the final results are difficult to check because the

peak identities are not known. Furthermore, the peaks

require alignment after peak picking due to retention time

shifts. A summary of commonly used alignment techniques

and algorithms is given by Jellema 2009).

The third generic class of data processing methods is

deconvolution, a mathematical method that enhances the

analytical resolution even further. Deconvolution makes use

of the differences in mass-spectral information between

different metabolites to separate overlapping peaks (Fig. 3).

Furthermore, the method reports mass spectra rather than

individual mass signals which offers a great advantage over

peak picking where 20–30 peak areas (corresponding to the

number of m/z values) per metabolite are common. Gener-

ally, in metabolomics research, deconvolution resolves

unresolved peaks and transforms the raw data into peak

tables with integrated peak areas per metabolite and per

sample plus a list of mass spectra. Deconvolution can also be

automated and is therefore faster than target analysis.

Another advantage is that complete mass spectra are reported

that can be used for annotation of peak identities to each

reported peak. In comparison to peak picking the alignment

step can be skipped because deconvolution can be performed

on a complete dataset simultaneously rather than on indi-

vidual chromatograms. However, the lack of a perfect

computer program can result in poor spectra, multiple entries

per metabolite and poor precision. For example, in auto-

mated data processing in GC 9 GC-MS, which requires the

merging of peaks from different modulations originating

from one peak after deconvolution, lower precision was

observed using currently available methods compared to a

targeted approach (Koek et al. 2010b). Actually, automated

deconvolution, peak integration and peak merging is cur-

rently the only possibility to get from raw GC 9 GC-MS

data to a peak list with corresponding areas.

In terms of quality the target analysis results are up till

now the best that can be obtained for any given GC-MS

dataset if a proper target table is prepared. However, it can

easily take more than a full week for an experienced ana-

lyst to produce targeted results for approximately 20–40

samples, because of the large amount of different peaks

(components) present in the data files. However, the

drawback of missing minor peaks in a targeted approach is
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spectrum of peak 2 
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Fig. 3 Example of

deconvolution: three

overlapping peaks were

separated, making use of the

mass spectral information. This

results in a peak table with the

response for all three individual

metabolites and their

corresponding mass spectrum
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probably of much more importance than a reduced preci-

sion which is currently still the case in deconvolution based

methods (in GC-MS and GC 9 GC-MS).

Deconvolution is the most promising method for pro-

cessing of gas chromatography mass spectrometry based

metabolomics data as it fits all requirements: (i) handling

huge datasets, (ii) automated processing, (iii) automatic peak

alignment and (iv) just one quantitative value per metabolite

per sample. Major issues in the development of deconvolu-

tion procedures are still the estimation of the number of

metabolites present in a cluster of peaks and the variability of

the mass spectral information which needs to be assumed

equal for a single metabolite measured in multiple samples.

However, this assumption cannot be met in some cases, for

example, when large differences exist between the concen-

trations of a metabolite in different samples, some masses of

a mass spectrum are outside the linear range, or when peaks

with higher concentration are disturbing the measurements

of nearby low concentration metabolites. These issues need

to be resolved to come to an optimal deconvolution algo-

rithm. Still, it is the authors’ opinion that a deconvolution

approach, in which the chromatograms of all samples are

automatically processed resulting in peak tables and

metabolite spectra, is the most optimal solution.

2.3 Data analysis

Data analysis or statistical analysis is used to extract rele-

vant biological information from the analytical data

obtained. The quantitative aspects of analytical data are not

influenced by data analysis and therefore these were con-

sidered beyond the scope of this paper. However, the

applicability of data analysis tools is largely dependent on

the quality of the analytical data. Therefore, we want to

shortly reflect on some commonly used statistical methods

for data analysis and their application in metabolomics data

analysis. The proper way of statistical analysis depends

highly on characteristics of the data set such as: design of

the study, the data preprocessing method that was used,

aim of the study and availability of prior knowledge such

as metabolic pathway information. Therefore, the ideal

strategy to perform statistics on metabolomics data is not

limited to one single method. However, all statistics should

include some means to validate the model in order to

prevent optimistic models that don’t hold when applied in

practice. In the third paragraph of the next section an

overview of statistical tools and validation strategies

applied in metabolomics research is provided.

2.4 Validation strategy

Due to the complexity of the metabolome (hundreds up to

thousands of different metabolites), the comprehensiveness

of silylation based GC-MS methods, the elaborate sample

workup and difficulties in data processing, an extensive

method validation is needed to assess the overall perfor-

mance of the method from sample pretreatment through

data preprocessing. The Metabolomics Standardization

Initiative (MSI) provides guidelines on reporting of studies

and methods (Fiehn et al. 2006), enabling the exchange of

metabolomics methods and data. However, no guidelines

on how to validate analytical metabolomics methods and

data preprocessing tools have been provided so far.

In several guidelines the requirements for method vali-

dation of usually a limited and defined number of analytes

have been described. In quantitative procedures at least the

following validation parameters should be considered:

selectivity, calibration model (linearity and range), accu-

racy, precision (repeatability and intermediate precision)

and limit of quantification (LLOQ) (Table 3) (ICH 2005;

Peters and Maurer 2002; Thompson et al. 2002; U.S.

Department of Health and Human Services et al. 2001).

Additional parameters that are generally recommended to

be evaluated are: limit of detection, recovery, reproduc-

ibility and robustness.

In principle the same validation parameters as men-

tioned above should be considered in quantitative com-

prehensive analysis. The question remains: ‘‘How to assess

the validation parameters for a comprehensive analytical

method for metabolomics analysis’’? Ideally, the method

performance for every individual metabolite should be

assessed by spiking isotopically labeled metabolites to the

matrix of interest. However, the availability of isotopically

labeled standards is limited and such an approach would be

very time consuming and expensive, especially since

method performance can vary depending on the composi-

tion of the sample matrix studied and validation needs to be

performed in all matrices of interest. An alternative could

be to use different dilutions of a pooled sample of the

samples to be analyzed to establish the calibration model

(Koek et al. 2010b). However, only relative quantification

of metabolites is possible using this strategy as metabolite

concentrations are unknown and only linearity and preci-

sion can be determined. In addition, method performance

can differ significantly with changing matrix composition.

In general, the recovery of critical (class-3) metabolites is

lower when the amount of total sample matrix injected is

lower, and the calibration results obtained by this strategy

can deviate from the linearity obtained when similar

amounts of total biomass are injected. Another approach

could be to use standard addition of metabolites to the

matrix. However, if the metabolite of interest is present in

the matrix the LOD cannot be determined. A more feasible

and straightforward approach is the use of an extensive set

of representative isotopically labeled metabolites from

different performance classes (Sect. 2.1) with different
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functional groups, polarities and molecular mass. By per-

forming the validation for these representative metabolites

a good insight into method performance and reliability of

the analytical data for different compound classes of the

method can be obtained. Furthermore the use of repre-

sentative quality control samples (Sect. 2.5) measured

multiple times during a study can be used to assess the

precision (inter- en intra-batch) of all metabolites present in

the pooled sample.

For metabolomics studies we propose a minimum vali-

dation scheme as shown in Table 4. In this validation

scheme the calibration model, repeatability, intermediate

precision, LLOQ, recovery and matrix effect are addressed.

The guidelines proposed were derived from the FDA val-

idation guidelines for bio analysis (U.S. Department of

Health and Human Services et al. 2001) and from experi-

ence in daily practice. For initial validation of a method a

minimum number of 80 sample injections is proposed. For

studies with a limited number of samples, measured within

a few days, or when evaluating a new sample matrix a

validation with a minimum of 35 sample injections is

recommended. Obviously, when (larger) sample sets are

measured over larger periods of time or more information

on selectivity is needed, validation should be extended

accordingly, and, for example intermediate precision over a

larger period of time, stability of samples and selectivity

should be investigated.

In view of the unbiased non-targeted analysis used in

metabolomics research, some validation parameters such as

accuracy, require a different approach compared to targeted

analysis. In general, no standard reference materials (SRM)

are available for determining the accuracy of metabolomics

methods. NIST is developing a SRM for metabolites in

human blood plasma (NIST 2010), however this is still not

commercially available. In the absence of reference mate-

rials with known metabolite concentrations, we propose to

investigate the accuracy of the analytical method by

determination of the recovery of metabolites spiked to

samples. The recovery of the method (excluding the

derivatization) is determined by comparing the response of

(labeled) metabolites spiked to a biological sample prior to

the sample workup with the response of the same metabo-

lites spiked after extraction prior to derivatization (Table 4).

The derivatization recovery is not determined, due to the

absence of commercially available reference standards of

silylized metabolites. Still, when the method performance is

reproducible, quantitative results can be obtained without

knowing the actual derivatization efficiency.

As mentioned earlier, matrix effects, such as degrada-

tion or adsorption in the analytical system can differ

Table 3 Definitions of validation parameters

Selectivity The ability of an analytical method to differentiate and quantify an analyte in the presence of other components in the

sample. One way to establish method selectivity is to prove the lack of response in blank matrix, an approach not suitable

for metabolomics analysis. The second approach is based on the assumption that small interferences can be accepted as

long as precision and bias (at LLOQ level) remain within certain acceptance limits

Calibration model The relationship between the concentration of an analyte in the sample and the corresponding detector response. There is

general agreement that calibration samples should be prepared in blank matrix and that their concentrations must cover

the whole calibration range. Recommendations on how many concentration levels should be studied with how many

replicates per concentration level differ significantly. To establish a calibration model, we suggest measuring at least six

different calibration levels, evenly spread over the whole calibration range, in duplicate (Table 3)

Accuracy The closeness of mean test results obtained by the method to the true value (concentration) of the analyte. Accuracy is

determined by replicate analysis of samples containing known amounts of the analyte. Ideally, the accuracy or trueness of

an analytical method is assessed by comparing the value found with a certified reference value or ‘true’ value (Hartmann

et al. 1998; International conference on harmonisation. Q2(R1). Validation of analytical procedures: text and

methodology, 2005; Peters and Maurer 2002; Thompson et al. 2002). However, in the absence of reference materials, as is

the case in metabolomics analysis, the accuracy of an analytical method can be investigated by recovery experiments of

(isotopically labeled) metabolites spiked to samples

Precision The closeness of individual measures of an analyte when the procedure is applied repeatedly to multiple aliquots of a single

homogeneous volume of biological matrix. Three different levels of precision can be determined, i.e. repeatability,

intermediate precision and reproducibility. The repeatability or intra-batch precision is the precision over a short period of

time using the same operating condition and is determined by repeated injection of individually prepared samples of the

same test material. Intermediate precision or inter-batch precision expresses the within-laboratories variations, e.g.

different days, different analyst, different equipment, etc. Reproducibility describes the precision between different

laboratories and only has to be studied when the method is to be used in different laboratories

Limit of

quantification

The lowest amount of metabolite that can be quantified with suitable precision and accuracy (Hartmann et al. 1998;

International conference on harmonisation.Q2(R1).Validation of analytical procedures: text and methodology, 2005;

Peters and Maurer 2002; Thompson et al. 2002). The LLOQ can be based on precision and accuracy data (lowest

concentration with a precision and accuracy better than 20%), signal-to-noise or calculated from the standard deviation

(SD) of in a blank sample or preferably the lowest point of the calibration line (LLOQ = k 9 SD/slope). For LLOQ a S/N

ratio or k-factor equal to or greater than ten is usually chosen
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depending on the matrix composition. Therefore it is

important to investigate whether the same concentration of

a metabolite gives similar response in different matrices, to

justify the comparison of relative metabolite concentrations

between samples. The matrix effect is determined by

determining the ratio of the response of the metabolites

spiked after extraction and the metabolites in a standard

solution. The matrix effect calculation covers matrix

effects during derivatization (generally decreasing

response) and matrix effects during analysis (increase

(matrix enhancement; Anastassiades et al. 2003; Hajslova

and Zrostlikova 2003; Koek et al. 2006, 2008) or decrease

in response due to matrix present) (Table 4).

The selectivity is the ability of a method to differentiate

and quantify an analyte in the presence of other compo-

nents in a sample. Metabolomics samples contain large

numbers of different metabolites that are all of interest.

Therefore, the conventional ways of determining the

selectivity, i.e. proving the absence in blank samples or to

determine the precision and accuracy at the LLOQ level for

every metabolite, are not feasible. A compromise could be

to assess the selectivity (accuracy and precision) in specific

‘worst case’ scenarios, for example when analyzing

monosaccharides (e.g. hexoses) with similar molecular

weight, retention behavior and very similar mass spectra,

or in case of coelution of low-abundant metabolites with

very-high-abundant metabolites.

The evaluation of the fitness-for-purpose of a method is

the most important goal in method validation. In meta-

bolomics this means that one has to assess whether the

method is suitable to answer the underlying biological

question. This is a difficult question to answer, because it is

often not known in advance which metabolites are most

interesting (high correlation with a biological characteris-

tic), at what levels of concentration these metabolites will

be present and how small the differences in concentrations

will be. In addition, due to the large differences in physi-

cochemical properties of the metabolites targeted in the GC

based methods in metabolomics research, method perfor-

mance can differ significantly for different metabolites.

Therefore, the formulation of general acceptance criteria

for the different method-performance characteristics is

complicated. One way to overcome this constraint is to

classify metabolites in view of their analytical performance

Table 4 Proposed minimum validation of analytical metabolomics methodsa

Sample characteristics used for validation experiments Validation parameters investigated

Concentration Biol.

sample

Standard

solution

Added prior to

sample preparation

Calibration

curve ? repeatability

Intermediate

precision

Recovery and matrix effecte LLOQ Total

number

Number of samples on days 1–14

Day 1 Day 2 & 3, (&7,

10 and 14)d
Day 1

C0 x No 2 2

C1 x Very low 3b (5 9 3) (3 after sample preparation) f 3 (21)

C2 x Low 2 2

C3 x x Intermediate 3b 2 9 3(?3 9 3) 3 std ? 3 after sample prep.

prior to derivatization

15 (24)

C3 x Intermediate 6 9 1c 6

C4 x Higher 2 2

C5 x High 3b (5 9 3) (3 after sample preparation) 3 (21)

C6 x Highest 2 2

Total 35 (80)

a Minimum validation for initial validation of a method all samples (also the samples between brackets) should be measured. For studies with a

limited number of samples, analyzed within a few days, the samples between brackets could be discarded
b It is recommended to analyze 3 samples so that data for a calibration line can also be used for determining intermediate precision (C1, C3, C5),

recovery (C1, C3, C5) and LLOQ (C1)
c Determination of analytical repeatability, one sample injected six times
d Determination of intermediate precision over 3 days or 14 days (between brackets), analysis of three samples per day including sample

preparation
e The recovery of the extraction (excluding derivatization) can be calculated by determining the ratio between the response of the metabolites

spiked before and after extraction. The matrix effect is determined by determining the ratio of the response of the metabolites spiked after

extraction and the metabolites in a standard solution. The matrix effect calculation covers matrix effects during derivatization (generally

decreasing response) and matrix effects during analysis (increase (matrix enhancement) or decrease in response due to matrix present)
f Calculated from RSD of lowest concentration point of calibration line (LOQ = 10 9 SD/slope)
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and formulate acceptance criteria per group of metabolites

(Koek et al. 2006). Data obtained during optimization of a

metabolomics method can be used to formulate realistic

and manageable acceptance criteria. In addition, the per-

formances and results from validations of GC-based met-

abolomics methods described in literature (Sect. 3.3) can

be useful for that purpose.

2.5 Quality control

When a validated analytical method is implemented,

quality control is essential to ensure the quality and reli-

ability of the analytical data obtained. Quality control is

needed to monitor and/or correct for deviations that occur

during sample workup or analysis, as discussed in Sect. 2.1.

Other known sources of variation in metabolomics analysis

are, for instance, differences between instruments, opera-

tors, changes in instrumental sensitivity, fouling of mass

spectrometers etc. As all endogenous metabolites are of

interest and the identities of many metabolites are unknown

a priori, quality control is complex. Several strategies can

be followed to monitor the quality and correct for devia-

tions in metabolite response, such as the use of external

standards, internal standards or a combination of both

internal and external standards (Table 5). It should be

noted that quality standards should either be used for the

detection of deviations or the correction of deviations. Only

in this way quality standards for control (detection) can be

used to check the quality of the data after eventual

corrections.

External standards are especially suitable to detect and/

or correct for detector drift and to control the inertness of

the analytical system. For example, academic standards,

i.e. standard solutions without matrix, can be used as early

markers for the decline of the performance of the analytical

system, as metabolites are more prone to adsorb or degrade

on the surface of the analytical column in the absence of

sample matrix (Anastassiades et al. 2003; Hajslova and

Zrostlikova 2003; Koek et al. 2006; Koek et al. 2008).

Another very useful external standard is a pooled sample of

all individual samples (pooled QC) measured during a

study (Sangster et al. 2006). A pooled QC can be used to

calculate the repeatability and intermediate precision of all

detectable metabolites present in the samples and to correct

for detector drift and/or variations in MS response between

batches. In addition, a pooled QC representative of the

samples measured, can be used to correct MS responses of

metabolites in individual samples, as proposed by Greef

et al. (2007) and Kloet et al. (2009). However, this cor-

rection will only work when the matrix effects are not

varying between samples, e.g. when the variation of the

sample composition is limited.

With isotopically labeled metabolites or non-endoge-

nous as internal standards, disturbances can be detected or

Table 5 Different quality control standards and their function

External standards Internal standards

Academic standard

(no matrix)

Pooled

QC

Exogenous

standardd
Spike isotopically

labeled metabolites

Labeled standard

for every metabolite

Control/detect

• Storage - - - ? ?

• Extraction - - - ? ?

• Derivatization - - - ? ?

• Injection vol. - - ? - -

• Detector sensitivitya - - ? - -

• Detector driftb - ? - - -

• Inertness analytical system ? ? - ±c ±c

Correction

• Detector responsea - - ? - -

• Detector driftb - ? - - -

• Batch correction - ? ? - -

• Recovery metabolites - ± - ± ?

a Overall sensitivity of the detector
b Detector drift, i.e. the change in detector response with mass-to-charge ratio (m/z) can vary with different masses (e.g. due to fouling) and

should be addressed separately from the overall sensitivity
c The ratio of different labeled metabolites, e.g. class 3/class 1 (critical/good performing metabolite; §2.1), can be used as an indicator for the

inertness of the analytical system. However, deviations in the ratio can also be caused by other deviations, e.g. during sample workup
d Stable compound that is not derivatized and not present in biological samples
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corrected, for every single metabolite in every individual

sample. By adding labeled metabolites (e.g. prior to

extraction, derivatization or analysis) the different steps of

the sample work-up can be controlled. A endogenous

metabolite can be corrected by the addition of its isoto-

pologues (same molecule with different isotopic composi-

tion), or an isotopically labeled or non-endogenous

metabolite with different composition but similar in per-

formance characteristics (e.g. of the same class). Despite

the fact that isotopically labeled metabolites are relatively

expensive and their availability is limited, the addition of

labeled metabolites is essential to monitor and eventually

correct metabolite responses in metabolomics studies.

Another approach is to use in vivo isotopically labeled

microorganisms as internal standards. In this setup micro-

organisms are grown on isotopically labeled growth media

to label all intracellular metabolites. Extracts of this

microorganism are then mixed with non-labeled microbial

extracts, resulting in an extract containing isotopically

labeled metabolites as internal standards for every metab-

olite (Birkemeyer et al. 2005). However, these labeled

reference materials are not available for most matrices (e.g.

mammalian metabolomics), and the labeling efficiency has

to be high. In addition, the retention behavior of labeled

internal standards is very similar to the endogenous

metabolite and when silylation is used their mass spectra

can contain many similar mass fragments. Therefore,

labeled internal standards can complicate the data prepro-

cessing and quantification (e.g. deconvolution, peak pick-

ing and integration).

In this section we propose a quality control scheme

using a combination of isotopically labeled internal stan-

dards and external quality standards (Fig. 4). This scheme

is suitable for the most commonly used GC-MS methods

using an oximation and subsequent silylation as derivati-

zation prior to analysis, although it can also be used when

applying different derivatization methods or no derivati-

zation at all.

The amount of internal standards needed and how to

correct the MS response for metabolites in individual

samples depends on the variability of the sample compo-

sition. When differences between sample compositions are

small (e.g. plasma or serum) the differences in matrix

effects between different samples can be expected to be

small as well. In that case the correction of individual

metabolites can be performed by using an external stan-

dard. In these studies we suggest using a set of at least six

labeled metabolites as internal standards for quality con-

trol. Three standards should be added before extraction

(one for every performance class; cf. Sect. 2.1, i.e. favor-

able as well as unfavorable metabolites), and three (one for

every performance class) added before derivatization. In

addition, at least one exogenous standard, i.e. a stable

compound that is not derivatized, should be added to every

sample before injection to correct for injection volume and

MS response; this is the only internal standard used for

correction purposes. To monitor and eventually correct for

differences in the MS response within or between batches

for all individual metabolites a pooled QC should be ana-

lyzed repeatedly, for example at the beginning and end of a

batch of samples and between every set of five samples.

The pooled QC is used to calculate the repeatability and

precision of response for each metabolite. In common

practice, the correction for small variations in injection

volume and MS response with the internal standard

described above is always performed. If needed, for

example in large studies when differences between batches

are significant, each metabolite can be corrected by using

the QC samples (Kloet et al. 2009). In Fig. 5 the effects of

IS and QC correction are illustrated in a real-life study.

During the analysis of this study, consisting of 5 batches of

urine samples (total of approximately 200 samples), the

MS-ion source was replaced between batch 3 and 4,

causing an offset in the peak areas between batch 3 and 4.

As an example, the MS response of phenylalanine could be

corrected properly by correction on only the internal

standard (dicyclohexylphthalate), however the peak area of

glycolic acid was only properly corrected for after IS and

QC correction.

When the differences in matrix composition are larger,

for example microbial samples, the pooled QC generally

cannot be used to correct for variations in MS response

for individual samples. In these studies the matrix effects

can differ between samples and a correction with an

external standard could even decrease the reliability of

the data. In these cases, the set of internal standards

added before extraction should be extended. Especially,

labeled metabolites from compound classes that are more

prone to degradation or adsorbtion on the surface of the

analytical column (performance class 3, e.g. thiols,

amides and amines, Koek et al. 2006), should be added

to be able to control or correct for matrix-dependent

variations in metabolite responses for individual

samples.

Still the pooled QC is useful to monitor detector drift,

monitor the inertness of the analytical column and to cal-

culate the repeatability and precision of response for all

metabolites. In addition, the pooled QC samples can be

used to determine the most suitable internal standard to

correct for deviations from the extended set of corrective

internal standards for every individual metabolite.

Besides the use of internal standards and pooled QC, the

quality of the sample work-up and/or analysis can be fur-

ther controlled by repeated sample workup and/or injection

of samples. In this way the repeatability of duplicates can

be evaluated.
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Based on daily practice we find that RSDs (without QC

correction) of internal quality control standards (from

compound classes: organic acids, sugars, amino acids)

within one batch are generally less than 5% (repeatability)

and 10–15% between batches within one study (interme-

diate precision). However, the method performance

depends on both the physicochemical properties of the

metabolite measured and the matrix (plasma, urine,

microbial, tissue) and may therefore deviate from the

values mentioned above (Koek et al. 2006). Therefore, as

already mentioned in Sect. 2.4, different acceptance

criteria are set depending on the compound class and

matrix.

3 Data processing, data analysis, method validation

and quality control in literature

In Table 2 an overview of GC based applications in meta-

bolomics research is presented. Publications were only

included in Table 2 when the number of targeted compound

classes was three or higher. Research on metabolic target

analysis or metabolic profiling was not included, as a dif-

ferent approach for method development and validation is

usually applied for these targeted analyses than for non-tar-

get comprehensive analysis. In the next sections the data-

processing strategies, data-analysis tools, method validation

and quality-control strategies in literature are discussed.

Extraction 

GC-MS analysis 

Data preprocessing 
incl. IS correction(s) 

Pooled QC 
acceptable? 

Investigate IS to 
find cause and 
repeat procedure 
from extraction, 
derivatization or 
GC-MS analysis 

Yes 

Derivatization 

IS (control)  per 
sample acceptable? 

No 

No 

Add IS: labeled 
metabolites

Add IS: labeled 
metabolites 

Add IS: exogenous 
compounds 

Data analysis 

Yes 

Improve inertness of 
analytical system, 
e.g. change liner or 
remove part of 
column 

All samples and a 
pooled sample for 

external QC

Monitor/
detect 

Correction 

Add IS: labeled 
metabolites 
(optional 

a)) 

Fig. 4 Suggested quality-

control scheme for GC-MS

metabolomics studies; IS
internal standard(s), QC quality-

control sample. a)Depending on

the matrix analyzed, one can

choose to add IS for correction

or leave these standards out (see

Sect. 2.5)
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3.1 Data preprocessing

As mentioned in Sect. 2.2, there are three ways to pre-

process GC-MS data: target analysis, peak picking and

deconvolution.

In one-dimensional GC-MS often a targeted approach is

followed to obtain a list of metabolites and their corre-

sponding peak areas. For example, Weckwerth et al.

(2004a) used a customized reference-spectrum database

based on retention indices and mass-spectral similarities to

match peaks between chromatograms. Metabolites were

quantified using a selective fragment ion for each indi-

vidual metabolite from their corresponding mass spectrum.

Morgenthal et al. (2005) reported a similar approach with

the addition of first defining a reference chromatogram

with a maximum number of detected peaks that fulfill a

predefined signal to noise ratio.

In peak picking, first the m/z traces containing mean-

ingful information are selected, for example with CODA

(Windig and Smith 2007), MetAlign (Lommen 2009) or

Impress (van Greef et al. 2004b), then the peaks in the

selected ion traces are detected using methods such as the

second derivative and finally integrated to obtain single

intensity measures for complete peak profiles. For GC-MS

data this results in a data table, in which one metabolite is

represented by many different variables (all masses present

in the mass spectrum are separately integrated). Due to this

major drawback, peak picking is not frequently used with

GC-MS data, and only few examples using this strategy are

reported in literature (Lommen 2009; Tikunov et al. 2005).

Deconvolution has been applied for both one-dimen-

sional (1D) and two-dimensional (2D) datasets. For

example, Jonsson et al. (2005) and Jellema et al. (2010)

demonstrated the advantage of simultaneous deconvolution

Fig. 5 Example of the effects of correction of peak areas of

phenylalanine (a) and glycolic acid (b) measured in 5 consecutive

batches (approximately 35 samples per batch, total of 180 samples);

on the x-axis: sample number, and on the y-axis: (normalized) peak

areas. Upper: absolute peak areas of uncorrected data, middle:

normalized peak areas after IS correction, lower: normalized peak

areas after IS and QC correction. In blue: regular samples, in red: QC

samples, in green: blank samples and in turquoise: QC validation

samples (the same as QC samples, but not used for correctional

purposes) (Color figure online)
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of all 1D-GC-MS chromatograms at the same time, rather

than processing each chromatogram separately and subse-

quently construct a total data set afterwards from the sep-

arate peak tables per chromatogram. In all evaluated

GC 9 GC-MS papers a deconvolution approach was used,

when quantitative data on peak areas was extracted from

raw chromatograms. Two different software packages were

used, i.e. ChromaTOF software (LECO, St. Joseph, MI,

USA) (Huang and Regnier 2008; Koek et al. 2008; Kusano

et al. 2007; O’Hagan et al. 2007; Oh et al. 2008; Shellie

et al. 2005; Welthagen et al. 2005) or parallel factor

analysis (PARAFAC; Harshman 1970) (Guo and Lidstrom

2008; Hope et al. 2005b; Humston et al. 2008; Mohler et al.

2006; Mohler et al. 2007; Mohler et al. 2008; Sinha et al.

2004a, b). Although deconvolution was used in all

described papers, only few authors used a non-targeted

approach in metabolite quantification (Lee and Fiehn 2008;

O’Hagan et al. 2007; Oh et al. 2008; all ChromaTOF

users). Almost no quantitative data has been reported on

the performance of the deconvolution software tools in

non-targeted metabolite quantification. Data on the per-

formance that has been published is only for a selected

number of target metabolites after deconvolution and peak

merging of different modulations (see §3.5). Only Koek

et al. (2010a) evaluated the performance of non-target

processing in GC 9 GC-MS using the ChromaTOF soft-

ware; for approximately 70% of all peaks accurate peak

areas could be obtained without manual correction of

integration and peak merging. Still, the time required for

processing limited the use of the ChromaTOF software for

non-target processing (quantification of all metabolites) in

large metabolomics studies ([30–50 samples, eventually in

duplicate). PARAFAC was used only in a targeted

approach, i.e. first a multivariate classification method on

segments of aligned raw chromatograms was performed

(with the Fisher ratio method (Guo and Lidstrom 2008;

Humston et al. 2008; Mohler et al. 2006; Mohler et al.

2007; Mohler et al. 2008) or DotMap algorithm (Hope

et al. 2005b; Sinha et al. 2004b)) and subsequently

PARAFAC was applied only on time segments of the raw

data that discriminate between the different groups of

interest. Although PARAFAC could be applied in non-

targeted quantification of an entire GC 9 GC-MS chro-

matogram (Hoggard and Synovec 2008), the time required

to process a single chromatogram (tens of hours, excluding

the time-consuming task of ensuring only one entry per

metabolite in all samples) is still a major bottleneck to

apply PARAFAC for non-target processing.

Oh et al. (2008) developed a GC 9 GC-MS tool to deal

with the difficult task of peak merging and ensuring only

one entry per metabolite. Their peak sorting algorithm is

based on retention time, correlation of mass spectral

information and (optional) peak name which are reported

after initial processing (deconvolution and peak integration)

by the ChromaTOF software. First the second dimension

peaks originating from the same chemical component are

merged starting at the first entry of both the first and second

dimension run. For both the first- and second-dimension

retention time an allowed deviation in retention time is

defined. When a peak stays within the allowed retention-

time shifts then the underlying mass spectra are compared

using the Pearson correlation coefficient (R). The second

step in the algorithm then uses a sorting scheme to match

equal peaks from different chromatograms. The chromato-

gram with the most peaks is assigned as the reference

sample. Starting with the first peak the sorting algorithm

searches for peaks that match as closely as possible the

same criteria as were used in the merging step: retention

time shifts in the first and second dimension should be less

than a preset maximum allowable shift; the Pearson corre-

lation coefficient between the mass spectra should meet a

preset minimum correlation and (optional) the peak names,

as assigned by the ChromaTOF software, should be the

same. All matches are recorded in a new table and the

processed peaks are removed from the list, resulting finally

in a peak table representing all peaks in all chromatograms.

Unfortunately, only qualitative data and no quantitative

data on the performance of the software are given.

De Souza et al. (2006) also worked on an algorithm to

obtain a single entry per metabolite in all samples, using

the peak lists extracted from the raw data by commercial

software (ChemStation, Agilent Technologies, Santa Clara,

CA, USA). First hierarchical clustering of retention times

within replicate measurements was performed resulting in

a dendrogram illustrating the distances between the reten-

tion times of all detected peaks. The cut-off to determine

clusters within the dendrogram was based upon the average

number of peaks within the replicate measurements. In a

next step the clustered peaks from the replicate measure-

ments are again clustered in a second step to cumulate

peaks with the same identity but measured within samples

of, for example, different cell states or genotypes. So-called

super-clusters are formed which in an ideal situation con-

tain, per cluster, the same peak or metabolite as measured

within the complete dataset.

3.2 Data analysis

Broadly viewed, data from metabolomics studies are either

analyzed using univariate tests from classical statistics,

such as the Student t-test (Denkert et al. 2006), or using

multivatiate statistics, such as PCA (Denkert et al. 2006)

and all sorts of regression and classification methodologies.

Key to the success of all statistics is to have both a good

statistical validation as well as reliable biological inter-

pretation of the results. Metabolomics data does not fit well
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to the assumption of normal distribution or the assumption

of having more samples ‘n’ than variables ‘m’ per subject

or data record. In metabolomics typically the number of

variables or metabolites (‘m’) is much larger than the

number of samples measured (‘n’). This type of data is also

referred to as megavariate data (Rubingh et al. 2009).

Given various distributions, the chance of detecting a dis-

criminating variable with a probability of for instance more

than 99.9% (P \ 0.01) is increased proportional to the

number of independent tests one performs. In metabolo-

mics studies often the number of variables is extremely

high in comparison to the number of samples and care

should be taken not to introduce chance to the scene of

marker selection (Broadhurst and Kell 2006).

One way to reduce the chance of finding a coincidental

significant effect in univariate data analysis is to take into

account the ‘False Discovery Rate’ or FDR (Broadhurst

and Kell 2006) using a corrected level of the P-value

according to Bonferroni. The P-value for instance in the

t-test is thereby reduced such that the chance of obtaining a

false discovery due to multiple testing is made proportional

to the number of tests being performed. This methodology

has been introduced rather recently into metabolomics

(Broadhurst and Kell 2006), earlier Fiehn et al. (2000a),

Weckwerth et al. (2004b) used a standard P-value to test

differential changes. While in the Bonferroni correction

methodology the problem of false positives is tackled, it

also introduces a problem, because significance levels

are rather difficult to reach. For instance, in the case of a

P-value of 0.05 and 1000 metabolites, the Bonferroni

corrected P value becomes 0.00005. Broadhurst and Kell

(2006) suggest some alternatives that take into account the

internal correlation structure of the data. Denkert et al.

(2006) validated differentiating peaks by means of random

permutations of the classification vector, meaning that

samples obtain a random classification as being a member

of a certain class. This resulted in an expected number of

false positive discoveries (nexp) and an observed number of

discoveries (nobs).

Other methodologies to analyze megavariate data all try

to combine the original variables into a set of newly

defined variables that are linear combinations of the ori-

ginal variables. Such methods include principal-component

analysis (PCA), principal-component discriminant analysis

(PCDA) and partial-least-square discriminant analysis

(PLS-DA). An overview of methodologies for data analysis

in metabolomics research is given by Greef and Smilde

(2005). Among these methodologies PCA is very popular

and powerful. For example, Fiehn et al. (2000a), Jonsson

et al. (2004) and Denkert et al. (2006) use PCA to find

metabolites that differentiate between different samples.

Pierce et al. (2006b) use PCA to find regions in GC 9 GC-

TOFMS chromatograms that differentiate between samples

and subsequently, use PARAFAC (Sinha et al. 2004b) to

deconvolute these regions of interest. Another statistical

method to find regions that differentiate between samples

in GC 9 GC-MS data is the Fisher ratio method (Mohler

et al. 2007; Pierce et al. 2006a). The Fisher ratio method

can be applied directly on the four dimensional (4D) data

structure from a GC 9 GC-TOF-MS instrument (no prior

processing) and statistically differentiates regions of the

signals containing large class-to-class variations from

regions containing large within-class variations.

Another popular method to analyze megavariate data is

hierarchical cluster analysis or HCA. HCA calculates

Euclidian distances resulting in groups or clusters of

samples that show multivariate similarity. The calculated

distances are represented into dendograms where alike

metabolic profiles are clustered together (e.g. Fiehn et al.

2000a).

In multivariate statistics methods have been introduced

to reduce the probability to obtain correlations by chance.

Methods such as cross validation, permutation tests and,

most optimal, the use of separate datasets for training,

validation and testing can be used for this purpose. Denkert

et al. (2006) validated the markers that distinguish between

ovarian carcinomas and borderline tumors by calculating

the P-value for all significant metabolites after permuting

or randomizing the classification factors. This led to the

conclusion that all discovered metabolites perform better

than chance. Dixon et al. (2007) used PLS-DA to find

significant variables and proposed to use different strate-

gies for either biomarker selection (discriminatory marker

selection) or estimation of the predictive ability of a clas-

sification model. To determine potential biomarkers all

samples were included in the model rather than using a

separate training set. In case of a predictive model, the total

dataset was split up into a training and a test set. Next, the

training set was split up multiple times using a bootstrap

methodology resulting in a bootstrap set and a validation

set. A similar methodology is applied and explained by

Westerhuis et al. (2008) whereby a class membership

confidence measure can be estimated for each sample.

3.3 Method validation

Although GC-MS is considered a mature technique and is

frequently used in metabolomics analysis, method valida-

tion has not had much attention in metabolomics research

so far. Nearly all publications focus on the application and/

or data preprocessing and data analysis rather than evalu-

ating the method performance.

Some methods are described that use headspace sam-

pling (HS) and/or solid-phase micro extraction of the

headspace (HS-SPME) without a preceding sample

workup, to introduce the metabolites in the analytical
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column (Table 4). Data on method validation of these

methods is limited. Only Pauling et al. (1971) reported data

on the application range (250–280 different metabolites

measured) and intermediate precision (*10%). Because

headspace sampling is used to introduce the sample, the

application range of such methods is restricted to volatile

metabolites.

The majority of the validation data available is on

one-dimensional GC-MS methods using oximation and

subsequently silylation as derivatization technique (OS-

GC-MS). Due to the general applicability of silylation,

these types of methods cover the largest range of different

compound classes, including alcohols, aldehydes, amino

acids, amines, (phospho-) organic acids, sugars, sugar

acids, (acyl-) sugar amines, sugar phosphates, purines and

pyrimidines. The repeatability is the validation parameter

that is most assessed and reported. Only few papers report

data on other validation parameters, such as selectivity,

calibration model, accuracy (recovery), intermediate pre-

cision and LLOQ (Table 5). Typically, metabolite

responses are linear over at least two orders of magnitude,

recoveries between 70 and 140% are found. Furthermore,

repeatability and intermediate precision of the sample work

up and analysis are reported of 1–15% and 7–15%,

respectively and detection limits in the range of 40–500 pg

on-column. However, due to the derivatization, method

performance is significantly influenced by the compound

class or functional groups of a metabolite. The performance

for critical (less stable) compounds (e.g. thiols and amides)

highly depends on the inertness of the analytical system

(Koek et al. 2006).

One extensively validated method with an alternative

derivatization strategy is reported by Qiu et al. (2007) In

this paper an ethyl-chloroformate derivatization is used

prior to GC-MS analysis. Although chloroformate reagents

only convert amine and carboxylic functional groups,

limiting the application range to amines, amino acids and

organic acids, the derivatization can be performed directly

in the sample without prior removal of water and the

reaction is very fast (60s) and the complete sample work up

procedure takes less than 10 min. The results for linearity,

accuracy, precision and detection limits are comparable to

the results for oximation/silylation based methods.

Although this method can be interesting when high

throughput of samples is necessary, the application range

of this method is limited compared to OS-GC-MS methods.

Apart from the one-dimensional GC-MS methods some

two-dimensional gas chromatography (GC 9 GC) methods

are described relying on oximation and silylation. The

focus in these papers is mainly on data processing and data

analysis but validation data are very limited. Some report

the repeatability of injection (typically 5–10%) and/or the

repeatability of the sample workup and analysis (typically

11–31%). Only Koek et al. (2008) describe a more elabo-

rate validation covering selectivity, calibration model,

repeatability and lower limit of detection (LLOD). Com-

pared to one-dimensional OS-GC-MS higher peak capacity

and lower detection limits (2–20 times improved) were

obtained. Due to the use of a thicker film column

(0.32 mm 9 0.25 lm film thickness) in the second

dimension the inertness of the analytical system improved,

resulting in better linear ranges (lower intercepts) espe-

cially for critical compounds (Koek et al. 2008). In addi-

tion, the performance of the method for a set of test

metabolites was stable in samples with varying matrix

compositions, allowing accurate (relative) quantification.

In view of these improvements OS-GC 9 GC-MS methods

are capable of providing more detailed and improved

information on sample compositions in metabolomics

studies. However, data preprocessing and analysis is still

very complex and time-consuming, due to limitations of

the software currently available (Koek et al. 2010a).

3.4 Quality control

Only few paper were published on quality control in met-

abolomics studies. Sangster et al. (2006) suggested the use

of a pooled sample from all study samples as a quality

control sample. Initially, a small set of selected metabolites

were visually inspected on peak shape, MS response, mass

accuracy and retention time and subsequently the whole

dataset was analyzed using PCA. In a good dataset QC

samples were expected to cluster close together and show

no time related trends. The use of PCA can be a very useful

tool for a quick evaluation of the analytical data quality.

However, it should be noted that even when quality control

samples cluster together in PCA analysis, still deviations

for individual metabolites can exists. Fiehn et al. (2008)

used daily quality control samples. For this purpose, two

method blanks and four calibration curve samples were

used consisting of 31 pure reference compounds. Although

this strategy gives information on the state of the analytical

system at the beginning of a day, no information on the

performance for individual samples is obtained. Further-

more Koek et al. (2006) describe a quality control strategy

using isotopically labeled internal standards added prior to

extraction and derivatization. The internal standards were

used to control the quality of analysis and eventually to

correct for disturbances during sample work-up.

4 Conclusions and perspectives

The purpose of metabolomics research is to gain under-

standing in the functioning of organisms and biological
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systems and to answer biological questions. Quantitative,

reliable analytical data on (relative) metabolite concentra-

tions is a prerequisite to achieve this goal.

GC-MS analysis is very suitable for comprehensive non-

target analysis, and a large range of different metabolites

can be measured when derivatization with a silylation

reagent is used. Although derivatization coupled with GC-

MS is frequently applied in today’s metabolomics research,

method validation data described in literature is surpris-

ingly limited. Especially, important information on inter-

mediate precision and accuracy in GC 9 GC-MS is

lacking. Reliable data is needed to validate the comparison

of relative metabolite concentrations or ultimately to

determine absolute metabolite concentrations in meta-

bolomics samples, but this has to be based on satisfactory

validation of linearity, intermediate precision and accuracy.

In most metabolomics studies the relative concentrations of

metabolites in different samples are compared, rather than

comparing absolute concentrations, and in this approach

the precision of a method is more important than the

absence of bias. However, it still has to be investigated

whether the relative quantification is correct, i.e. will the

same amount of metabolite provide the same peak area in

all matrices of interest? This is very critical, because dif-

ferences in matrix compositions can significantly influence

the recovery of metabolites.

The ultimate goal in metabolomics is to determine the

absolute concentration levels for all metabolites in a sam-

ple. However, the largest bottleneck in absolute quantifi-

cation is the difficulty in determining the accuracy of

metabolomics methods. Presently no certified reference

materials are available to determine the accuracies of

metabolomics methods. In both setups, however, when the

guidelines on method validation and quality control in this

paper are followed (addition of extensive set of represen-

tative internal standards and determination of the calibra-

tion model by adding labeled standards to the matrix)

relative or absolute quantification is possible. Still, the

development of certified reference materials for meta-

bolomics analysis is needed to achieve absolute quantifi-

cation for all metabolites.

Besides the analytical method, data processing is

essential in obtaining quantitative and unbiased analytical

data. Deconvolution approaches, in principle, fit all

requirements for metabolomics analysis, such as, handling

of huge data sets and unbiased quantification. Nevertheless,

the precision of deconvolution approaches compared to

targeted approaches is still lower. Especially in GC 9 GC-

MS, where target analysis is not a realistic option,

improvement of the speed and precision of the processing

tools is required to be able to handle large data sets

([30–50 samples).
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