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%7Most local operators used in edge detection can be modelled by one
of two methods: edge enhancement/thresholding and edge fitting. This
dissertation presents a quantitative design and performance evaluation
of these methods. The design techniques are based on statistical
detection theory and deterministic pattern recognition classification
procedure. The performance evaluation methods developed include:

(a) deterministic measurement of the edge gradient amplituaz; (b)
comparison of the probabilities of correct and false edge detection;
and (c) figure of merit computation. The design techniques developed
are used to optimally design a variety of small and large mask edge
enhancement/thresholding operators. A performance cdmparison is given
between these edge detectors. A new edge fitting algorithm is intro-
duced. The new algorithm is derived in the discrete domain, this
allows a direct optimization of the operator's performance. The
advantages of the new algorithm are better performance with real world
pictures and less sensitivity to signal-to-noise ratio‘xy
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Chapter 1

Introduction

Imege edues can be defined as 1local changes or
discontinuities in an image attribute sucbh as luminance,
tristimulus value, or texture |{1]. These changes are
important in the analysis of images because they often
provide an indicetion of the physical extent of objects
within the image. A~ operator used to detect these changes
is called an edge detector. This operator transforms an
image into a binary array rcontaining ones where the
magnitude of the discontinuity 1is significant and zeros
elsewhere, The binary array obtained is usually called an
edge map. This transformation is useful in image
understanding systems, because while the edge map retains
much of the basic structure of the image, less
computational effort 1is required for analysis as compared

to the original image.

1.1 Edge Detection Techniques

There are meny techniques which can be used in edge
detection. These include simple ditferential operators,

template matching, least squarce edge fitting, and

B o e

PUTE P Y a

|



techniques based on statistical detection theory. There
are also many heuristic methods developed for edge
detection. A complete survey of all edge detectors is not
a simple task, and can even be confusing. Hence, only a
group of the most useful operators will be discussed in the

following sections.

Linear differential operators are commonly employed in
edge detection. In this method, edges are enhanced by
convolving the image with a set of discrete differential
operator masks. A corresponding edge map is obtained by
thresholding some function of the outputs of these masks.
One of the differentiel operators used is the gradient.
The gradient is approximately calculated by convolving the
image with two masks that measure the pixels luminance
change in any two orthogonal directions. The sum of the
squares of the masks output is 2 measure of the gradient
magnitude squared. Roberts has used 2x2 masks to compute
the luminance oifference across the diagonels {2], while
Prewitt [3] and Sobel [4] have used 3x3 masks to measure
the difference 1in the horizontal and vertical directions.
Another ditferential operator, which has been used in edge
enhancement, is the Laplacian operator. Examples of the
Laplacian maske are given in [1, 3}. However, since the
Laplacian operator is more sensitive to points and lines

than to edges [5]), it is not an efficient method for edge

detection. In general, all of the linear differential
2




operators have the a2dvantage of using simple mathematical
formulas which require short computation time. Their major
disadvantage is their csensitivity to noise. One mcthod to
improve the performance of differential operators, in the
presence of ncise, is to increase the masks size. This can
be noticed in comparing the performances of the Roberts and
1@ Sobel operators. Another, and rather better method, is
to design edge detectors taking into consideration the
effect of noise. This leads to using template matching in

edge detection.

The problem of edge detection can be reformulated as
fullows [1]: given a subregion of the image, find one
member of a finite group of templates representing edges
and no edges, such that this member matches the subregion
as close as possible and label the subregion accordingly.
Matching is wusually measured in terms of the mean sauare
difference between the subregion and the templates.
Calculation can be simplified by expanding the mean sguare
difference and neglecting the slowly varying terms. The
remaining term 1is the cross correlation between the
subregion and the templates. This term should be maximum
for the best match. Cross-correlation template matching
has been used in edge detection. One of the template
matching operators was introduced by Prewitt [3]. The
Prewitt method aimed at finding a better evaluation of the

gradient operator by using 2 set of oriented edges and
3
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searching sequentielly at each point for the best match.
In this method, gradient magnitude 1is equated with the
maximum response, and direction is taken parallel to the
orientation of the corresponding detector [3], The
templates correspond to horizontal, vertical and diagonal
edges. Other forms of templates were later introduced by
Kirsch [6] and Robinson [7]. The basic advantages of these
operators are that they can be implemented with a
relatively small computation effort. 1In addition, proper
choice of the template coefficients gives almost cptimum
performance. However, optimum performance can never be
achieved since the number of templates used is always
finite. A different approach to achieve optimum

performance was later introduced by Hueckel.

In Hueckel's algorithm (8]}, edges are detected by
fitting circular subregions of the image to ideal edge
models. If the fit is sufficiently accurate, an edge is
assumed to exist with the same parameters as the ideal edge
model. The edge model used is a two-dimensional step in o
circular disc. The parameters of this model are the
luminance levels, the edge orientation and distance from
the center. The accuracy of edge fitting is measured in
terms of the mean square error criterion, Hueckel
introduced a polar Fourier expansion and used the first
eight coefficients in the minimization procedure. Although

this approximation simplifies the computation needed, it

4




affects the accuracy of the minimization procedure,

Hueckel has not provided any evalustion of this problem.

Ancther method to achieve optimum edge detection is to
introduce statisticael detection theory concepts. 1In the
statisticzl model, images are considered to be the sum of
two components; the first is an ideal image in which edges
of different orientations and heights are distributed,
while the second congists of a rendom additive noise. For
this model, edge detectors are designed to achieve an
optimum probability of correct decisions. Griffith has
used this approach in the analysis of scenes consisting of
prismatic solids. He introduced a detailed study of the
distortion and noise affecting the image, and implemented a
decision procedure based on computing the probability that
8 line representing a real edge 1is centered in and
traverses socme 1long narrow band. But, the computation of
this probability was a difficult *+“ask, and the final
results were based on many unjustified approximations [9].
A different epproach to statistical edge detection wes
proposed by Yakimovsky [19]. In this approach, two
adjacent regions of the image are tested; first assuming
that they haeve the same average luminance, and then
assuming that they have two different Iluminance lievels.
Maximum 1likelihood estimates 1in both cases are compared,
and an edge is i1ndicated 1f it 1is more 1likely that the

regions have two different luminance levels. A

5

— —— i ‘—-'V .'"”W




disadventage of the Griffith and Yakimovsky algorithms is
that they are designed to detect edges of 2 certain
orientation. They are less sensitive to edges with other
orientations. To avoid this problem, the operator is
usually applied with enough orientations to give wuniform
response, The different results are then combined to form

the edge map.

A completely different approach to edge detection 1is
to use the a priori knowledge of the image objects in
searching for their boundaries. Examples can be found in
the work of Kelly [11] and Chow j12}. Kelly introduced a
program for extracting an accurate outline of a man's head
from a digital picture {11]. His method consisted c¢f three
steps. First, a new digitel picture was prepared from the
original; the new picture is smaller and has less detail.
Then edges of objects are located in the reduced picture.
Finally, the edges found in the reduced picture are used as
a plan for finding edges in the original picture,. Chow
studied the problem of detecting the boundary of the human
heart in & <cineagiogram [12]. He assumed that the
probability distribution of any small region of the picture
that contains only object or only background is wunimodal,
and a region that contains both object and background will
be a mixture of the two distributions. The unimodal
distributions are assumed to be Gaussian. Starting from

these assumptions, Chow's algorithm examines the
6
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probability distribution of the image subregions. If the
standard deviation is large, the probability distribution
is fitted to a bimodal Gaussian. The bimodality is
measured by computing the v:zlley-to-peak ratio. If this
ratio 1is high, the points in the subregion are classified
as a part of the object or the background depending on
their intensity. Although the Chow algorithm is successful
in determining the boundary in single-object scenes, it 1is
not directly extendable to scenes with many objects. This
later case is more important in scene analysis. Because
the previous operators are limited in their applications,

they will not be considerd further in this dissertation.

1.2 Edge Detector Evaluation

Another field of study in edge detection, which has
not been given enough consideration, is the performance
evaluation of edge detectors. As stated in reference [1],
this evaluation is difficult because of the large number of
proposed methods, the difficulties in determining the best
parameters associated with each technique, and the lack of
definite performance criteria. One  method for edge
detection evaluation was suggested by Fram and Deutsch
[13]. 1In thig method, a test image in the form of ideal
ramped edge with additive Gaussian noise 1is used to
evaluate the performance of edge detectore suggested by

Hueckel, Macleod, and Rosenfeld. Two parameters arc used

7
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in this evaluation, the first 1is the maximum likelihood
estimate of the ratio between the number of correct
detections of edges and the total number of detected edges.
The practical <cignificance of the second parameter is not
clear. The results are compared with bhuman ability to
perceive edges. In this experiment, the results obtained
with the Hueckel operator appear to be infericvr. This can
be partially explained by. the fact that the Lueckel
internal parameters used are far from the optimum choice.
Another method for measuring the performance of edge
detectors was given by Pratt [1]. This method uses a
figqure of merit which is sensitive to the different kinds
of errors encountered in edge detection: missing or
displacing a true edge and the false detection of noise.
The figure of merit introduced has been used to measure the
optimum performence of the Roberts, Sobel, Kirsch, and
compass gradient operators in the case of an artifical
image of a vertical edge with additive Gaussian white
noice. The experiment shows that the Kirsch and the Sobel
operators have relatively high fiqures of merit followed by
the compass gradient operator and finally the Roberts

operator. These results agree with the visual dato.
1.3 Organization of Dissertation

In the previous survey it should be noticed that while

there are many operators thet can be used 1in edge

8




detection, the effort given to the comparison and
eveluation of these operators has not been sufficient. A
guantitative evaluatiorn of the edqe detectors is needed if
these operators are to be efficiently used 2s a part of an
image understanding system. The following chapters will be
devoted to the introduction of gquantitative methods into
edge detection problems. In Chepter 2, a detailed
discussion of the basic edge detection opere.ors, uced in
this dissertation, is given. An image model 1is developed
in Chapter 3, and used to evaluate the performance of these
edge detection operators. 1In Chapter 4, edge detection is
formulated as a pattern classification problem, &nd 2 least
square error algorithm 1is wused to determine the edge
detectors parameters. The figure of merit derived by Pratt
is used in Chapter 5 to evaluate the performance of the
different operatots in the case of vertical or diagonal
edges. The results obtained in these chapters are used in
the improvement of existing operators and in the
introduction of new methods for edge detection. These are
given in Chapters 6 and 7, respectively. In Chapter 8,

some final conclusions are presented.




Chapter 2

Review of Edge Detection Operators

The edqge detectors of interest in this dissertation
can be defined as local operators which are able to detect
image dicontinuities without any a priori knocwledge of the
image content. These local operatoirs are useful as a first
step in many image wunderstanding csystems. Most of the
local edge detecctors can be <classified into two basic
groups. The first 1is the edge enhancement/thresholding
methods that includes the use of simple Jdifferential
operators and template matching. The second 1is the edge
fitting technique. For purpecses of design and analysis,
the input to the edge detector is assumed to be an ideal
ramp edge as shown in Fiqure 2.1. The function represented
in this fiqgu.e 1is wusually the luminance attribute,
Parameters that describe this edge are 1its location,
orientation, edge width and height. These parameters are
to be estimated by the edge detector. One of the factors
which determine the edge detector's performan.e, 1is the

operator's accuracy in estimating the edqge parameters,
P Y

In this chapter, a detziled analysis of some of the

edge detection operators 1s given, Section 2.1 reviews the
10
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Figure 2.1. Edge model




edge enhancement/thresholding operators. Section 2.2
evaluates the edge detectors performance using an ideal
edge model. Section 2.3 discusses the edge fitting

technique.
2.1 FEdge Enhancement/Thresholding Methods

The edge enhancement/thresholding technique ca2n be
represented by the block diagram shown in Figure 2.2. 1In
this model, the image F(j,k) is first convolved with a set
of linear spatial operators {Hi(j,k)}, the output G (j,k)

is given by
G, (3,k) = H;(j,k) ® F(j,k) (2.1)

where 1 = 1,2,...,m. A nonlinear function of the set
{Gi(j,k)} is then calculated. The output A(j,k) is

described by the equation
A(3,k) = g(cl(j.m.szu.k).....c,,,(j.k)) (2.2)

Typical forms of the function g(.) are the sum of squares,
the square root, the magnitude, the maximum or combinations
of these functions. The output A(j,k) is a measure of the
discontinuity at the center of the convolving masks; it can
be used to form a grey-level ecae map. In order to improve
edge visibility, and to reduce 'he edge map complexity at
the same time, the grey-level edge map is compared with a

threct,.uld t, and an edge is detected if

12
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A(],k) —>‘ t (2.38)
while if

A(j,k) < t /.2.3b)

the decision is no edge. The threshold t defines the
resulting edge map; 1if it 1is chosen too high, then
low-amplitude changes will not be detected, and if it 15

chosen too low, noise can be falsely detected as edges [1].

If an edge is detected, it 1is often useful to
determine its orientation and height. This information can

be obtained from the set {G;(j,k}} , as will be shown later.

After this general introduction to the edge
enhancement/thresholding technique, some important examples
of the simple differential operators and template moatching

operators will be given,
2.1.1 Simple Differeatial Operators

This group of edge detectors includes the Roberts [2],
the Sobel [4], and an operator suggested by Prewitt [31.
The Roberts operator is applied on 2x2 subregions of the

image as sketched 1in Figure 2.3a. The output A(j,k) is

given by
AGiLk) = |(f,-€0% + (£,-£,)2 i (2.4)
+ t2 3 “1 74
14
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Figure 2.3.

2x2 Subregion
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Equation 2.4 can be viewed as two convolutions

0 -1
X(j,k) = [ @ F(j,k) (2.5a)
1 0
-1 0
Y(j,k) = [ ] ® F(j,k) (2.5b)
0 1

foliowed by the nonlinearity

i 2 . 2|
A(3,k) = [(x(j.k)) + (Y(5,K)) (2.6)

Roberts has also introcduced a magnitude operator, in which

the discrete gradient is alternatively calculated as

A(i,k) = |X(3,k)] + [¥Y(5,%) ] (2.7)

In both operators, an edge is detected if A(j,k) > t, where
t is a given threshold. If an edge is detected, its

orientation is given by

0(j,k) = & + tan-l(YYH—ﬂ(].:lf)-) (2.8)

The angle 0(3j,k) is measured with respect to the horizontal

axis.

Approximations of the discrete gradient function by
3x3 operators were given by Prewitt [3] and later by Sotel
[4). These operators are applied on 3x3 subregions of the

image as sketched in Fiqure 2.3b. The outputs X(j,k) and

16
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Y(j,k) are given by

1 0 -1
X(3,k) =}]¢c -c| ® F(j,k) (2.9a)
1 o0 -1
-1 -C -1
Y(j,k) =} 0 0 0| ® F(j,k) (2.9b)
1 ¢ 1

where the constants ¢ is 1 in the Prewitt and 2 in the
Sobel operator. The output A(j,k) 1is still given by
Eg. 2.6, while the edge orientatior with respect to the

horizontal axis is calculated by

: = -1{Y(j,k) (2.10)
8(j,k) = tan (§7%7E7>

2.1.2 Template Matching Operators

The compass gradient (3], Kirsch [6], 3-level and
5-level operators |7] are examples of template matching
operators, in this technique, the input image is convolved
with the set of linear masks {H;(j,k)} shown in Figure 2.4.
The outputs {Gi(j,k)} measure the gradient components along
the basic orientations. The enhanced edge is formed as the

maximum of thc groadient arrays. Thus

A(j,k) = max{|Gl(j,k)|,|Gz(j.k)|,---,|Gm(j:k)|} (2.11)

If A(J,k) is greater than the threshold t, an edge is
17
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a) compass directions

i) Compass
gradient

i) 3~ level
b)
I -1
I -2 |
I | I

i) Compaoss
gradient

iii) 3~ level
c)

Figure 2.4,

3 3 -5
3 O -5
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i) Kirsch
I o -
2 o -2
| o -
iv) 5-level
mask Hl
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3 3 3
i) Kirsch
O - -2
| o -l
2 I 0
iv) 5-level
mask H2

Template matching operators

18

S I

sy




detected with orientation 6(j,k) given by the compass
direction of the largest gradient component. Because of
the symmetry of the 3-level and 5-level masks, they can be

implemented using the first four masks only.

In Chapter 1, it was mentioned that the previous four
operators can be considered as cross-correlation template
matching operators. This can be shown as follows; assume
that it is required to match a subregion of the image with
one of m templates, where the elements of the 1'th template
are shown in Figure 2.5. The 1'th cross correlation is

The first term of Eq. 2.12 1is constant for a given

subregion. In addition h is proportional to Z f

u- ‘e
3,273
Thus maximizing Eq. 2.12 1is equivalent to maximizing
2, Eae
DILIPNS
]

In this section a survey of the edge
enhancement/thresholding operators has been given. It
should be noticed that, because of the diversity of the
operators used, it is useful to compare the performance of
these operators quentitatively. There are different
approaches that can be used in this comparison. One

cxample is to compare the edge detectors outputs for a set

cf ideal edges. This technique will be considered in the
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Figqure 2.5. Elements of the .'th template




following section, Other methods that imrlement
statistical detection theory will be discussed in

Chapter 3.
2.2 Edge Detectors Performance, Casc of Ideal Edge

In this analysis, the edge model shown in Figure 2.1
is wused. Here the edge is assumed to be of zero width
(ideal step function). When an edge detector is applied on
this edge model, the output will be determined by the edge
position and orientation. To simplify the analysis, the
effect of each parameter is considered separately. First,
tlie edge ic assumed to pass through the center of the edge
detector with general edge orientation ¢, Second, the edge
is assumed to have a fixed orientation while 1its distance
from the edge-detector center is varied. 1In both cases the

outputs of the different edge detectors are evaluated.
2.2.1 Case of Central Edge with orientation ¢.

The average intensities of the different pixels, of a
2x2 and a 3x3 image subregion containing a central edge,
are shown in Fiqure 2.6. These intensities are given as a
function of the edge orientation ¢ . Because of the
symmetry of the edge detectors, it is sufficient to measure

n
the operators performace for 0 < ¢ ¢ 7.

Wwhen the Sobel operator is applied on this edge model,

21
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the values of the output A* and the e¢stimated edge

orientation are as follow.

4hisec (¢)] 0 < <tantid
A= h b-9tan2(¢)+22tan(¢)-1]2 12.13
~ Y4tan (9) 12.13)
=1 o Ll
tan (3) < ¢ < <
+[7tan2(¢)+6tan(¢)-1]2]% S
’ ¢ 0<¢ < tan-l(%-)
8 = 2 (2.14)
tan-1(7tan (6) +6tan (9) -1 tanlcd) <o <]
-9tan” (¢)+22tan(¢)-1

Similar expressions can be obtained for the other simple

differential operators.

When the Kirsch operator is applied, the values of A

and 6 are as follows.

12h 0 <¢ < tan-l(l)
2
A = h[lz-(3t::g%;;l) ] tan"1(3) <o < tan"hm)  (2.15)
2
h[lz-(lzzﬁﬁgﬁ)) ] tan1(3) <4 <]
0 0 < ¢ < tan"L(3)
0= i (2.16)
2 tan"t )< 6 < §

Similar expressions can be obtained for the other template

matching operators.

* Starting with this section, the (j,k) coordinates are

dropped.
23




Plots of the values of A and 6 for different edge
enhancement/thresolding operators a2re given in Figures 2.7
and 2.8. 1In these curves, the value of A is normelized
with respect to its value for a vertical edge. From these
curves, it is clear that all the e¢dge detectors are not
isotropic because A varies with ¢ . This variation is
smaller in the template matching operators compared to the
simple differential operators. Also, the estimated edge
orientation, 8 is wusually different from the actuval
orientation, ¢ . This difference is smaller for the simple
differential operators than for the templeate matching
operator - This is basically because the template matching

operators measure the edge orientation in a quantized step.

2.2.2 Case of @ Fixed-Orientation Edge with Verying

Displacement

In this case, the edge is assumed to have a fixed
orientation, while i%ts distance to the center of the edge
detector 1s changed. The edyge orientations chosen are the
vertical and the diagonal, with $=0 and Tn/4,
respectively. Similar results can be obtazined for
horizontal and -w/4 orientation edges. These are the only
edge orientations for which the continuous-edge shape is

preserved after sampling.

The intensities of the different pixels for 2

displaced vertical edge are shown in Figure 2.9. When the
24
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Sobel operator is applied on this edge model, the value

the output A is given by

‘ ah 0<ac<s
A = (2.
3 1 3
e 4h(§wd) 5 < d < 5
When the Kirsch operator is uged, A is given by
1205+ 0 < d <3
A = (2.

15h(3-d) 5

I A
Q
I A
YW

Plots of A for the different operators are shown

Figure 2.1l0a.

of

17)

18)

in

In the case of a diagonal edge, the average

intensities become & second order polynomial of

the

distance across the diagonal. The output A for the Sobel

operator is given by

h(3-2d%) 0<d<i
- 2
A= {ni-@-22vz-a?) £ <d <2 "
V2 /2 o
h(2—d)? /I<d<
2 V2
and for the Kirsch operator
his+10(1-2%)-(2-d)?) 0 <a <L
2 V2
A= {nis-s@a-L2a2wi-a3?) L <a <z (2.
/2 V2
5h(=--d) /I<d<
2 /2
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Pilots ot A tor the ditterent operators are dgiven 1n
Figure 2.1U0. 1In these curves, A 1s normalized with respect

e 1

(as

s value tor a centrai edge. These curves can be used
to determine edge detector resolution, It should be
noticed that small size operators have better resolution.
Also, tor operators with the same mask size, the resolution

1s slightly dependent on the mask shzape.

The results obtainrd 1n this section show that edge
detector petormance 1n the case o0t edges with general
location and orientation can be approximately determined
trom their pertormance 1i1n the case ot central edges with
vertical or diagonal orientat.ions., 'This last case is used

as the 1deal edge model 1n the tollowing chapters.
2.3 Edge Fitting Method - Hueckel's Algorithm

In edge titting, the 1mage tunction F(x,y) detined
over a subregion S 1is compared with an 1deal edge model
SE(x,y), where p 1s the edge parameters vector. The
ditference between the actual and 1deal models 1s tunction
ot p, and by changing these parameters the ditterence can
be minimized. Edge acceptance 1s based on the value ot the
minimum ditterence. It 1t 15 less than a given threshold
t, the 1mage subregion 18 classitied as an edge with the

corresponding parameter Usually the mean square

Bmin®
error 15 used tO measure the ditterence between the 1ideal

and actual edge. This error 18 given in the torm
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EB = J I [F(x,y)-SE(x,y)lzdxdy (2.21)
b

Minimization of the error Ep can be obtained by an

iterative procedure which is time consuming. However it is
possible to introduce approximations of Eg. 2.21 such that
its minimization can be achieved by simple analytic
methods. This was the basic contribution of hueckel in his
papers published in 1971 and 1973. 1In the first paper,
Hueckel used an orthogonal transformation to solve the
problem of edge fitting [8]. Later, he extended his ideas
to general edge-line fitting [14]. The Hueckel algorithm
can be summarized as follows: A circular subregion of the
image is compared with the edge model shown in Figure 2.11.

The 1luminance function S!§x,y) of this edge-line model is

given by
{ b_ A<r_<r,
SE = b_+t_ r_ <A < r, (2.22)
b_+t_+t+ EoNS Be S A
where
= | ol r r t t b ]T (2.23
B = i€y Yy - + - + - -23)

The functions F(x,y) and S_(x,y) are expanded using a set

14

of two dimensional orthogonal functions {Hiio. This set is

chosen to be separable into the product of an anqular and

radial component. The error EE is now in the form




Figure 2.11. Hueckel's edge-line model
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Ep:= E: (ai—si)2 (2.24)
i=0

where

a; = I f Hi(x,y)F(x,y)dxdy (2.25)
b

5, = I j Hi(x,y)SE(x,y)dxdy (2.26)
b
The series ian Eq. 2.24 is approximated by its first naine
components. The minimization of this truncated form and
calculation of the corresponding Emin can be achieved by
solving simple algebraic egquations. Hueckel argqued that
the truncation of the error series does not affect the
per formance of his algorithm because high frequency

components are more related to image noise than to its

! signal contents.

The Hueckel algorithm has been consicered Ly many as
an almost optimum procedure for edge deotection. A detailed
analysis of this algorithm shows that this is not true.

, The basic ditficulties with the Hueckel algorithm are the
effect of the truncation of the series expansion and
inaccuracies in the minimization procedure and computation

of the edge parameters. These problems are discussed in

Appendix A.




A major criticism of the previous approach to edge
fitting 1is the fact that although images are usually
discrete functions, the optimization procedure 1is derived
in the continuous domain, thus the results obtained are
suboptimum. This difficulty can be avoided by wusing the
discrete image model in the derivation of the minimization
procedure. An algorithm based on this idea will be

introduced in Chapter 7.

2.4 Conclusion

In this chapter a review of sonie of the basic edge
detection operators has been given. The operators chosen
have the advantage of possessing simple mathematical
formulas defined over a small region of the image, and thus
it is not difficult to introduce a yuantitative evaluation
of their performance. In Chapters 3, 4, 5 and 6, different
guantitative methods are used in the design and evaluation
of the edge enhancement/thresholding operators. In
Chapter 7, further 1investigation of the edge fitting

technique is given.
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Chapter 3

Statistical Model for Edge Detection

Onc of the methods which can be used in the evaluation
of edge detection operators, is to test their performance
in the case of an ideel signal with additive noise. This
test 1is easy to implement. 1In addition, if the noise is
assumed to be additive, white, and Gaussian, analyticsal
results are not difficult to derive, Since edge detectors
are used to classify different illumination inputs into
edges or no edges, their performance can be tested by
introducing inputs in the form of a noisy edge, or no edge,
and then estimating the probability of making the right
decision in each case. The following sections develop a
statistical model for edge detection. Section 3.1 is a
review of different decision rules used in
hypothesis-testing. Section 3.2 evaluates the performance
of the edge detectors for noisy edges. Section 3.3

discusses the estimation of the edge orientation,

3.1 Edge Detection as a Hypothesis-Testing Problem [4, 15,
and 16]

In Section 2.1, the edge enhancement/thresholding

3e
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technique was described in detail. This technique closely
rescmbles the hypothesis—testing algorithms used in
classical statistical decision theory. The edqge
enhancement/thresholding operators have as an input an
image subregion, with one of two hypotheses to be true,

H.: The subregion corresponds to an edge;

1

HZ: The subregion correspords to a no edge.
The edge detector calculates a function A of the input
image, and accepts one of the two hypotheses according to

the rule: Accept Hl if

A>t (3.4 )

otherwise accept Hz.

If the input image is noise free, it i3 possible to
find a perfect decision strategy. On the other hand, if
the image is affected by noise there will always be a
possibility of making a wrong decision. For this case,

four probabilities can be derived

P (edge|edge) = P(A>t|edge) (3.2)
P (no edge|no edge) = P(A<t|no edge) (3.3)
P(no edge|edge) = P(A<t|edge) (3.4)
P (edge|no edge) = P(A>t|no edge) (3.5)

The first two equatinns correspond to correct decisions,
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while the other two correspond to incorrect decisions.

I1f the probsbilities of occurance of edges and no
edges in a given image are known, then the probability of

error will be in the form

P(error) = P(no edge|edge)P (edge)--P(.dge:no edge) (3.6)
* P (no edge)

A decision procedure to minimize this probability of error

is given by the rule: Decide an edge if

o (A|edge) , P(no edge)
»(A[no edge) - P(adge) (3.7)

and decide no edge otherwise. This method is known as the
Bayes decision rule for minimum probability of error. 1In
Eq. 3.7, p(Aledge) and p(Alno edge) are the conditional
probability density functions of A, A sketch of these
probabilities is shown in Figure 3.1. The threshold t is
set at a value which satisfies Egq. 3.7. 1In the specioal

case, it edges and no edges are equally probable,
t = a 13.8)

where a 1s the point of intersection of the two conditional

probabilities.

If, in addition, the costs of taking onre of the four
decisons are known, namely C(edgeledge), AN .

C(no edge|no edge), then a decision procedure to minimize

the average cost is to decide an edge if
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p(A|edge) (C(edge|no edge)-C(no edge|no edge)]
p(Aj-o edge) 2 TC(no cdge[edye)-C(edge[edge)]

P (no edge) (3.9)
Pledgei

Otherwise, decide no edge. The threshold t can be

specified accordingly.

In more general cases, when the probabilities of edges
or no edges are not known. The threshold t can be set by

one of the following two methods.

\

\

In the first method, t is <cet to achieve a given
probability of missing an edge, P(no edge|edge), while
minimizing the probability of false detection,
P(edge|no edge). In this case, t is the solution of the
equation

t

P(no edge|edge) = I p(x|edge)dA (3.10)

-0

This method, known as the Neyman-Pearson criterion, is

frequently used in Radar detection.

In the second method, t is set to minimize the maximum
possible error, that occurs when the prohabilities of ecyes
or no edges change for different input images. In  this

case the edge detector threshold is chosen such thet

P(edge|ro edge) = P(no edge|edge) (3.11a)
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J p(A|no edge)dA = f p(A|edge)dA (3. 111 6)
t

-0

This is known as the minimax criterion.

Any of the previous decision strategies can be used in
the design of edge detectors, ecpecially thc Neyman-Pearson
criterion, which does not require the knowlecdge of tho
probabilities of edges or no edges. After choosing the
threshuld t, the performance of the edge detector can be
evaluated as a function of the probabilities of detection
and falce detection. Computastion of these probabiiities

for the edge enhancement/thresholding operators is given in

the following section.

3.2 Edge Detector Performance, Case of Ideal Edge Plus

Noise

In the model used in this section, en image subregion
is considered to be the sum of two components. The first
is an ideal cecntral edge with orientations ¢ = 0 or n/4,
while the second is an additive white Gaussian noise with
zero mean and :ktandard devietion g. The actual intensity

f is then given by
)

f., = s. + n, (3.12)

where Sj and nj are the ideal and noise components,

respectively. The random variable fj has the protability
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density function
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20

2
p(f.) = (chzflfexp{-(fj SJ') ]
J (3.13)

When an edge detector is applied on this image model, the

output of the i'th convolving mask is given by

G, = Zmi(j)fj (3.14)
]

where M (j) are the components of the mask Hy. In this
i

case ({G,} will be joint Gaussian with the probu™ility
i

density function

m
- - l ~ T —l . .
p@ = m 2| Fexpl3e @  LTHEDT (5 )

In Eq. 3.15, G and G are vectors of the actual and ideal

masks outputs given by

T
G = [Gl G2 = 13l Gm] (3.16)
with
5. = 2 M. (j)s. (3.18)
i 3 i j

Also, the coveriance matrix 2: is given by
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2 2 L] L] . . 2
11 ‘12 %1m
2 2 L] L] 2
Y. |[fm 2"t %2m (3.19)
2 2 P
%1 m2 m
L =
with
. - (3.20
Oy = O zj:Mk(J)MR(J) )

The analysis introduced so far applies to both simple
differential and tei, te matching operators. To obtain
expressions for the probability density function of A, each

group of edge detectors has to be considered separcately.
3.2.1 Simple Differential Operators

With the Roberts, Sobel, and Prewitt operators, two
convolving masks are used. The outputs X and Y are joint
Gaussian with mean and covariance matrix as given in

Table 3.1.

From Table 3.1, it can be noticed that the random
variables X and Y are independent. If the nonlinear

function used is the sguar: root, then
A= (x24y2) % (3.21)

and the probability density function of A in the case of no
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