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Abstract

The in-cylinder flow field plays a key role in determining the combustion performance of internal combustion engines (ICEs) 

and it is critically important to validate numerical simulations of the flow field by comparison to experimental measurements 

using techniques such as particle image velocimetry (PIV). With the current trend for high-speed diagnostics, methods for 

quantitative comparison of vector fields are required which can provide robust spatially averaged results, without inspection of 

individual flow fields. The quality of match between vector fields, when quantified using current metrics such as the relevance 

index (RI), can be overly sensitive to the alignment of regions of low velocity such as the tumble vortex centre. This work 

presents complementary metrics, weighted using a function of the local velocity, for robust quantification of the alignment and 

magnitude differences between vector fields, the weighted relevance index (WRI) and the weighted magnitude index (WMI). 

These metrics are also normalized and combined in the combined magnitude and relevance index (CMRI). PIV measurements 

taken up to every 2 crank angle degrees within the tumble plane of a motored, optically accessible ICE are used to demonstrate 

the motivation for development and the application of the WRI, WMI, and CMRI metrics. The metrics are used to determine the 

number of cycles required to provide a representative mean flow field and to identify single cycles of interest. Variability of the 

flow field is quantified using the metrics and shows high variability in the region of the spark plug near typical ignition timings.
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1 Introduction

The internal combustion engine (ICE) remains the most 

common form of powertrain used in ground transportation 

throughout the world (Kalghatgi 2018). Although there 

has been significant progress in the development of bat-

tery electric vehicles, they currently account for only 2% 

of vehicle sales and make up of order 0.5% of the global 

fleet (OICA 2018; IEA 2019). Several predictions suggest 

that the total number of passenger vehicles will exceed 2 

billion by 2040, with the majority powered at least in part 

by an ICE (Kapustin and Grushevenko 2019). Therefore, it 

is highly likely that the ICE will play a key role in ground 

transportation in the coming decades.

For this reason, the continued development of combustion 

engines is necessary to meet the increasingly stringent emis-

sions and fuel economy legislation enforced by governments 

across the world. To achieve this, further understanding of 

the complex in-cylinder processes that affect mixture prepa-

ration and combustion are required to reduce fuel consump-

tion and harmful emissions. In both industry and research, 

computational fluid dynamics (CFD) is now a common tool 

used to simulate the performance of ICEs and provide data 

that can be used to improve the design of new combustion 

systems (Hentschel et al. 2001). It is well known that the in-

cylinder air motion has a profound effect on mixture prepara-

tion and combustion (Stone 2012; Heywood 2018), therefore 

it is vital that it is captured with sufficient accuracy by CFD.

Optically accessible engines are a useful tool that have 

been used frequently to provide insights into the operation 

of ICEs that would be otherwise unavailable (Sick et al. 

2010; Sick 2013; Miles 2014). They are also a vital source 

of data for validation of CFD engine simulations. For in-

cylinder air motion, particle image velocimetry (PIV) is a 

common experimental technique (Böhm et al. 2011) due 

to its non-intrusive nature and ability to provide multiple 

velocity components in two or three dimensions (Prasad 

2000; Adrian and Westerweel 2011; Peterson et al. 2017; 

Raffel et al. 2018). Accordingly it is the technique of choice 

for many engine related velocimetry studies (Justham et al. 

2006; Zeng et al. 2014, 2016; Zhang et al. 2014; Stiehl et al. 

2016). In-depth validation of CFD using PIV flow fields 

requires the application of quantitative metrics for com-

parisons between simulated and experimental vector fields.

2  Methods for comparing vector �elds

Computational fluid dynamics has found applications 

across many fields and the issue of validation is not 

restricted to ICE research. In biomedical engineering, 

comparisons between measured and simulated flow fields 

have been made for studies of blood flow and nozzle flow, 

mimicking common medical devices (Ford et al. 2008; 

Buchmann et al. 2010; Hariharan et al. 2011). Validation 

is also required for larger scale experiments, such as the air 

flow over buildings (Tominaga et al. 2015). The methods 

that are used to investigate the differences between vec-

tor fields vary from qualitative, simply plotting the vector 

fields side-by-side (Franco et al. 2005; Enaux et al. 2011; 

Raj et al. 2013), to quantitative metrics. Although qualita-

tive methods can be useful, quantitative metrics are pre-

ferred for robust comparisons and validation of simulated 

vector fields.

In some cases a characteristic feature of the flow field 

may provide the most appropriate metric for comparison of 

velocity fields from PIV, large eddy simulations (LES) or 

Reynolds averaged Navier Stokes (RANS) modelling. The 

speed of the flow along the central axis of the intake port 

(Pera and Angelberger 2011), or the axis of the intake jet 

(Ameen et al. 2017) can be suitable choices, as can the loca-

tion of vortex centres (Imberdis et al. 2007; Yang et al. 2014) 

or spatially averaged tumble ratio (Krishna et al. 2013; Koch 

et al. 2014). As well as mean velocities, for LES simulations 

with many realisations, RMS velocities along selected ver-

tical and horizontal planes have been used to compare the 

effect of mesh refinement on the simulation of an optical 

engine (Baumann et al. 2014).

A more general approach is to consider the entire flow 

field by calculating differences in RMS velocities over the 

whole field (Van Dam et al. 2018). Statistical methods such 

as the circular standard deviation can also be used to inves-

tigate cyclic variability in velocity magnitudes and direc-

tions (Van Dam and Rutland 2015) and flow field differences 

between sequential and parallel LES simulations (Van Dam 

et al. 2017).

One of the main advantages of using PIV is multi-com-

ponent measurements in multiple dimensions. As a result, 

spatially derived quantities such as the rate of strain or vor-

ticity can be calculated and used for comparisons between 

flows. Vorticity has been used to validate RANS and LES 

simulations of the flow around blades of a vertically aligned 

wind turbine (Simão Ferreira et al. 2007). Streamlines have 

also been used to qualitatively compare LES simulations of 

the in-cylinder flow in engine-like geometry (Montorfano 

et al. 2014).

A widely used metric for comparison of two vector fields 

is the relevance index (RI), defined by Liu and Haworth 

(2011),

(1)RI =

(
qA, qB

)

|
|qA

|
|
|
|qB

|
|
,
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where 
(

qA, qB

)

 is the dot product between two vectors q
A
 and 

q
B
 , and |q| is the magnitude of q . The RI produces values 

between − 1 and 1, with 1 corresponding to perfect align-

ment. In this way, the RI compares the alignment of two 

vectors independently of their magnitudes. This metric can 

trivially be applied to each location within a pair of vec-

tor fields and subsequently spatially averaged to produce a 

single value that quantifies the match in alignment between 

two fields.

The RI has been used to investigate the convergence 

of LES simulations of a GDI engine (Kuo et al. 2014), to 

directly compare LES simulations to experimental results 

for model validation (Wang et al. 2015) and to investi-

gate the cyclic variability of PIV in-cylinder flow fields 

(Wang et al. 2016) including the influence of fuel injec-

tion (Chen et al. 2018). The RI has also been applied to 

quantify the differences in spray characteristics (Chen 

et al. 2013a, 2014) and Proper Orthogonal Decomposi-

tion modes derived from PIV measurements (Chen et al. 

2012, 2013b). Under the alternative title, the Structure 

Similarity Index (SSI), the RI has been used to determine 

the minimum number of LES realisations of a turbulent, 

non-reacting spray needed to produce a representative 

mean (Hu et al. 2015).

An alternative metric that, unlike the RI, accounts for 

both magnitude and direction when comparing vectors is the 

magnitude similarity index (MSI) (Hu et al. 2015), defined 

as

The MSI produces values between 0 and 1 with larger 

values corresponding to better alignment. This metric has 

been used to investigate the convergence of simulated OH 

mass fraction and soot mass fraction distributions of an 

n-dodecane spray flame (Ameen et al. 2016) and to quan-

tify flow field differences between simulations and experi-

ments (Ameen et al. 2017; Van Dam et al. 2017). Similarly 

to the MSI, the local magnitude index (LMI), defined using 

magnitude subtraction rather than vector subtraction, has 

recently been used to compare LES simulations to PIV 

measurements across five planes within an optical engine 

(Zhao et al. 2019).

Existing metrics such as the RI can be highly sensitive 

to low velocity regions of the flow field commonly found 

in IC engine flows. The following work details the motiva-

tion for and development of complementary metrics, the 

weighted relevance index (WRI), the weighted magnitude 

index (WMI) and a combined magnitude and relevance 

index (CMRI) which address these low velocity issues 

for comparisons of in-cylinder flow fields. These metrics 

can be used to quantify the differences in alignment or 

(2)MSI = 1 −

|
|qA

− q
B
|
|

|
|qA

|
| +

|
|qB

|
|

.

magnitude between vector fields either independently 

using the WRI and WMI or in combination using the 

CMRI.

Applications of these metrics are demonstrated on a large 

dataset (1000 cycles) of velocity field measurements using 

PIV on an optically accessible GDI engine. The metrics 

are used to determine a representative mean cycle, to rap-

idly identify single cycles that provide the best and worst 

matches to this mean cycle and to quantify the spatial dis-

tribution of variability across the tumble plane. For appli-

cation of these metrics to mean flow fields for validation of 

CFD simulations using PIV across multiple engine operating 

points the reader is directed to Scott et al. (2019).

3  Experimental apparatus and procedure

3.1  Optical engine

Particle image velocimetry measurements were made in the 

central tumble plane of a single-cylinder, optically accessi-

ble GDI engine under motored conditions. This engine has 

a pent-roof combustion chamber closely based on a recent 

production engine and the spark plug was replaced with a 

blank to reduce excess scattered laser light. Specifications 

of the optical engine are given in Table 1 and a schematic of 

the experimental setup is shown in Fig. 1.

A transparent acrylic annulus with a height varying 

between 25 and 39 mm was used to provide optical access 

to the combustion chamber including the pent-roof. An 

extended Bowditch piston arrangement with a 45° mirror 

and a quartz piston window 60 mm in diameter provided 

access for the laser sheet. The surface of the cylinder head, 

valve edges and the rear internal surface of the acrylic 

annulus were painted matt black to reduce excess back-

ground scatter.

Table 1  Engine operating conditions

Bore (mm) 85

Stroke (mm) 90

Cylinder capacity  (cm3) 512

Compression ratio 9.8

Valves per cylinder 2 intake, 2 exhaust

Engine speed (rpm) 1500

IMOP (°CA aTDC gas exchange) 144

EMOP (°CA bTDC gas exchange) 121

Intake air pressure (bar) 0.42

Intake air temperature (K) 308

Coolant temperature (K) 338
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3.2  PIV system

Particle image velocimetry measurements were made in the 

central tumble plane, normal to the crankshaft and offset 

1 mm from the cylinder axis in the direction away from the 

flywheel to minimize the strong scatter from the centrally 

located fuel injector tip. The measurement plane therefore 

lies between the pair of intake valves. A LaVision aerosol 

generator was used to introduce droplets of vegetable oil 

approximately 0.2–0.4 µm in diameter into the intake ple-

num upstream of the intake runner to encourage a more uni-

form seeding distribution on entry to the combustion cham-

ber. A mass flow controller was used to control the seeding 

density, which was optimised by an iterative process. The 

droplets were illuminated by a pulsed laser sheet produced 

by a diode-pumped, double cavity Nd:YLF laser operating 

at 527 nm, with each cavity providing a pulse energy of 

approximately 17 mJ at a repetition rate of 1.8 kHz. The 

beam was formed into a 1 mm × 60 mm sheet at the measure-

ment region using a spherical lens telescope and a concave 

cylindrical lens with a focal length of − 20 mm.

The oil droplets were imaged onto a Phantom VEO 710L 

high-speed 12-bit digital CMOS camera with a resolution 

of 1280 × 800 pixels using a Nikon 50 mm f/1.4 lens work-

ing at f/4. The on-board camera memory holds up to 6000 

image pairs resulting in a trade-off between the frame rate 

and crank angle range of PIV measurements. The maximum 

number of cycles recorded per experimental run was lim-

ited to approximately 100–150 by fouling of the transparent 

annulus due to a layer of oil.

Two recording conditions are discussed here. For the lower 

frame rate condition image pairs were recorded every 10°CA 

from 270°CA before firing top-dead-centre (bTDC) in the 

intake stroke to 30°CA bTDC at the end of the compression 

stroke. 10 experimental runs of 100 cycles were performed 

to build a large set of 1000 cycles for analysis with the vec-

tor comparison metrics. Variability of mean peak pressure for 

each run with respect to the 1000-cycle average was 0.46% 

(standard deviation) with worst case deviations of + 0.72% and 

− 0.86%. At the higher frame rate condition 150-cycle datasets 

were recorded, with measurements every 2°CA but restricted 

to the compression stroke, starting at 180°CA bTDC.

Images of the seeded oil droplets taken in the tumble plane 

suffer from astigmatism due to imaging through the curved 

surface of the quartz annulus. The working distance of the 

camera was adjusted to achieve equal defocus in the horizon-

tal and vertical directions and hence produce circular particle 

images as suggested by Reuss et al. (2002). This slight blurring 

effect also aided in the avoidance of discretisation errors due 

to peak-locking (Prasad et al. 1992) by ensuring the size of the 

droplet images was larger than a single pixel.

A LaVision programmable timing unit (PTU v10) was used 

to independently set the time separation between each pair 

of laser pulses at each measurement timing within the cycle. 

This allows the delay between frames to be optimised to suit 

the varying in-cylinder flow velocities throughout the cycle on 

a crank angle resolved basis, increasing the dynamic range of 

the velocity measurements (Abraham et al. 2013).

All image acquisition and processing was performed 

using LaVision DaVis 8.0 software. An image of a grid of 

uniformly spaced dots was used for coordinate transforma-

tion and distortion correction. The raw images were pre-

processed using a min–max filter and a static digital mask 

was applied so that only particle images were used in the 

velocity calculation. A multi-pass cross-correlation algo-

rithm was used to calculate the displacement of particle 

images. An iterative scheme that started with a window size 

of 128 × 128 pixels and decreased to 32 × 32 pixels for the 

final three passes was used (Westerweel et al. 1997; Scarano 

and Riethmuller 1999, 2000), giving a spatial resolution of 

1.91 mm with a vector spacing of 0.95 mm due to the 50% 

overlap between interrogation windows. Spurious vectors 

were removed from the calculated vector fields using a vali-

dation routine. Any vector with a correlation peak ratio (the 

ratio of the highest correlation peak to the second highest) of 

less than 1.8 was deleted. At each pass, a remove and replace 

algorithm was also used to remove spurious vectors by com-

paring each vector to the median of its 8 neighbours. Analy-

sis of the resulting vector fields was performed in MATLAB.

4  Quantitative metrics

4.1  Low velocity sensitivity of RI

Metrics such as the relevance index (RI) provide a spa-

tially resolved map of the differences between vector fields. 

Fig. 1  Experimental setup of the optical engine and PIV system
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However, for large datasets it is impractical to manually 

compare individual fields, as is the case in this work where 

each experimental run generates 2800 vector fields. Instead, 

spatial averages of the metric values are commonly taken to 

reduce the comparison for each vector field pair to a single 

value, e.g.,

where RI is the spatial average of the relevance index field 

RI(i) containing N values. Reduction of the alignment infor-

mation within a RI(i) field, often corresponding to thousands 

of vector pairs, to a single value raises questions as to the 

reliability of the spatial average, RI , as a representative value 

of the overall field.

In-cylinder flow fields often contain both high and low 

velocities simultaneously. In particular, tumble motion is 

commonly generated in spark ignition (SI) engines by the 

directed intake manifold and moving piston resulting in a 

strong tumble vortex with a region of low velocities near 

the vortex centre (Stone 2012). The following discussions 

are based on the planar, 2-component PIV experiments of 

this work and any reference to ‘low’ velocities refers to low 

in-plane velocities as the third velocity component is not 

measured.

A key feature of the relevance index is its independence 

of the velocity of the vectors being compared. This means 

that small differences in velocity will have a much greater 

effect on the RI for regions of low velocity due to the larger 

relative change in alignment. Near the centre of the tumble 

vortex where velocity magnitudes are low and flow direction 

varies significantly over short distances (reversing across the 

centre of the vortex), small absolute differences in velocity 

(3)RI =
1

N

N
∑

i=1

RI(i),

can dominate the spatially averaged RI of a pair of flow 

fields, masking other differences which may be present in 

higher velocity regions of the flow.

To investigate the effect of vortex centres on the RI, PIV 

measurements were taken every 2°CA during the compres-

sion stroke. Datasets A and B of Fig. 2 are each average 

flow fields from 150 cycles which display a 5 mm horizontal 

difference in the locations of the tumble vortex centres at 

86°CA bTDC.

The inset of the overlaid flow fields shows the strong mis-

alignment of vectors near the vortex centres which is quan-

tified by the corresponding negative RI values in the lower 

figure. However, the majority of the velocity vectors away 

from the vortex centres are well matched with over 75% of 

the vector field having a relevance index over 0.99.

Inspection of the RI field (Fig. 2) clearly identifies the 

poor alignment of vectors near the centre of the vortex and 

the good alignment of vectors across the majority of the field 

but does not answer the question of how strongly the few 

vectors near the vortex centres are influencing the spatially 

averaged RI value.

Figure 3 displays how the spatially averaged RI values for 

the relative alignment of datasets A and B (Fig. 2a) are 

affected by the low velocities near the tumble vortex centres 

such as the region defined in Fig. 2b. While RI values are 

commonly used directly in the literature, their interpretation 

is not as intuitive as an effective angular difference. For 

Fig. 3 the standard RI values are converted into an indicative 

average angle of misalignment, � , where � = arccos

(

RI

)

 . 

For a given RI , � is the angle between vectors which results 

in the same value of RI if all vectors in datasets A and B 

were uniformly misaligned by this fixed angle. In this way, 

the standard RI is plotted as a function of crank angle during 

Fig. 2  a 150 cycle-averaged 

flow fields A (black) and B (red) 

taken under nominally identical 

conditions at 86°CA bTDC and 

overlaid with vortex centres 

marked with filled circles. b 

Zoomed in region near the vor-

tex centres showing the 5 mm 

displacement of the vortex 

centres and surrounding low 

velocity vectors. c Relevance 

index field corresponding to the 

relative alignment of flow fields 

A and B. d Zoomed in region 

of the RI field near the vortex 

centres of flow fields A and B 

for clarity
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the compression stroke (blue solid line). A modified RI to 

remove and hence quantify the contribution from misaligned 

very low velocity vectors near the vortex centres is calcu-

lated by removing any RI values below zero from each field 

before spatially averaging (red dashed line).

For the first half of the compression stroke the tumble 

vortex centre is below the field-of-view and the standard 

and modified RI have identical values. Once the tumble vor-

tex centre enters the measurement region at around 90°CA 

bTDC, the modified RI shows a significant difference to the 

standard RI , with a difference in average angle of misalign-

ment (black dot-dashed line) of up to 25%. This is despite 

the fact that the fraction of vectors removed to calculate the 

modified RI (purple dotted line) is only 1%.

Using the standard spatially averaged RI to identify the 

best match between a reference field and a large dataset will 

therefore, if a region of low velocity such as a tumble vortex 

centre is present, be likely to identify the flow field which 

provides the best local match to the low velocity region, 

potentially at the expense of a poorer match across the field 

as a whole.

To produce a spatially averaged value of the relevance 

index which is also sensitive to the alignment across the 

higher velocity regions of the flow, it is necessary to mitigate 

the low velocity sensitivity of the standard RI when analys-

ing flows with rotating structures.

4.2  Weighted relevance index (WRI)

An alignment metric with reduced sensitivity to the align-

ment of low velocity regions may be constructed by weight-

ing the RI at each vector location, RI
(

xi, zj

)

 , by a function of 

the local velocity magnitudes, 
||
|
qA

(
xi, zj

)|
|
|
 and 

||
|
qB

(
xi, zj

)|
|
|
 , in 

such a way as to preserve the desirable qualities of the 

metric. Normalization of all weighting factors is required to 

ensure the metric remains independent of scalar velocity 

magnitude changes. An alignment metric’s value should not 

change if the speed of every vector in one field is doubled as 

the directional information and relative velocities within the 

field have not changed. Each field should be normalized with 

respect to its own velocity scale to ensure both fields are 

treated equivalently.

To construct such a metric, the weighted relevance index 

(WRI) (Eq. 4), a misalignment penalty based on the standard 

RI is calculated at each spatial location for a pair of flow 

fields, 
(

1 − RI
(

xi, zj

))

∕2 . This penalty is then weighted by 

the normalized local velocity magnitude of each field which 

suppresses the penalty for small local velocities. For a given 

angular difference this weighting assigns more importance 

to misaligned high velocity vectors (a large absolute velocity 

difference) than misaligned low velocity vectors. The WRI 

is defined as

where QA(x, z) is the magnitude field of vector field qA(x, z) 

such that QA

(
xi, zj

)
=

|
|
|
qA

(
xi, zj

)||
|
 with spatial coordinates x

i
 

and zj . Here median
(

Q
A

)

 is defined as the median value of 

all elements (including duplicate values) of the magnitude 

field Q
A
.

The normalization factor is chosen to be the median of 

the velocity magnitudes across the corresponding flow field. 

While the maximum velocity magnitude would provide a 

metric bounded by 0 and 1, similarly to the standard RI, nor-

malizing by the maximum is vulnerable to spurious vectors 

or small pockets of high velocities determining the weight-

ing factor for the entire field. Instead the median is used to 

provide a robust normalization factor to represent the veloc-

ity scale within the field. Perfect alignment corresponds to 

a WRI of 0, while a WRI value of 0.5 is equivalent to a 

misalignment of 90° between two vectors which each have 

the median velocity magnitude within their field.

Normalization using information from across the whole 

flow field means that unlike the RI, the WRI is not defined 

for the comparison of single vector pairs as it is not possible 

to objectively define a velocity scale for the suppression of 

low velocity penalties without other vectors for comparison.

The WRI field for datasets A and B of Fig. 2 is dis-

played in Fig. 4 with an inverted colour scheme for ease 

of comparison with Fig. 2, in both cases blue represents 

poor alignment. Large WRI values identify not only the 

severe local misalignment of low velocity vectors near the 

vortex centres (filled black and red circles), but also regions 

(4)

WRI
(

xi, zj

)

=

(

1 − RI
(

xi, zj

)

2

)

×

(

QA

(

xi, zj

)

median
(

QA

)

)

×

(

QB

(

xi, zj

)

median
(

QB

)

)

,

Fig. 3  The spatially averaged RI values for datasets A and B of 

Fig.  2a as a function of crank angle with (red dashed) and without 

(blue) the RI < 0 vectors removed. Also shown is the corresponding 

percentage difference in RI (black dot-dashed) and the percentage 

reduction in number of vectors (purple dotted)
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of misalignment across the higher velocity regions of the 

field. This ensures that the spatial average of WRI values 

characterises the alignment of vectors across the entire field 

and avoids the low velocity sensitivity issue of RI in Fig. 3.

4.3  Weighted magnitude index (WMI)

For comparisons of flow fields, it is also important to be able 

to quantify differences in velocity magnitude. The magni-

tude similarity index (MSI) (Eq. 2), (Hu et al. 2015) is one 

method for quantifying velocity magnitudes that is valid for 

any pair of vectors. For the purposes of this work, the vec-

tor subtraction is undesirable as it takes into account both 

alignment and magnitude. In addition, the normalization by 

the local velocities presents a similar low velocity issue to 

that discussed for the RI. If the local velocity magnitudes of 

both flow fields are small, their presence in the denominator 

of a metric can amplify tiny absolute differences in velocity.

The weighted magnitude index (WMI) is defined as

where median
(

QA, QB

)

 is defined as the median of all ele-

ments (including duplicate values) of the magnitude fields 

Q
A

 and Q
B
 . The difference in velocity magnitudes at each 

spatial location is normalized to produce a dimensionless 

metric and is independent of the alignment of the vectors. 

Vectors with the same magnitude produce a WMI of zero, 

while vectors with large magnitude differences produce val-

ues of WMI greater than one.

Similarly to the WRI, the normalization factor has been 

chosen to be the median velocity magnitude across both 

vector fields A and B. This provides robustness of the nor-

malization against spurious vectors or small pockets of high 

velocity as before and also avoids small local velocities in 

the denominator over-stating the importance of tiny veloc-

ity magnitude differences. This low local velocity effect is 

(5)WMI
(
xi, zj

)
=

|||
QA

(
xi, zj

)
− QB

(
xi, zj

)|||
median

(
QA, QB

) ,

demonstrated in Fig. 5 where the WMI has been calculated 

using a normalization factor of either (a) the local maximum 

velocity, max
(

QA

(

xi, zj

)

, QB

(

xi, zj

))

 in a similar way to the 

MSI, or (b) the global median velocity, median
(

QA, QB

)

 

as in Eq. 5. Near the vortex centres (filled red and black/

white circles), normalization using small local velocities in 

a) results in extremely poor WMI values (dark blue) despite 

small absolute differences in magnitudes. The WMI values 

in Fig. 5b better represent the absolute magnitude differ-

ences across the whole field, such as the lower left region 

where magnitude differences in the high velocity flow far 

from the vortex centre were partially suppressed in Fig. 5a 

due to their smaller relative difference.

4.4  Combined magnitude and relevance index 
(CMRI)

When comparing vector fields it is not always desirable to 

focus solely on either direction or magnitude and a good 

match in alignment with a reference field (low WRI) does 

not necessarily imply a good match in magnitude (low WMI) 

so an overall comparison cannot be provided by either metric 

alone. It is therefore useful to also define a combined metric 

which encompasses the differences in both alignment and 

magnitude between flow fields.

To develop and test the capabilities of the WRI, WMI 

and a combined metric, PIV measurements were recorded 
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z
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m
m

)
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Fig. 4  WRI field for the same pair of velocity fields (datasets A and 

B) of Fig. 2 at 86°CA bTDC, with filled circles marking the vortex 

centres of dataset A (black) and B (red)

Fig. 5  Weighted magnitude index (WMI) fields for a com-

parison of datasets A and B at 68°CA bTDC, defined using 

a normalization factor of either a the local maximum veloc-

ity, max
(

QA

(

xi, zj

)

, QB

(

xi, zj

))

 , or b the global median velocity, 

median
(

QA, QB

)



 Experiments in Fluids (2020) 61:62

1 3

62 Page 8 of 16

in 10°CA increments between 270°CA bTDC and 30°CA 

bTDC to provide a 1000 cycle dataset covering sections of 

both the intake and compression strokes. Figure 6 provides 

an example of the motivation for a combined metric, show-

ing there is negligible correlation at the end of the intake 

stroke (190°CA bTDC) between spatially averaged WRI and 

WMI values for comparisons of each of the 1000 individual 

cycles with the 1000-cycle mean field.

Unfortunately the two metrics cannot be trivially com-

bined into a single metric that retains sensitivity to both 

alignment and magnitude differences. Figure 7a presents 

the mean flow field for the 1000-cycle dataset at 240°CA 

bTDC, in which the lower edge of the intake jet is visible in 

the upper right region of the field. An example single-cycle 

flow field is shown in Fig. 7b highlighting two regions of the 

flow which for this cycle clearly differ from the mean flow 

field in either velocity magnitude (solid circle) or direction 

(dashed circle). The WRI and WMI metrics identify these 

regions as having poor matches in alignment and magnitude, 

respectively, with high (yellow) values (Fig. 7c, d). How-

ever, a trivial combination of the metrics, (WRI + WMI)∕2 

is insensitive to differences in alignment (Fig. 7e).

Combining WRI and WMI by simple addition is ineffec-

tive due to the different distributions of each metric’s values 

for typical in-cylinder flow fields of this work, examples 

of which are illustrated for the mid-compression stroke in 

Fig. 8a, c. The WRI values are more tightly grouped around 

zero, in part due to the nature of the cosine function implied 

by the dot product in the definition of RI. This causes a 

0 0.05 0.1 0.15

WRI

0

0.1

0.2

0.3

0.4

0.5
W

M
I

Fig. 6  Scatter plot of spatially averaged WRI against WMI for 1000 

individual cycles each compared to the 1000-cycle mean flow field at 

190°CA bTDC

Fig. 7  Flow fields at 240°CA bTDC for a the 1000-cycle mean flow 

field and b a single-cycle flow field. Comparisons of flow fields a and 

b in terms of c WRI values, d WMI values and e trivially combined 

(WRI + WMI)∕2 values. The solid (dashed) white circle highlights a 

region in flow field (b) which is poorly matched in magnitude (align-

ment) to the flow field of (a)
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trivial combination of the metrics to be heavily weighted 

towards the contribution of the WMI over the WRI, leading 

to a combined metric that is insensitive to differences in 

alignment (Fig. 7e).

Other flow field comparisons may have very different 

distributions of WRI and WMI. To ensure both the WRI 

and WMI are equally weighted in a combined metric for 

any flow field, the metrics must be rescaled to suit the flow 

fields of interest.

For a given set of N
f
 flow fields each containing N

v
 vec-

tors compared in turn to N
r
 reference flow fields, there will 

be a total of N
t
 values for each metric, one for each indi-

vidual vector comparison, where N
t
= N

f
× N

v
× N

r
 . These 

N
t
 metric values are given by f  and the rescaling is chosen 

such that the majority of normalized metric values, f
norm

 , lie 

between 0 and 1 where f
norm

 is given by

The threshold values f
low

 and fhigh are defined by sorting 

f  and ignoring the highest and lowest 2% of values for the 

purposes of rescaling to avoid the extremal WRI or WMI 

(6)fnorm =

f − flow

fhigh − flow

.

values defining the scaling factor for each metric. The high-

est and lowest remaining values are fhigh and f
low

 . In this way 

96% of rescaled metric values, f
norm

 , lie within the range 0 

to 1.

Figure 8 illustrates this rescaling from WMI and WRI 

to WMI
norm

 and WRI
norm

 for a single-cycle flow field com-

pared to a 1000-cycle mean field at 70°CA bTDC, i.e., 

N
f
= N

r
= 1 . For this example comparison the WMI has 

approximately 5 times the range of the WRI when consid-

ering fhigh − flow for each unscaled metric (Fig. 8a, c). By 

definition, the range of the central 96% of WMI
norm

 and 

WRI
norm

 values is identical, from 0 to 1 (Fig. 8b, d).

The rescaled metrics can then be trivially combined into 

a single metric to quantify both alignment and magnitude 

differences, the combined magnitude and relevance index 

(CMRI),

where a high value of CMRI identifies a region of a flow 

field with a large difference to the reference field in either 

magnitude, direction or both.

(7)CMRI =
WRInorm + WMInorm

2
,

Fig. 8  Histograms of a WMI 

and c WRI vector-wise values 

for a comparison at 70°CA 

bTDC of the 1000-cycle mean 

flow field with a single-cycle 

flow field from within the same 

dataset. Vertical lines mark the 

highest value (solid line) and 

the threshold value below which 

98% of values lie (dashed line) 

for each metric. Lines for the 

lower 2% and minimum values 

are both very close to zero and 

have been omitted for clarity. 

Histograms of rescaled metrics 

b WMI
norm

 and d WRI
norm

 , 

obtained using Eq. 6 a b

c d

Normalized

Normalized
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The WRI
norm

 and WMI
norm

 values (Fig. 9a, b) retain the 

same alignment and magnitude information as the WRI 

and WMI values (Fig. 7c, d) however unlike the trivial 

combination of the unscaled metrics in Fig. 7e, the CMRI 

values (Fig. 9c) successfully represent the variation in both 

alignment and magnitude present within the example flow 

field.

In this way, the CMRI may be used to quantify overall 

differences between flow fields. Spatially resolved fields of 

CMRI values may be used to identify regions of interest 

for further study, while via spatial averaging the CMRI can 

provide a single value which quantifies the similarity of two 

flow fields.

As the CMRI metric is sensitive to both differences in 

alignment and in magnitude by design, the CMRI values 

alone do not distinguish between these two types of flow 

differences, such as the two circled regions of Fig. 9c within 

which the CMRI is simply ‘high’ for both. The CMRI, 

WRI and WMI therefore provide a complementary set of 

metrics which should be used in combination for flow field 

investigations.

Due to the rescaling of the WMI and WRI metrics, 

the CMRI values may only be compared quantitatively 

to other values within the dataset used for the normali-

zation of the WRI and WMI. However, the set of flow 

field comparisons used to define the normalization may 

be freely chosen. The metrics may be normalized within a 

single flow field pair to finely resolve the spatial variation 

in alignment and magnitude between the two flow fields. 

Alternatively, the scaling may be calculated using very 

large datasets involving thousands of cycles at a variety 

of crank angles and engine operating conditions to enable 

quantitative comparisons of large differences in flow fields 

across an entire measurement campaign.

Care must therefore be taken when interpreting CMRI 

values and it would be unreasonable to define a CMRI 

value that corresponds to a universal threshold for vectors 

or flow fields being similar, especially when the concept 

of two flow fields being similar is highly dependent on 

context.

A value of WRI
norm

 of 1 corresponds to a misalignment 

between vectors for which only 2% of vector pairs within 

the normalization dataset have higher WRI values. Simi-

lar logic follows for WMI
norm

 . Therefore a CMRI value 

of 1 (0) corresponds to a vector pair which has a com-

bined directional and magnitude difference to the refer-

ence flow field equivalent to being in the worst-matched 

(best-matched) 2% of all vectors within the dataset for 

both direction and magnitude independently.

Selection of threshold values for investigations using 

CMRI values may be guided by spatially resolved fea-

tures identified within CMRI fields such as those circled 

in Fig. 9c, for which case a threshold value of 0.5 would 

isolate other flow features within the dataset equivalently 

poorly matched to the reference field.

Alternatively, a value of CMRI may be selected by 

inspection of the distribution of (known) CMRI values. 

If for a certain dataset compared to a reference field, 10% 

of the vector-wise CMRI values are greater (or less) than 

0.7, then 0.7 may be used as a threshold to identify a vec-

tor as being within the ‘worst (or best) matched 10% of all 

vectors in the dataset’.

A key application of these quantitative metrics is the 

validation of CFD models by quantitatively comparing 

experimental PIV flow fields to CFD. In such a case one 

choice for an appropriate CMRI threshold for evaluat-

ing similarity between simulation and experiment would 

be a value which represents the experimental variability 

between tests. This CMRI value is readily obtainable by 

including both the CFD flow field and mean flow fields 

from individual experimental runs within the dataset for 

comparison to the overall experimental mean flow field.

Fig. 9  Rescaled metric values a WRI
norm

 , b WMI
norm

 and c CMRI for 

comparison of the 1000-cycle mean and single-cycle flow fields of 

Fig. 7a, b. The solid (dashed) white circle highlights a region of poor 

match in magnitude (alignment)
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5  Application of metrics to in-cylinder �ows

The CMRI, WRI, WMI, RI and MSI metrics all have 

advantages and should be applied where most appropriate 

and also in combination with other flow characterisation 

methods such as vortex tracking (Simpson et al. 2018). 

The WRI, WMI, and CMRI are sensitive to differences in 

both high and low velocity regions of a flow field, while 

where relative changes in low velocity regions are criti-

cally important or where any form of velocity weighting 

is undesirable, the RI and MSI metrics are better suited.

5.1  Number of cycles required for a representative 
mean

A single measurement of the flow field within an engine 

differs from the mean flow fields due to both turbulent 

fluctuations and cycle-to-cycle variations of the flow. 

For quantitative comparison of the flow structures to the 

results of CFD modelling, or between different experimen-

tal conditions, a representative mean flow field is obtained 

by averaging the flow fields obtained from multiple cycles. 

The optimal number of cycles to average must balance 

accurate representation of the mean flow field with experi-

mental and analytical costs.

Depending on the nature of the flow field at a given con-

dition, tens, hundreds or even thousands of cycles may be 

required to converge onto a representative mean cycle. The 

CMRI metric provides a quantitative approach to deter-

mining the number of cycles required.

The 1000-cycle, lower frame rate (every 10°CA) dataset 

was used to provide a nominally accurate mean flow field 

for comparison. A random number generator was used to 

select varying numbers of cycles from the large dataset 

which were then cycle-averaged and each compared to the 

full 1000 cycle dataset using the CMRI metric (Fig. 10). A 

similar analysis using the standard relevance index (RI) to 

determine the number of cycles required for a representa-

tive mean for high and low swirl motion was performed in 

Wang et al. (2016).

The spatially averaged CMRI values in Fig. 10a show 

that the dependency of the quality of match of the overall 

field on sample size is similar across the range of crank 

angles measured. In this case, the CMRI values averaged 

across all crank angles may therefore be used to determine 

the number of cycles required (Fig. 10b).

In addition to the CMRI values, the standard deviation 

of the sample-means for the x component and z component 

of velocity for each sample size were calculated follow-

ing the methodology of Baum et al. (2014). These values 

were averaged across all crank angles and normalized by 

a constant scale factor to the value of the CMRI metric 

for a sample size of 500 cycles (Fig. 10b). This illustrates 

the similarity of the trend of the reduction in both CMRI 

metric values and the standard deviation of sample-means 

for increasing sample size.

Samples with less than 10 cycles produce very high 

CMRI values, which for this dataset are in the range 1–30, 

corresponding to very poor matches to the 1000-cycle mean 

field. A significant improvement in the quality of match to 

the 1000-cycle mean is seen for increasing the number of 

cycles averaged above 10 cycles, as shown by the large 

reduction in CMRI values for 50 cycles (0.48) and 100 

cycles (0.27). Averaging more than 100 cycles begins to 

give diminishing returns with averages of 200, 300, and 

500 cycles giving CMRI values of 0.18, 0.14, and 0.10, 

respectively.

This suggests that for these flow conditions, an average 

of 100 cycles is sufficient to represent the flow field as a 

whole for measurements where a high throughput of test 

points is required. An average of 300 cycles provides an 

accurate representation of the mean flow field, while averag-

ing more than 300 cycles may be considered to offer negli-

gible benefit.

While the above treatment is appropriate for whole-field 

comparisons, in many cases key local features such as the 

flow over the intake valves, recirculation zones or flows near 

surfaces are targeted for CFD validation and detailed studies 

of flow characteristics (Buhl et al. 2017). In such cases, care 

must be taken to consider the spatially resolved nature of the 

Fig. 10  a Spatially averaged CMRI values between a 1000-cycle 

mean flow field and the averaged flow fields of randomly selected 

samples as a function of sample size and crank angle. b CMRI values 

of a averaged across all crank angles (blue dots). The standard devia-

tion of the sample-means for the x component, �
x
 , and z component, 

�
z
 , of velocity for each sample size is also shown, normalized by a 

constant scale factor to the value of the CMRI metric for a sample 

size of 500 cycles
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flow field variability as convergence of velocity components 

has been shown to depend on the location within the cylinder 

(Baum et al. 2014). This may be achieved by considering 

either the full CMRI fields or by restricting the spatial aver-

age to the region of interest.

Different operating conditions or measurement planes are 

likely to have different levels of cyclic variability of the flow 

field. Use of the CMRI to validate the choice of the number 

of cycles required to produce a representative mean flow 

field is recommended for each significantly different meas-

urement condition.

5.2  Identi�cation of representative cycles

The CMRI metric offers an opportunity for rapid, quantita-

tive identification of cycles of interest within a large dataset. 

In-cylinder flow fields are often subject to significant cycle-

to-cycle variation and it is not necessarily the case that the 

mean flow field is representative of any single cycle, with 

implications for the validity of comparisons of mean fields 

with RANS simulations. The CMRI can be used to rapidly 

sort a dataset with hundreds of cycles by the quality of the 

vector-wise match in both alignment and magnitude to the 

mean flow field.

An example 300 cycle, higher frame rate (every 2°CA) 

dataset has a mean flow field at 80°CA bTDC given by 

Fig. 11a. The single cycle which provides the best match 

to the mean flow field at 80°CA bTDC as identified by the 

CMRI is shown in Fig. 11b. For this engine operating con-

dition, it is clear that there is a single cycle which can be 

considered to be representative of the mean cycle as this 

best-matched cycle shares the velocity magnitude and direc-

tional characteristics of the mean field with a well-defined 

single tumble vortex.

In contrast, the cycle with the worst match (highest CMRI 

value, Fig. 11c shows the tumble vortex centre displaced by 

10 mm towards the exhaust side of the cylinder, with a large 

region of high velocity upwards flow near the centre of the 

field-of-view, directed towards the inlet port.

5.3  Quanti�cation of cyclic variability

Figure 11 demonstrates that there is significant cycle-to-

cycle variation in the flow under the engine operating con-

ditions of this work. Cyclic variability of the in-cylinder 

flow field is an area of great interest in engine research. The 

strength of cycle-to-cycle variations has shown correlation 

with the variability of IMEP (Clark et al. 2018) and strong 

variations in flow direction and magnitude from the ensem-

ble average have been observed in the region of the spark 

plug (Müller et al. 2010).

For investigations into in-cylinder flow field variabil-

ity, Reynolds decomposition of the instantaneous velocity 

field � into a fluctuation velocity field �′ and an ensemble 

average velocity field � , where � = � + �
� , is common-

place (Braun et al. 2019). These velocity fluctuations, �′ , 

may be considered to arise from both cyclic variability 

in bulk flow features and small-scale fluctuations due to 

turbulence. Distinguishing between the contributions from 

each source for an experimentally obtained set of flow 

fields is non-trivial. Typical approaches include temporal 

filtering (Towers and Towers 2004; Aleiferis et al. 2017), 

spatial filtering (Clark et al. 2018) and POD mode parti-

tions (Roudnitzky et al. 2006), in which a cutoff frequency, 

length or POD mode number, respectively, is selected to 

isolate large scale cyclic variations from small-scale tur-

bulent motion. For large datasets containing a well-defined 

flow feature, such as a late compression tumble vortex 

centre, conditional sampling may be used to reduce the 

contribution of cyclic variation to a measurement of tur-

bulent velocity fluctuations (Zentgraf et al. 2016).

Fig. 11  a The mean flow field at 80°CA bTDC of a 300-cycle dataset. 

The single cycles which at 80°CA bTDC provide the best and worst 

matches to the 300-cycle mean flow field of a as determined by their 

spatially averaged CMRI values are given in b and c, respectively
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The velocity fluctuations quantified by the CMRI in this 

work encompass both cyclic variations and turbulent fluc-

tuations. Analysis of cyclic variability as distinct from the 

turbulent contribution will be addressed in future work.

The CMRI can be used to quantify the spatial distribution 

of velocity fluctuations at each crank angle by comparing 

each individual cycle to the mean flow field and averag-

ing the resulting CMRI values over all cycles. Figure 12 

highlights examples of such averaged CMRI fields from the 

lower frame rate (every 10°CA), 1000-cycle dataset. Dur-

ing the intake stroke, the greatest variability is found in the 

region where the lower edge of the high velocity intake jet 

interacts with the partially established tumble flow, with 

mean CMRI values above 0.35 at the top of the CMRI 

field at 200°CA bTDC (Fig. 12a). For early compression 

the mean CMRI values are around 30% lower due to the 

well-established tumble motion which results in lower vari-

ability (Fig. 12b). For the second half of the compression 

stroke, the individual cycle flow fields are well matched to 

the mean field towards the exhaust side of the measurement 

plane. However, cyclic variability in the shape and location 

of the tumble vortex centre contributes to a region of high 

CMRI values on the inlet side of the flow field which, as the 

piston rises, moves up towards the region of the spark plug 

(Fig. 12c). This region of high velocity fluctuation reaches 

the vicinity of the spark plug (blanked for these experiments) 

to coincide with a typical spark timing of 30°CA bTDC. The 

potential for this variability to influence the flame develop-

ment and hence combustion performance will be investi-

gated in future work.

6  Conclusions

Quantitative metrics for the comparison of in-cylinder flow 

fields have been detailed in this work which mitigate the 

high sensitivity of existing metrics to regions of low veloc-

ity. The weighted relevance index (WRI) and weighted mag-

nitude index (WMI) quantify spatially-resolved differences 

in flow field alignment and magnitude, respectively, using a 

function of the local velocity as a weighting factor.

Application of the WRI and WMI metrics to PIV meas-

urements in the tumble plane of an optically accessible SI 

engine has demonstrated the robustness of the metrics near 

the tumble vortex centre and the generation of reliable spa-

tially averaged metric values for quantifying differences 

between in-cylinder flow fields.

The WRI and WMI were normalized and combined to 

provide a single metric for comparison of differences in 

both alignment and magnitude between flow fields, the 

combined magnitude and relevance index (CMRI). The 

rescaling of the WRI and WMI metrics in the calculation 

of the CMRI restricts the comparison of CMRI values to 

flow fields within the dataset used for normalization. As the 

normalization dataset may, and should be, chosen to contain 

all the flow fields of interest, this ensures equal weighting is 

given to alignment and magnitude differences relevant to the 

selected dataset, whether subtle differences in a small, low 

variability dataset or large differences across many experi-

mental conditions.

Quantitative vector comparison metrics such as the RI, 

MSI and this work’s WRI, WMI, and CMRI each have 

advantages. For robust comparisons of both magnitude and 

direction, the CMRI is well suited to identifying cycles or 

features of interest within large datasets which can then be 

investigated in more detail.

The CMRI metric was used to determine the number of 

cycles required to provide a representative mean flow field 

for the conditions of this work. Individual flow fields which 

provided the best and worst match to the mean flow field 

were identified using the CMRI. A region of high variability, 

Fig. 12  Mean CMRI fields calculated by averaging the CMRI fields 

obtained by comparing each of 1000 single cycle flow fields to the 

1000-cycle mean flow field for a 200°CA bTDC, b 80°CA bTDC and 

c 40°CA bTDC. Vectors represent velocities of the mean flow field
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resulting in large CMRI values, during the second half of the 

compression stroke was found in the vicinity of the blanked 

spark plug.

Future measurements under fired operation will inves-

tigate the influence of cyclic variability on combustion. 

Any cycle which combustion analysis identifies as having 

particularly good or poor combustion can also be rapidly 

matched to similar flow fields from other cycles using the 

WRI, WMI and CMRI metrics. This will enable investiga-

tions into the correlation of specific flow features with com-

bustion quality within this engine and improve the validation 

of CFD simulations using experimental flow fields.
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