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Abstract

Glioblastoma multiforme (GBM) are aggressive and uniformly
fatal primary brain tumors characterized by their diffuse
invasion of the normal-appearing parenchyma peripheral to
the clinical imaging abnormality. Hypoxia, a hallmark of
aggressive tumor behavior often noted in GBMs, has been
associated with resistance to therapy, poorer survival, and
more malignant tumor phenotypes. Based on the existence of
a set of novel imaging techniques and modeling tools, our
objective was to assess a hypothesized quantitative link
between tumor growth kinetics [assessed via mathematical
models and routine magnetic resonance imaging (MRI)] and
the hypoxic burden of the tumor [assessed via positron
emission tomography (PET) imaging]. Our biomathematical
model for glioma kinetics describes the spatial and temporal
evolution of a glioma in terms of concentration of malignant
tumor cells. This model has already been proven useful as a
novel tool to dynamically quantify the net rates of prolifer-
ation (r) and invasion (D) of the glioma cells in individual
patients. Estimates of these kinetic rates can be calculated
from routinely available pretreatment MRI in vivo. Eleven
adults with GBM were imaged preoperatively with 18F-
fluoromisonidazole (FMISO)–PET and serial gadolinium-
enhanced T1- and T2-weighted MRIs to allow the estimation
of patient-specific net rates of proliferation (r) and invasion
(D). Hypoxic volumes were quantified from each FMISO-PET
scan following standard techniques. To control for tumor size
variability, two measures of hypoxic burden were considered:
relative hypoxia (RH), defined as the ratio of the hypoxic
volume to the T2-defined tumor volume, and the mean
intensity on FMISO-PET scaled to the blood activity of the
tracer (mean T/B). Pearson correlations between RH and the
net rate of cell proliferation (r) reached significance (P <
0.04). Moreover, highly significant positive correlations were
found between biological aggressiveness ratio (r/D) and both
RH (P < 0.00003) and the mean T/B (P < 0.0007). [Cancer Res
2009;69(10):4502–9]

Introduction

Gliomas are uniformly fatal lesions of the brain signified by their
invasive potential and their increased capacity for proliferation (1).
This is especially true of glioblastoma multiforme (GBM; WHO
grade 4); a highly anaplastic, rapidly proliferating, primary brain
neoplasm characterized by diffuse invasion of the normal-
appearing parenchyma peripheral to the abnormality seen on
clinical imaging. As outlined by Stupp and colleagues (2, 3), the
current standard-of-care for newly diagnosed GBMs involves
resection followed by adjuvant radiation and chemotherapy.
However, GBMs typically recur within months, with a poor
prognosis of 6 to 14 months (4).

Magnetic resonance imaging (MRI) and positron emission
tomography (PET) can offer noninvasive means to assess
individual tumor biology in vivo , thereby assisting diagnosis as
well as patient-specific treatment planning. MRI provides
anatomic tumor information by allowing visualization of the
lesion’s structural extent. Gadolinium enhancement on T1-
weighted MRI (T1Gd MRI), allows the bulk tumor mass to be
imaged, with hyperintense-appearing neoangiogenesis enclosing a
hypointense region of central necrosis or dead tissue. T2-weighted
MRI (T2 MRI) detects the surrounding edema associated with
invading glioma cells.

Recent developments in radiopharmaceutical research has
produced PET tracers that can target hypoxia, among other
characteristic errors of disease (5–8). Imaging with radiolabeled
nitroimidazoles offers a noninvasive means of assessing hypoxia.
One of the earliest and most commonly used agents for hypoxia
detection was the PET tracer 18F-fluoromisonidazole (FMISO), a
nitroimidazole derivative (9, 10). Nitroreductases within the cell
metabolize nitroimidazoles, which can act as electron acceptors
when oxygen levels are low. Reduced nitroimidazoles covalently
bond to intracellular macromolecules and cannot exit viable cells,

Requests for reprints: Kristin R. Swanson, Laboratory of Neuropathology,
University of Washington, 325 9th Avenue, Box 359791, Seattle, WA 98104. Phone:
206-221-6577; Fax: 206-685-7271; E-mail: swanson@amath.washington.edu.

I2009 American Association for Cancer Research.
doi:10.1158/0008-5472.CAN-08-3884

Major Findings

Overall, biological aggressiveness assessed by serial MRI
is linked with hypoxic burden assessed on FMISO-PET
using a novel biomathematical model for glioma growth
and invasion. This study suggests that patient-specific
modeling of growth kinetics can provide novel and
valuable insight into the quantitative connections be-
tween disparate information provided by multimodality
imaging.
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such that FMISO uptake is proportional to the amount of hypoxia
(11). This does not occur in necrotic tissues due to a lack of enzyme
activity, which is required for the metabolic processing of
bioreductive probes.

GBMs are characterized by hypoxia, which results from the
rapid depletion of nutrients that occurs with aberrant tumor cell
proliferation (12). Hypoxia has been shown to be associated with
the propagation and progression of malignant tumors (13), as
well as being a predictor of resistance to standard radiotherapy
and some varieties of concurrent chemotherapy (14). According-
ly, tumors with significant levels of hypoxia generally show a
lower probability of remaining asymptomatic, as well as shorter
overall survival (11, 15). By limiting tumor response to and
control by therapy, hypoxia is an important adverse prognostic
factor that is indicative of higher rates of recurrence and fatality.
Additionally, the related necrosis is characteristic of GBM
diagnoses (16). It has been suggested that the hypoxia-stimulated
expression of genes for oncoproteins, glucose transporters, and
glycolytic enzymes confers a growth advantage for the tumor
and allows hypoxic cells to use the energy-saving mechanism of
glycolysis (17), which may promote a more aggressive tumor
phenotype.

Given the high degree of invasiveness and the inability of
current medical imaging technology to capture the full extent of
glioma invasion, biomathematical modeling has been used to
shed light on the growth patterns of gliomas in vivo . The
mathematical model developed by Swanson and colleagues
(18–20) describes growth and invasion in terms of two patient-
specific variables: the net cell dispersal rate (D) and proliferation
rate (q). See the Quick Guide for further details. The model
considers the expansion of MRI-detectable edge of the tumor as

resembling a traveling wave
that asymptotically approaches
a constant velocity v ¼ 2

ffiffiffiffiffiffiffi
Dq

p
(21–23). In untreated gliomas,
linear radial growth has been
observed (24, 25). Furthermore,
Pallud and colleagues (26)
established that the model-
predicted constant velocity (con-
tributed to by both D and q) of
low-grade glioma growth is
a prognostic factor. Similarly,
kinetic analyses of tumor growth
have shown that untreated
gliomas grow continuously at
predictable rates before their
inevitable progression to more
malignant phenotypes. Growth
velocity has also been seen to
predict the conversion to con-
trast-enhancement on MRI (27).
The model parameters for bio-
logical aggressiveness (D and q)
have prognostic significance
even when controlling for stan-
dard clinicopathologic parame-
ters.4 A simulated example
based on patient-specific values
for D and q is provided in
Fig. 1, along with a comparison

of representative multimodality patient images from which D and q
can be obtained.

Given the successful application of this model to characterizing
glioma kinetics in terms of net rates of proliferation and invasion, it
is appropriate to explore how hypoxic burden, a hallmark of
aggressive tumor behavior, relates to the model parameters that
can be used as quantitative measures of biological aggressiveness.
Given the model-defined biological aggressiveness metrics for each
patient, this study investigates the link between anatomic glioma
growth kinetics assessed on MRI and hypoxic burden as seen on
FMISO-PET.

Materials and Methods

Patients. Eleven adult patients with newly diagnosed GBM were imaged

preoperatively with FMISO-PET, T1Gd, and T2 MRI sequences. There were

seven males and four females, with ages ranging from 37 to 73 (median, 55;

mean, 57.6). Karnofsky performance scores at diagnosis ranged from 60 to
90 (median, 70; mean, 74). These patients were recruited from the University

of Washington Medical Center. Each patient signed informed consent for

inclusion in our study, with prior approval by the Institutional Review Board

and Radiation Safety committees.
FMISO-PET imaging protocol. FMISO was prepared as outlined by Lim

and Berridge (28) and detailed methods are described elsewhere (29).

Briefly, all PET scans were performed on an Advance Tomograph (G.E.

Medical Systems) operating in a three-dimensional, high-resolution mode
with 35 imaging planes covering a 15-cm axial field of view. For each

patient, venous access lines were placed in each arm, one for FMISO

Quick Guide: Main Model Equations

rate of change of
glioma cell density

net dispersal
of glioma cells

net proliferation
of glioma cells

@cðx;tÞ
@t

¼ r � ½DðxÞrc � þ �c 1
 c
k

� �

This is a reaction-diffusion partial differential equation used to describe the density of glioma cancer

cells (c) in terms of two net rates: motility (D) and proliferation (q). The equation relates the temporal rate
of change of glioma cell density at the spatial location x with the diffuse motility of the cancer cells near

that location and the net cell proliferation of those cells locally. The net motility rate D varies depending on

the location in the brain to allow for an increased velocity of migration through white matter compared

with gray matter. The (maximum) net proliferation rate q includes both birth and death rates and assumes
logistic growth with a tissue-carrying capacity k . There is a spatial heterogeneity in the net proliferation

term resulting from the effect of k. At the center of a densely packed tumor, the net proliferation term

becomes 0 with a gradient to a local maximum rate of q for those diffusely invading cells at the periphery.

Although local proliferation rates at the microscopic level will vary depending on genetic and molecular
mechanisms, by considering net proliferation q , the model attempts to capture the downstream effects of

these mechanisms on the tumor cell population as a whole.

Major Assumptions of the Model

This model assumes that glioma cell invasion throughout the brain is a diffusion process and that the

coefficient of diffusion (D) can vary in space depending on the gray and white composition of the brain at
that location. The model also assumes logistic growth of the tumor cell population, so that the net

proliferation rate (q) is lower in regions of high cell density (where c � k) than in regions of low cell density

(where c V k).

4 C.H. Wang, J.K. Rockhill, M. Mrugala, et al. Prognostic significance of growth
kinetics in newly diagnosed glioblastomas revealed by combining serial imaging with a
novel biomathematical model. Cancer Res. Submitted 2008.

Equation 1:

Hypoxic GBMs Are Quantitatively More Aggressive
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injection and the other for blood sampling. Injections of 3.7 MBq/kg

(0.1 mCi/kg) of FMISO were then administered, for a maximum of 260 MBq

or 7 mCi. A single field-of-view emission scan from 120 to 140 min

postinjection and an attenuation scan (25 min) of the brain with tumor
were obtained. The acquired imaging data were reconstructed to determine

the tumor hypoxic volume (HV) as described in later sections. During

emission tomography, four venous blood samples were obtained at intervals
of 5 min. Whole blood samples of 1 mL each were counted in a Cobra

multichannel gamma well counter (Packard Corp.) that is calibrated each

week in units of cpm/MBq. Blood activity of the four samples was averaged

and then expressed as MBq/mL of decay corrected to time of injection.
MRI protocol. MRIs were acquired using a 1.5 T G.E. system (Horizon

LX Echospeed with 9.1 software). The preoperative Stealth navigation

studies included axial T1 with contrast (three-dimensional gradient echo,

TE/TR minimal, 1.3 mm slice thickness with no skip, FOV 26), and axial T2
FSE (TE 97.3, TR 4000, 1.7 mm slice thickness with no skip, FOV 26). Follow-

up scans including standard gadolinium-enhanced T1-weighted (TE

minimal, TR 350) and T2-weighted (TE 102, TR 4300) MRIs were obtained
in two-dimensional mode with a spin echo sequence and slice thickness of

5 mm with no interslice spacing.

Image processing and data acquisition. The number of days between

the FMISO-PET and MR images ranged from 0 to 16 with an average of
7.2 days. Spatial registration of the T2 MRI and the FMISO images to the

T1Gd MRI was performed using Statistical Parametric Mapping software

(30) in order to compare regions of PET activity relative to MRI-defined

abnormalities. The accuracy of image coregistration was confirmed by
visual inspection in addition to the optimization features provided by

Statistical Parametric Mapping.

Data acquisition from FMISO-PET and MRIs was performed with a
semiautomated image-processing program developed in MATLAB (31),

which consisted of three parts: MRI (T1Gd and T2) thresholding, FMISO-

PET thresholding, and computational determination of different tumor

regions of a glioma. Specific details of the techniques used are reported
elsewhere (29).

The coregistered FMISO-PET images were scaled to the average venous

blood concentration of FMISO activity to produce tumor/blood (T/B)

values. This allowed for a three-dimensional pixel-by-pixel calculation of

T/B activity ratios.
The number of pixels in the brain with a T/B ratio of z1.2, indicating

hypoxia, was determined and converted to milliliters to give the HV. T/B

ratios previously measured with the tomograph in normal brain and muscle
showed that >90% of the values decreased to <1.1 (32), and our cutoff ratio

of 1.2 was in accordance with previous studies (9). Due to the nature of PET

imaging, small nontumorous regions of FMISO activity are typically

scattered in isolated voxels throughout the brain. Designating HV as FMISO
T/B z 1.2 largely excludes this noise, and is also consistent with results

from histologic and immunohistochemical definitions of the hypoxic region.

To normalize hypoxia for tumors of different sizes, we defined relative

hypoxia (RH) by scaling the HV, as determined on FMISO-PET, to the T2-
weighted MR-defined volume, giving the unitless hypoxic fraction RH = HV/

T2 volume. Because FMISO-PET is not retained in necrotic tissue, we also

considered an alternate measure of relative hypoxia, termed RH*, defined as
the HV normalized to the volume of the nonnecrotic T2 region (thus

removing the central hypointensity on T1Gd).

Although the choice of a T/B cutoff of 1.2 is consistent with previous

studies exploring FMISO-PET (9, 12, 29), we chose to consider a variety of
possible T/B cutoffs to assure that our findings were not as a result of this

relatively arbitrary cutoff choice. First, FMISO-PET images for each patient

were scaled using a range of T/B ratios (0.9–1.6). Values for HV (associated

with each new cutoff choice) and the resultant RH were then obtained.
The analysis focuses on the association between the model parameters

and RH, which we believe is a more accurate and biologically based

quantification of the tissue’s hypoxic burden, which controls for the overall
size of the region in which hypoxia may be imaged. It would be

inappropriate to compare rates (of biological aggressiveness) with volumes

(e.g., HV) because the tumors are imaged at various times during their

evolution. Moreover, the growth rate can be independent of size.
Additionally, we considered the average T/B intensity of pixels at or above

Figure 1. A 55-year-old woman with a
temporal GBM imaged preoperatively
on T1Gd MRI (A ), T2 MRI (B), and
FMISO-PET (C ). MRI showed a
contrast-enhancing tumor with a large
necrotic center. A simulation of tumor
expansion (D ) was generated by applying
D and q measured from the serial MRI
of a ring-shaped temporal glioblastoma,
revealing a diffuse extent of disease
peripheral to the imaging abnormality.

Cancer Research
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the 1.2 threshold as a measure of hypoxic density, denoted as mean T/B in
our analysis. Examining the relationships between the model parameters

and mean T/B allows for a complementary characterization of hypoxic

burden.

Calculation of model parameters. Following Swanson and colleagues
(18–20), for contrast-enhancing gliomas, the biomathematical model allows

for the calculation of the ratio of the net proliferation rate q to the net

dispersal coefficient D (q/D) from a single pair of T1Gd and T2 sequences.

A second sequence of MR images without intervening treatment was
available for a subset of the patients included in this study (n = 5), which

allowed the explicit definition of the two unknown variables, D and q , in

individual patients. The velocity of radial expansion v was also determined

for those cases.
Tumor sphericity. Previous work on cell-based mathematical modeling

of tumor invasion has linked more aggressive cellular phenotypes with the

formation of masses with finger-like protrusions (33). Furthermore, these
modeling approaches have found that hypoxia can select for these more

aggressive phenotypes. We also examined the degree of sphericity in our

three-dimensional analysis of each tumor to provide an additional spatial

metric of growth kinetics and aggression. Sphericity (W) was calculated
relating the surface area (SA, cm2) with the volume (V, cm3) of each tumor

on a scale from 0 to 1: w ¼ p1=3ð6V Þ2=3
SA

. This three-dimensional geometric

index has been applied to measure a tumor’s similarity to a spherical object

(34), in which a sphericity value of 1 indicates that the tumor is perfectly
spherical, and values less than 1 signify a more irregular and fingered shape.

As the compactness measure of a three-dimensional shape, sphericity

decreases with the amount of surface area. This measure was quantified for

both T1Gd and T2 images (Table 1).
Statistical analysis. Pearson correlation was used to assess the

association between the model parameters and hypoxic burden, with

the P value for statistical significance determined using Student’s
t distribution.

Results and Discussion

All patients had GBM as designated by WHO criteria (35). The
patient age, sex, Karnofsky performance score at diagnosis, HV, RH,
velocity of glioma expansion, the computed values of the model
parameters D and q , and the ratio q/D are shown in Table 1. Values
for v, D , and q are displayed for five patients for whom two imaging
studies were available over a period of time prior to any operation
or treatment.

Correlates of hypoxic burden and net proliferation/diffu-
sion. The statistical significance of associations between hypoxic
burden and the MRI-defined anatomic tumor burden quantified by
v, D , and q are summarized in Table 2. A significant (Pearson)
correlation was found between the net rate of cell proliferation (q)
and RH (P < 0.04), as well as RH* (P < 0.04). Correlations with
dispersal (D) did not reach significance. The mathematical model
and our traveling wave approximation of glioma expansion suggest
that both q and D contribute to v . The velocity, v, only approached
significance when compared with RH.

In the context of hypoxia, model-defined biological aggressive-
ness may also be quantitatively assessed by the ratio q/D based on
the observation that a cell population with increased proliferation
(q) relative to invasive capability (D) would be more likely to
produce local hypoxia. The ratio q/D can be related to the gradient
of the leading (invading) edge of the tumor. That is, a high q/D
would correspond to a mitotically active (high q) tumor with
relative low invasiveness (low D) leading to a relatively well-
demarcated nodule. Conversely, a low q/D would correspond to a
diffusely invasive leading-edge of the tumor consistent with a
tumor that has a relatively lower proliferative capacity compared
with its diffuse invasion. We did note a consistent pattern for which
a larger q also suggested a larger D , such that q/D also increased.
The biological aggressiveness ratio q/D showed strong correlation
with RH (P < 0.00003) and RH* (P < 0.00002). In addition, q/D was
found to significantly correlate with mean T/B (P < 0.0007).
Correlates of tumor sphericity. In response to a number of

computational studies suggesting that the tumor microenviron-
ment (e.g., local hypoxia) can drive the formation of tumors that are
less spherical (33), we explored the tumor sphericity as an alternate
candidate measure of tumor aggressiveness. Correlation analysis
was performed between sphericity and all glioma growth
characteristics quantified through anatomic and functional imag-
ing. Sphericity on T1Gd negatively correlated with RH (P < 0.04),
mean T/B (P < 0.02), and q/D (P < 0.009). Pearson correlation
results for sphericity delineated on T2 also reached significance for
mean T/B (P < 0.05) and q/D (P < 0.008).
Alternative T/B ratios. Based on the hypothesis that hypoxia

would not be expected at large distances from the bulk tumor

Table 1. Patient age, sex, performance status, HV (T/B z 1.2), RH, mean T/B, velocity of growth v, dispersal D, cell
proliferation q, and circularity on T1Gd and T2 MRI

No. Age Sex KPS T1Gd volume

(cm3)

T2 volume

(cm3)

HV

(cm3)

RH Mean

T/B

Velocity

(mm/y)

D

(mm2)

q
(1/y)

q/D
(1/mm2)

Sphericity

T1Gd

Sphericity

T2

1 54 F 60 39.5 94.3 120.5 1.28 1.49 — — — 0.75 0.43 0.57

2 73 M 60 23.6 75.9 75.2 0.99 1.56 — — — 0.53 0.83 0.68

3 55 F 70 79.8 166.8 180.9 1.08 1.65 — — — 0.66 0.44 0.54

4 72 M 70 14.4 38.1 123.8 3.25 1.74 — — — 1.17 0.35 0.48
5 37 M 90 50.8 177.9 33.7 0.19 1.41 6.5 6.3 1.7 0.27 0.73 0.94

6 63 M 90 30.4 78.1 119.2 1.53 1.53 95.6 55.3 41.3 0.75 0.39 0.38

7 43 M 70 25.4 111.5 28.8 0.26 1.37 — — — 0.29 0.61 0.75

8 56 M 100 39 152.6 63.4 0.42 1.48 — — — 0.26 0.78 0.81
9 54 F 70 8.4 44.9 52.5 1.17 1.28 96.7 72.3 32.4 0.45 0.86 0.86

10 53 F 70 2.6 37.8 19.2 0.51 1.37 32.1 28.9 8.9 0.31 1.07 1.01

11 70 M 70 16.4 66.9 6.3 0.09 1.26 48.6 36.9 16 0.43 0.92 0.53

Abbreviation: KPS, Karnofsky performance score.

Hypoxic GBMs Are Quantitatively More Aggressive
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mass, for each T/B cutoff, an associated HV was calculated and the
portion of that HV residing beyond the tumor region was graphed
(data not shown). The results showed that the HV occupying
presumed nontumorous regions precipitously declined around the
1.2 level, indicating that the FMISO activity at or above the T/B =
1.2 level is largely restricted to previously defined areas of MRI
abnormality. More than 99% of normal-appearing brain in the
hemisphere contralateral to the tumor was observed to have a T/B
of <1.2. Figure 2 of a right frontal GBM displays a graphical example
of an FMISO-PET image subjected to thresholding at each of the
T/B levels considered. These data support the reasonability of
using the 1.2 T/B level as a threshold for hypoxia.

For each patient, RH plots were generated against various
threshold levels ranging from 0.9 to 1.6 in increments of 0.1,
yielding the results summarized in Fig. 3. RH decreased somewhat
linearly as the ratio increased, as expected. Of special note is our
observation that the value for the ratio q/D increases as a function
of RH, regardless of the T/B level used. This suggests that the
hypothesized ‘‘ideal’’ T/B = 1.2 is not a confounding factor in

considering hypoxic burden as a marker of a tumor’s biological
aggressiveness. The striking linearity of the scatter of the MRI-
defined q/D relative to RH is illustrated in Fig. 4. The positive
relationship holds regardless of T/B threshold, which further
confirms our conclusion from the results depicted in Fig. 3.

Conclusions

Hypoxia is a clinically important feature of glioblastomas,
specifically as it relates to treatment resistance. The ability of
FMISO-PET to visualize and quantify the hypoxic fraction of the
tumor is highly relevant in clinical applications. Although the gold
standard for distinguishing hypoxia is often considered to be direct
measurement of pO2 levels with electrodes, this technique is
practically and ethically impossible for the routine monitoring of
hypoxia in intracranial tumors, as the procedure must be performed
intraoperatively. Previous literature has established the utility of
FMISO-PET in the noninvasive assessment of hypoxia (36) and has
been linked to pO2, in which FMISO retention is detectable in the
range of V2 to 3 mm Hg (10, 37, 38). For cancers of the head and neck,
it has been shown that hypoxia (imaged via FMISO-PET) can affect
prognosis independently of other prognostic variables (39). Although
there is evidence that the association between hypoxia and clinical
outcome may not hold across glioma grades (40), recent multivariate
analyses of GBM patient survival revealed significant correlations
with the volume of FMISO-PET imageable hypoxia alone (9).

Assessing the spatiotemporal growth of GBM through a
biomathematical model that is driven by patient-specific variables
offers a novel means of connecting overall growth kinetics (visible
on MRI) to the hypoxia-guided resistance mechanism (visible on
FMISO-PET). Previous analysis of this model relate the radial
velocity of tumor growth to survival (41), and show that this
variable predicts the conversion of non–contrast-enhancing low-
grade gliomas to contrast-enhancement on T1Gd MRI (27). These
results imply that our biomathematical model accurately predicts
the growth of untreated tumors over time and can distinguish
between the growth of variably aggressive tumors. Combining
these results with conclusions from other studies that define
hypoxic conditions as an important feature of aggressive tumor
microenvironment (33) lead us to investigate the relation between
tumor aggressiveness quantified through our model parameters
and aggressive phenotype associated with hypoxia that can be
imaged by FMISO-PET for human GBMs.

Table 2. P values and R2 for the correlations of FMISO-
determined measures of hypoxic burden (RH and mean
T/B) and MR-defined growth characteristics (v, D, and q)

P R2

RH vs Velocity, v (mm/y) 0.057 0.75
D (mm2) 0.12 0.6

q (1/y) 0.034* 0.82*

q/D (y/mm2) 0.000021* 0.88*
RH* vs Velocity, v (mm/y) 0.055 0.76

D (mm2) 0.12 0.6

q (1/y) 0.03* 0.83*

q/D (y/mm2) 0.000018* 0.88*
Mean T/B vs Velocity, v (mm/y) 0.18 0.5

D (mm2) 0.31 0.33

q (1/y) 0.11 0.62

q/D (y/mm2) 0.00069* 0.74*

NOTE: Asterisks indicate associations reaching statistical significance

(P < 0.05).

Figure 2. An illustration of the results of
applying a range of T/B ratios to the
FMISO-PET image of a right frontal GBM
(patient no. 3) to generate visualizations of
the HV regions suggesting that T/B = 1.2 is
a reasonable threshold to define a HV
separate from imaging noise.
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The positive relationship between the model parameters and
hypoxic burden is consistent with our current understanding of the
process by which hypoxia arises. That is, highly proliferative
tumors (high q) are thought to be more likely to be hypoxic with
some recent PET imaging to support this in vivo (42). Furthermore,
intuitively, those invasive gliomas for which there is a high net
proliferation rate relative to the net invasion rate (q/D) would likely

form a hypoxic microenviroment based on the relative time rate for
depletion of resources (e.g., oxygen via increasing cell numbers via
proliferation) relative to the ability of the population of glioma cells
to migrate away from the potentially hypoxia-forming environ-
ment. Although this is an intuitive concept in overall population
dynamics, the positive correlation of the ratio of the net
proliferation and the net invasion rate (q/D) with the resultant
RH, RH*, and mean T/B concurs with our hypothesis that hypoxia
is a hallmark of aggressive tumor behavior.

This significant correlation between the model parameters for
biological aggressiveness and the hypoxic burden assessed by RH,
RH*, and mean T/B persists across a wide range of T/B threshold
values used for defining the HV. When choosing ratios below 1.2,
there tends to be significant overlap of the histogram of T/Bs from
contralateral normal brain and tumor regions, whereas ratios
above 1.2 tend to provide for clear delineation between the normal
brain and (hypoxic) tumor tissue. We explored varying the T/B
cutoff across all patients to confirm that the results relating the
hypoxic burden assessed at cutoff 1.2 did not significantly change
the results. Because FMISO-PET has been shown to correlate with
the pO2, increasing the hypoxic threshold to levels above 1.2 would
correspond to selecting regions of that tumor that are increasingly
hypoxic. Thus, our results suggest that at every magnitude of
hypoxia (T/B z 1.2), the biological aggressiveness assessed by the
biomathematical model and MRI correlates significantly with
hypoxic burden assessed by FMISO-PET.

Previous cell-based computational models of tumor growth and
invasion have shown that hypoxic environments can select for
cells with aggressive phenotypes, which give rise to fingered-
tumor morphologies that have low sphericity in vitro (33). This
suggests that when more aggressive tumor clones are selected, the
tumor growth pattern is more ‘‘bumpy.’’ To expand on these

Figure 3. Plot of RH as measured at various T/B thresholds. Curves represent
individual patients (n = 11), with the direction of the superimposed arrow
denoting a general increase in q/D values.

Figure 4. Scatter plots of RH versus q/D
for all patients in this study (n = 11).
RH was determined over a variety of
T/B levels, ranging from 1.1 to 1.6 in
increments of 0.1. A strong linear
relationship between the variables is shown
for all thresholds; correlations were
statistically significant for all T/B levels
considered.
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computational and experimental studies, we quantitatively inves-
tigated the association of clinically observed sphericity on MRI
with hypoxia and the model parameters. Inverse correlation of
tumor sphericity with RH and mean T/B imply that more fingered
or abnormally shaped tumors tend to have greater hypoxic burden.
Large q/D correlates with low sphericity, which suggests extensive
infiltration and a high grade of tumor cell dissociation. The
observed results are therefore the first to provide clinical-scale
support for existing theoretical cell-based models which suggest
that aggressive cell lines produce tumors that may be less spherical
(33). This is a novel insight that suggests further investigation as
there are many differences between the computational models that
were originally suggestive of this less spherical growth pattern and
the models used here to quantify aggressiveness.

This report suggests a means of quantifying the in vivo biological
link between the hypoxic burden of the tumor and the overall growth
characteristics of individual gliomas. The validated mathematical
model we have used in this study is a unique tool towards this end, as
it is able to quantitatively connect the overall aggressive behavior
(q/D) of a tumor assessed on MRI to that assessed on FMISO-PETas
hypoxia, a biological result of its microenviroment. These results
argue that FMISO-PET measurement in untreated GBM are able
to quantify an essential outcome variable and can extend our
understanding of an important pathophysiologic process beyond
what is shown by conventional anatomic imaging.

Further investigation is necessary to clarify these links between
anatomic and functional imaging, due in part to the small sample
size used in this study, as well as the brief time scale over which
preoperative imaging data is obtained. In light of the present data, it
may be possible that brain tissue heterogeneity and the placement
of anatomic structures in relation to individual tumors may have
affected our results. In retrospect, however, the general scarcity of
data available for analysis highlights the bleak clinical reality of
glioblastoma. It follows that a precise, biologically based method to
better understand its growth kinetics is highly necessary.

It is important to note that cancer modeling is dictated by
biology, not the mathematics. As noted previously, the biomath-
ematical model used in this study attempts to capture the
downstream effects of the tumor microenvironment. Variables
can be considered individually or together to assess their biological

significance and testability. A striking advantage of this patient-
specific model is that its predictions are readily personalized
through the determination of only two key variables; this
parsimonious approach is reflected throughout much of current
modeling research (43). However, we realize that there are
limitations to such a mathematical formulation for aggressiveness.
Although the parameters consider tumor growth as an expansion
of its traveling wave front, other factors can combine to determine
the patient’s overall clinical outcome, notably prognostic factors
include age and Karnofsky performance score, which are of a more
stochastic phenomena lacking a sufficiently understood underlying
mechanism that can be incorporated into the model. But
developing a mathematical model is an iterative process; upon
comparison to clinical results, the model can be modified and
extended to more accurately emulate observed phenomena and
make more realistic predictions. The future of the modeling effort
will continue to develop and refine predictions regarding glioma
prognosis, progression, and therapeutic efficacy.

However, these preliminary data do suggest that these biomath-
ematical modeling techniques provide a novel tool for linking data
from disparate sources. In the case of this article, the disparate
sources are multimodality imaging observations of individual GBM
patients. At first glance, these images may appear relatively distinct
and separated by technical (imaging) and biological (modeling)
mechanisms; however, the techniques discussed in this article
provide a forum for communicating across this multimodality
divide. It is clear that such a multimodality analysis can provide
valuable insight into a quantitative understanding of the kinetics
and pathophysiology of each glioma that could uniquely be used in
guiding and assessing the effects of treatment in individual patients.
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