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Abstract

In [3] a probabilistic semantics for timed automata has

been defined in order to rule out unlikely (sequences of)

events. The qualitative model-checking problem for LTL

properties has been investigated, where the aim is to check

whether a given LTL property holds with probability 1 in

a timed automaton, and solved for the class of single-clock

timed automata.

In this paper, we consider the quantitative model-

checking problem for ω-regular properties: we aim

at computing the exact probability that a given timed

automaton satisfies an ω-regular property. We develop

a framework in which we can compute a closed-form

expression for this probability; we furthermore give an

approximation algorithm, and finally prove that we can

decide the threshold problem in that framework.

1 Introduction

Timed automata [1] are a well-established formalism

for the modelling and analysis of timed systems. A timed

automaton is roughly a finite-state automaton enriched

with clocks and clock constraints. This model has been

extensively studied, and several verification tools have

been developed. However, like many models used in

model-checking, timed automata are an idealized mathe-

matical model, in which many hypotheses are implicitly

made. For instance, a timed automaton can check the

values of clocks with an infinite precision, events are

instantaneous, etc. Recently, a new direction of research

has consisted in proposing alternative semantics for timed

automata that provide more realistic operational models for

real-time systems. We can for instance mention the Almost

ASAP semantics (AASAP for short) introduced in [13]

and further investigated in [12, 2, 7, 8], which somewhat

relaxes constraints on clocks, hence most of the idealization

side-effects for timed automata. However, it induces a

very strong notion of robustness, suitable for really critical

systems, but maybe too strong for less critical systems.

Another ‘robust semantics’, based on the notion of tube

acceptance, has been proposed in [15, 16]: a metric is put

on the set of traces of the timed automaton, and roughly, a

trace is robustly accepted if and only if a tube around that

trace is classically accepted. This language-focused notion

of acceptance is not completely satisfactory because it does

not take into account the structure of the automaton, and

hence is not related to the most-likely behaviours of the

automaton.

In [4, 3], a natural probabilistic semantics has been

given to timed automata, which randomizes both delays

and choices of transitions, and provides a way of measuring

the ‘size’ of sets of behaviours in the timed automaton.

That way, we can measure, for instance, how likely a timed

automaton satisfies a given LTL property. In those two

papers, the almost-sure model-checking problem for LTL is

investigated,1 where the probability of satisfying the prop-

erty is compared to 1. A topological characterization of the

almost-sure satisfaction is given, which helps understand-

ing when a timed automaton almost-surely satisfies an LTL

property. In [3], the almost-sure model-checking problem

is shown decidable for single-clock timed automata, and

an algorithm based on the construction of a (qualitatively

equivalent) finite Markov chain is described. An intriguing

two-clock example is presented, for which the above finite

Markov chain abstraction is not correct.

In this paper, we investigate the quantitative probabilis-

tic model-checking problem, which aims at computing the

1Note that the work developed in [3] can straightforwardly be extended

to the whole class of ω-regular properties.
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probability of a given ω-regular property in a timed automa-

ton. The finite Markov chain abstraction that has been pro-

posed in [3] is no more correct, and new techniques need

to be developed. For a subclass of single-clock timed au-

tomata2, we define a new abstraction of the timed automa-

ton, which helps solving the quantitative model-checking

problem. Given a timed automaton A and an ω-regular

property ϕ, this abstraction is a finite Markov chain MA,

and there is a computable reachability property ϕ′ such that

the probability that A satisfies ϕ coincides with the proba-

bility that MA satisfies ϕ′. However this probability can

in general not be expressed by a simple closed-form ex-

pression, and we provide a concrete framework (where the

probability distributions over delays are given by exponen-

tial functions), in which we will be able to (i) compute

a closed-form expression for the probability that A satis-

fies ϕ, (ii) approximate this probability, and (iii) decide the

classical threshold problem.

The paper is organized as follows: in Section 2, we re-

call the classical definitions related to timed automata, and

introduce the probabilistic semantics we are considering

and the associated model-checking problem. In Section 3,

we present an abstraction, in the form of a finite Markov

chain, which allows to compute abstract expressions for the

probabilities of ω-regular properties in single-clock timed

automata. In Section 4, we@present a restricted framework

in which closed-form expressions can be computed for the

probabilities of ω-regular properties; we then develop an

approximation scheme, and finally prove the decidability

of the threshold problem.

Technical proofs are postponed to the appendix.

2 Definitions

2.1 The timed automaton model

Let X be a finite set of variables, called clocks. A clock

valuation over X is a mapping ν : X → R+, where R+

is the set of nonnegative reals. We write RX
+ for the set of

clock valuations over X . If ν ∈ RX
+ and τ ∈ R+, ν + τ

is the clock valuation defined by (ν + τ)(x) = ν(x) + τ if

x ∈ X . If Y ⊆ X , the valuation [Y ← 0]ν is the valu-

ation assigning 0 to x ∈ Y and ν(x) to x 6∈ Y . A guard

(or clock constraint) over X is a finite conjunction of ex-

pressions of the form x ∼ c where x ∈ X , c ∈ N, and

∼ ∈ {<,≤,=,≥, >}. We denote by G(X) the set of guards

over X . The satisfaction relation for guards over clock val-

uations is defined in a natural way, and we write ν |= g, if

ν satisfies g.

2Due to the results of [3], the restriction to timed automata with one

clock seems necessary.

Definition 1 A timed automaton is a tuple A = (L,X,E,
I,L) such that: (i) L is a finite set of locations, (ii) X is a

finite set of clocks, (iii) E ⊆ L×G(X)×2X ×L is a finite

set of edges, and (iv) I : L → G(X) assigns an invariant

to each location.

The semantics of a timed automaton A is a timed transi-

tion system whose states are pairs (ℓ, ν) ∈ L × R
|X|
+ with

ν |= I(ℓ), and whose transitions are of the form (ℓ, ν)
τ,e−−→

(ℓ′, ν′) if there exists an edge e = (ℓ, g, Y, ℓ′) such that

for every 0 ≤ τ ′ ≤ τ , ν + τ ′ |= I(ℓ), ν + τ |= g,

ν′ = [Y ← 0]ν, and ν′ |= I(ℓ′). A finite (resp. infinite)

run ̺ ofA is a finite (resp. infinite) sequence of transitions,

i.e., ̺ = s0
τ1,e1−−−→ s1

τ2,e2−−−→ s2 . . . We write Runsf (A, s0)
(resp. Runs(A, s0)) for the set of finite runs (resp. infinite

runs) of A from state s0.

If s is a state of A and (ei)1≤i≤n is a finite sequence of

edges of A, the (symbolic) path starting from s and deter-

mined by (ei)1≤i≤n is the following set of runs:

π(s, e1 . . . en) = {̺ = s
τ1,e1−−−→ s1 . . .

τn,en−−−→ sn |
̺ ∈ Runsf (A, s)}.

Give an n-variable constraint C, the constrained sym-

bolic path πC(s, e1 . . . en) is the subset of π(s, e1 . . . en)
where the delays τ1 to τn satisfy the constraint C. Let

π = π(s, e1 . . . en) be a finite symbolic path, we define the

cylinder generated by π as

Cyl(π) = {̺ ∈ Runs(A, s) | ∃̺′ ∈ Runsf (A, s),
finite prefix of ̺, s.t. ̺′ ∈ π}

Also, we will need the notion of infinite symbolic paths de-

fined, given a state s of A and an infinite sequence of edges

(ei)i≥1, as:

π(s, e1 . . .) = {̺ = s
τ1,e1−−−→ s1 . . . | ̺ ∈ Runs(A, s)} .

Given a state s ofA and an edge e, we define I(s, e) = {τ ∈
R+ | s τ,e−−→ s′} and I(s) =

⋃
e I(s, e). The automaton A

is non-blocking if, for every state s, I(s) 6= ∅.

2.2 The region automaton abstraction

The well-known region automaton construction is a finite

abstraction of timed automata which can be used for verify-

ing many properties like ω-regular untimed properties [1].

For lack of space, we do not redefine the region equivalence

relation, and we write RA for the set of (clock) regions of

automatonA. Here we use a slight modification of the orig-

inal construction, which is still a timed automaton.

If A = (L,X,E, I,L) be a timed automaton then the

region automaton of A is the timed automaton R(A) =
(Q,X, T, κ, λ) such that Q = L×RA and:
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• κ((ℓ, r)) = I(ℓ), and λ((ℓ, r)) = L(ℓ) for all (ℓ, r) ∈
L×RA;

• T ⊆ (Q × cell(RA) × E × 2X × Q), and

(ℓ, r)
cell(r′′),e,Y−−−−−−−→ (ℓ′, r′) is in T iff there exists

e = ℓ
g,Y−−→ ℓ′ in E s.t. there exist ν ∈ r, τ ∈ R+ with

(ℓ, ν)
τ,e−−→ (ℓ′, ν′), ν + τ ∈ r′′ and ν′ ∈ r′ (cell(r′′) is

the smallest guard containing r′′).

We recover the usual region automaton of [1] by labelling

the transitions with ‘e’ instead of ‘cell(r′′), e, Y ’, and

by interpreting R(A) as a finite automaton. The above

timed interpretation satisfies strong timed bisimulation

properties that we do not detail here. To every finite path

π((ℓ, ν), e1 . . . en) in A corresponds a finite set of paths

π(((ℓ, [ν]), ν), f1 . . . fn) in R(A), each one corresponding

to a choice in the regions that are visited. If ̺ is a run in A,

we denote ι(̺) its unique image in R(A). Note that if A is

non-blocking, then so is R(A).

In the rest of the paper we assume, following [3], that

timed automata are non-blocking.

2.3 The probabilistic semantics

Following [3], we define a probability measure over sets

of infinite runs of timed automata, which measures in some

sense their likelihood. Let A be a timed automaton. We

assume probability distributions are given from every state s
of A both over delays and over enabled moves. For every

state s of A, the probability measure µs over delays in R+

(equipped with the standard Borel σ-algebra) must satisfy

several requirements:

• µs(I(s)) = µs(R+) = 1,3

• Denoting λ the Lebesgue measure, if λ(I(s)) > 0, µs

is equivalent4 to λ on I(s); Otherwise, µs is equivalent

on I(s) to the uniform distribution over points of I(s).

• We also assume technical hypotheses which we do not

detail here (see [3] for details) but that are natural and

satisfied in all our further developments.

The second condition is a fairness condition w.r.t. enabled

transitions, in that we cannot disallow one transition by as-

signing probability 0 to delays enabling that transition.

Example 2 Examples of possible distributions are uniform

(resp. exponential) distributions over bounded (resp. un-

bounded) intervals.

3Note that this is possible, as we assume A is non-blocking, hence

I(s) 6= ∅ for every state s of A.
4Two measures ν and ν′ are equivalent whenever for each measurable

set A, ν(A) = 0 ⇔ ν′(A) = 0.

For every state s of A, we also assume a probability

distribution ps over edges, such that for every edge e,
we have ps(e) > 0 iff e is enabled in s. Moreover,

for the sake of simplicity, we assume that ps is given

by weights on transitions, as it is classically done for

resolving non-determinism: we associate with each

edge e a weight w(e) > 0, and for every state s and

every edge e, ps(e) = 0 if e is not enabled in s, and

ps(e) = w(e)/(
∑

e′ enabled in s w(e′)) otherwise. As a

consequence, if s and s′ are region equivalent, then for

every edge e, ps(e) = ps′(e). We then inductively define a

measure over finite symbolic paths from state s as

PA(π(s, e1 . . . en)) =
∫

t∈I(s,e1)

ps+t(e1) PA(π(st, e2 . . . en)) dµs(t)

where s
t−→ (s + t)

e1−→ st, and we initialize with

PA(π(s)) = 1. The formula for PA relies on the fact that

the probability of taking transition e1 at time t coincides

with the probability of waiting t time units and then choos-

ing e1 among the enabled transitions, i.e., ps+t(e1)dµs(t).
Note that time passage and actions are independent events.

The value PA(π(s, e1 . . . en)) is the result of n succes-

sive one-dimensional integrals, but it can also be viewed as

the result of an n-dimensional integral. Hence, we can eas-

ily extend the above definition to finite constrained paths

πC(s, e1 . . . en) when C is Borel-measurable. This exten-

sion to constrained paths will allow to express (and later,

measure) various and rather complex sets of paths, for in-

stance Zeno runs.5 The measure PA can then be defined on

cylinders, letting PA(Cyl(π)) = PA(π) if π is a finite (con-

strained) symbolic path. Finally we extend PA in a standard

and unique way to the σ-algebra generated by these cylin-

ders, which we note Ωs
A (see [3] for details).

Proposition 3 ([3]) Let A be a timed automaton. For ev-

ery state s, the function PA is a probability measure over

(Runs(A, s),Ωs
A).

For instance, the set Zeno(s) of all the Zeno runs starting

from s belongs to Ωs
A. Indeed, it can be defined as:

⋃

M∈N

⋂

n∈N

⋃

(e1,...,en)∈En

Cyl(πΣi≤nτi≤M (s, e1 . . . en))

Example 4 Consider the timed automaton A depicted on

Fig. 1, and assume that we assign the uniform distribu-

tion over delays to all locations except ℓ1 and over discrete

moves, and that we put the distribution with density func-

tion t 7→ e−t over R+ in ℓ1. If s0 = (ℓ0, 0) is the initial

5An infinite run ̺ : s0

τ1,e1
−−−−→ s1

τ2,e2
−−−−→ · · · is said Zeno whenever∑

∞

i=1
τi is bounded.
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ℓ0

x≤1

ℓ1

{p1}

ℓ2

x≤2

{p2}

ℓ3

{p1}e2, x≤1

e3, x≤2, x:=0

e4, x≥2, x:=0

e5, x≤2

e6, x=0
e1, x≤1, x:=0 e7, x≤1, x:=0

Fig. 1. A running example

state, then

PA(Cyl(π(s0, e2e3))) =
1

2
· (1− e−1 + e−2)

The details of the computation are displayed in Ap-

pendix ??.

In [3], it is explained how to transfer probabilities

from A to R(A), thus allowing to prove results on R(A)
and to recover them on the original automaton A. We as-

sume that, for every state s in A, µA
s = µ

R(A)
ι(s) , and for

every t ∈ R+, pAs+t = p
R(A)
ι(s)+t. Under those assumptions,

we have the following correctness result.

Lemma 5 ([3]) Assume measures in A and in R(A) are

related as above. Then, for every set S of runs in A we

have: S ∈ Ωs
A iff ι(S) ∈ Ω

ι(s)
R(A), and in this case PA(S) =

PR(A)(ι(S)).

Therefore, in the sequel, we assume w.l.o.g. that timed

automata are given as region automata, i.e., A = R(A).

2.4 The quantitative modelchecking problem

In this paper we consider ω-regular properties. We as-

sume that an ω-regular property is given by a determin-

istic finite automaton B with a Streett acceptance condi-

tion of the form ψB =
∧n

i=1(23Qi ⇒ 23Q′
i), where

(Q1, Q
′
1), · · · , (Qn, Q

′
n) are pairs of subsets of states in B.

The linear-time temporal logic LTL [18] defines a subclass

of ω-regular properties.

In [3], the qualitative LTL model-checking problem

is investigated: given a timed automaton A and an LTL

formula ϕ, this problem consists in deciding whether

PA(s0 |= ϕ) = 1, i.e., whether the automaton A almost-

surely satisfies the property ϕ. It has been proved that

for single-clock timed automata, under some technical

and reasonable conditions on the various distributions, the

almost-sure model-checking problem for LTL is decidable,

that it does not depend on the distributions that are used

in the automaton, and that the introduction of probabilities

does not increase the theoretical complexity of the problem

(which is PSPACE-complete). Though the results are

stated for LTL properties, the decidability result carries

over to ω-regular properties. It relies on the construction

of a finite Markov chain abstraction, based on the region

automaton R(A), which preserves the qualitative properties

of A.

In this paper we consider the quantitative model-

checking problem: given a single-clock timed automaton A
with initial state s0 and an ω-regular property ϕ, we want

to compute PA(s0 |= ϕ). Unfortunately, the abstraction

developed in [3] for solving the qualitative model-checking

problem is of no interest here, as it does not preserve any

precise information about the values of the probabilities.

We first notice that, contrary to the qualitative model-

checking problem, the answer to the quantitative model-

checking problem does depend on the choice of the dis-

tributions that are assigned to delays and edges. This is

no surprise since it is already the case for finite discrete-

time Markov chains. Furthermore, the probabilities that

we compute (when we manage to) are not always satisfac-

tory, as they crucially depend on the possible representation

and evaluation of non-rational numbers. As a consequence,

we also investigate the approximate model-checking prob-

lem, where, given a positive real ε, we will aim at comput-

ing two rationals P+
ε and P−

ε such that:

ß
P−

ε ≤ PA(s0 |= ϕ) ≤ P+
ε

P+
ε − P−

ε < ε

It is quite natural to consider this approximate variant in our

framework since we show that even for reachability proper-

ties, the probability isn’t rational (and even not algebraic)

in general, and hence cannot be represented easily.

Remark 6 Algorithms for the approximate quantitative

model-checking of probabilistic systems have for instance

been proposed for infinite-state systems represented as

infinite-state discrete Markov chains (e.g. probabilistic

lossy channel systems [19] or probabilistic pushdown

automata [14]).

Finally, we also focus on the threshold problem, which

asks, given a timed automaton A with its initial state s0, an

ω-regular property ϕ, and a threshold ∼ c with ∼ ∈ {<,≤,
=,≥, >} and c ∈ Q, whether PA(s0 |= ϕ) ∼ c.

For all the problems we consider (quantitative model-

checking, approximate quantitative model-checking and

threshold problem), following [3], we restrict our study to

4







pℓ(x) = 1 if ℓ ∈ B
pℓ(x) =

∑

e resetting edge

∫

t∈I((ℓ,x),e)

ps+t(e) · pℓ′(0) dµs(t) otherwise

+
∑

e non resetting edge

∫

t∈I((ℓ,x),e)

ps+t(e) · pℓ′(x+ t) dµs(t)

Table 1. Integral equations for reachability properties

single-clock timed automata (because the decidability of

the qualitative model-checking is already an open problem

for multi-clock timed automata).

2.5 Methodology

We first solve the quantitative model-checking problem

for prefix-independent location-based properties.6 Given a

single-clock timed automaton A and a prefix-independent

location-based property ϕ, the method follow the two steps

below:

• we first abstract the timed automaton A into a finite

Markov chainMA;

• we then compute inMA the probability of property ϕ.

Following techniques of Courcoubetis and Yannakakis [11],

computing the probability of a prefix-independent prop-

erty ϕ in MA amounts to computing the probability of

reaching the BSCCs ofMA that are ‘good’ w.r.t. ϕ.

The result for general ω-regular properties will then be

derived, applying a classical product approach, which we

shortly describe now. We assume that ϕ is an ω-regular

property, and we build Bϕ a deterministic Streett automaton

for ϕ. Now, given the timed automaton A, we consider the

product automaton Aϕ = A × Bϕ. Under the assumption

that the distributions over delays and actions are naturally

transferred from A to Aϕ (i.e., for all state q of Bϕ, for

all state s of A, we set µ
Aϕ

(s,q) = µA
s and for all edges e,

p
Aϕ

(s,q) = pAs ), we have that

PA(s0 |= ϕ) = PAϕ
((s0, q0) |= ψBϕ

)

where q0 is the initial state of Bϕ, and ψBϕ
is the acceptance

condition induced by automaton Bϕ.

Hence this product construction allows to lift com-

putability (and decidability) results for prefix-independent

location-based properties to general ω-regular properties.

6Formally a property L ⊆ Σω is prefix-independent if for all w ∈ Σω

and u ∈ Σ∗, uw ∈ L iff w ∈ L. In other words, the satisfaction of a

prefix-independent property by a word only depends on the set of atomic

proposition true in infinitely many positions of that word. Note that this

kind of property is commonly used for games objectives (see e.g.[6, 17] or

[10] where they are referred to as “tail objectives”.)

In the sequel, we only consider prefix-independent

location-based properties, but all result hold for general

ω-regular properties.

Remark 7 Consider that we want to compute the proba-

bility of reaching a set B of locations in A. One is easily

convinced that it can be defined by the integral equations

of Table 1, where pℓ(x) is the probability of reaching B
from (ℓ, x). However, these integral equations can a priori

not be solved, in the sense that in general the pℓ’s cannot be

expressed as functions in closed-form. It is true that most

of the time, we will be able to solve numerically this kind of

equations, but what we aim at is to obtain closed-form ex-

pressions, in order to approximate the values and this way

decide the threshold problem, which cannot be done by only

applying numerical methods.

3 Abstraction into a Finite Markov Chain

In this section, we present an abstraction of a timed au-

tomaton into a finite Markov chain which we prove is sound

and complete for the quantitative model-checking problem

for a slight restriction of single-clock timed automata. Let

A = (L, {x}, E, I) be a single-clock timed automaton with

initial state s0 = (ℓ0, 0) and assume that M is the maxi-

mal constant that appears in a guard of A. W.l.o.g. (thanks

to Lemma 5), we assume that A = R(A), and we assume

moreover that (i) if s = (ℓ, α) and s′ = (ℓ, α′) are two states

s.t. α, α′ > M , then µs = µs′ , and (ii) any bounded cycle

of R(A) contains at least one resetting edge. We write (†)
for these restrictions.

Remark 8 The first restriction is such that it will not be

possible to distinguish between region-equivalent states

which are in the unbounded region.

The second restriction (no bounded cycle without reset)

is a common assumption when one wants to get rid of some

Zeno behaviours. Indeed Alur and Dill introduced in [1] the

progress condition, which ensures the existence of accepted

non-Zeno behaviours. This condition is the existence of a

reachable SCC in R(A) which is unbounded or which resets

a clock.

From A, we will derive a finite Markov chainMA such

that for every location-based prefix-independent property ϕ,

5
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Fig. 2. The finite Markov chainMA for the running example

there is a set Fϕ of states in MA, s.t. PA(s0 |= ϕ) =
PMA

(q0 |= 3Fϕ), where q0 is a distinguished state ofMA
and PMA

is the classical probability measure on sets of runs

in MA. The value PMA
(q0 |= 3Fϕ), which is the prob-

ability of a reachability property in a finite Markov chain,

can be computed as the solution of a system of linear equa-

tions [11]. Hence the probability of the set of runs satisfy-

ing a location-based property in A will be expressible us-

ing the probability distributions put on edges of the Markov

chainMA.

We now detail the construction of the finite Markov

chain MA. The idea is that, thanks to hypotheses (†),
a run in R(A) will either often visit an unbounded state

of R(A), or often reset clock x. The set of states of MA
is then {(ℓ, 0) | (ℓ, x = 0) state of R(A)} ∪ {(ℓ,∞) |
(ℓ, x > M) state of R(A)}. We note E:=0 the set of edges

of A which reset clock x, and E>M the set of edges of A
guarded by the constraint x > M . The set of transitions

ofMA is defined as follows.

1. Let π((ℓ, 0), e1 . . . ep) be a non-empty loop-free (i.e.,

the ei’s are all distinct) symbolic path such that for ev-

ery 1 ≤ i < p, ei 6∈ E:=0 ∪ E>M , and ep ∈ E:=0 ∪
E>M . If ep ∈ E:=0, we add a transition (ℓ, 0)

e1 ... ep−−−−→
(ℓ′, 0) inMA. If ep ∈ E>M \ E:=0, we add a transi-

tion (ℓ, 0)
e1 ... ep−−−−→ (ℓ′,∞) inMA. In both cases, we

label the transition with PA(Cyl(π));

2. For each edge e ∈ E>M leaving a state (ℓ, x > M)

of R(A), we add a transition (ℓ,∞)
e−→ (ℓ′, 0) if

e ∈ E:=0 and (ℓ′, x = 0) is the target state of e in

R(A), and we add a transition (ℓ,∞)
e−→ (ℓ′,∞)

if e 6∈ E:=0 and (ℓ′, x > M) is the target state of

e in R(A). In both cases, we label the edge with

w(e)/
Ä∑

e′ enabled from (ℓ,x>M) w(e′)
ä

.

Example 9 We illustrate the construction on the automaton

depicted on Figure 1. To locations ℓ0, ℓ2 and ℓ3, we assign

the uniform distribution over delays, whereas the density of

the distribution over delays in location ℓ1 is supposed to be

t 7→ e−t over R+. We assume that the weight of each edge

is 1, so that the discrete choices are uniform. In that case,7

we have E:=0 = {e1, e3, e4, e6, e7}, and E>2 = {e4}.
Note that as E>2 ⊆ E:=0, there won’t be any transition

of the second type, and no state of the form (ℓ,∞) will be

reachable. The construction is depicted on Figure 2, where

each transition is labelled with the corresponding sequence

of edges together with its probability. An edge ofMA cor-

responds to a (finite) sequence of edges inA, hence is some-

how a macro-edge, explaining the use of double arrows in

the figure.

The first property we have to check is thatMA is indeed

a finite Markov chain, which is not obvious from the above

construction. This result is however true as stated in the

following lemma whose proof can be found in the appendix.

Lemma 10 MA is a finite Markov chain.

We can now state the correctness of our abstraction into

a finite Markov chain, under assumption (†):

Theorem 11 Let ϕ be a location-based prefix-independent

property on A. We can compute a set Fϕ of states ofMA
that is SCC-closed8and s.t.

PA
(
(ℓ0, 0) |= ϕ

)
= PMA

(
(ℓ0, 0) |= 3Fϕ

)
.

We have reduced the quantitative model-checking prob-

lem for location-based prefix-independent properties in A
to a quantitative reachability question in a finite Markov

chain. However we are still not done, because the values

labelling the edges ofMA may not have closed-form rep-

resentations in general, even for very simple distributions

over the time (see Example 12 below). In the next section,

we will further restrict our model, and provide a framework

in which the probabilities can effectively be computed.

Example 12 Consider the automatonA of Fig. 3, on which

we assume uniform distributions over delays, and assign

7Note that formally, A 6= R(A), in that case, but the construction can

still be done.
8Which means that for any q ∈ Fϕ and any q′ in the same SCC of

R(A) as q, we have q′ ∈ Fϕ.
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Fig. 3. Automaton A

weight 1 to every edge. We can easily compute the following

probability:

PA
(

Cyl(π((ℓ0, 0), e1e2e3))
)

=

1

2

(
1 + (ln(2)− ln(3))(1− ln(2))+

dilog(3)− dilog(4)
)
≈ 0.69

where x 7→ dilog(x) is the primitive of x 7→ − ln(x)
1−x .

Note that there does not seem to exist a closed-form so-

lution for PA
(

Cyl(π((ℓ0, 0), e1e2e3e4))
)

.

4 Quantitative Model-Checking Made De-

cidable

We have seen in the previous section a correct abstrac-

tion for computing the probabilities of prefix-independent

location-based properties. However we have also seen that

we could not always obtain a closed-form expression for

those probabilities, hence we cannot really compute values.

In this section, on top of hypotheses (†) made in the previ-

ous section, we assume that for every state s of A, it holds

I(s) = R+, and that we have exponential distributions over

delays which are “uniform by location”: for every location ℓ
of A, there is a positive constant λℓ ∈ Q>0 (called the rate

of ℓ) such that for every state s = (ℓ, u), the measure µs

has density t 7→ λℓ · exp(−λℓ · t). We write (‡) for these

additional restrictions.

Remark 13 Note that single-clock timed automata, even

under restrictions (†) and (‡), are still a generalization of

continuous-time Markov chains [5]. Indeed continuous-

time Markov chains can be seen as single-clock timed au-

tomata without guards, that reset the clock after each transi-

tion, and for which the probabilistic distribution over delays

is a decreasing exponential.

4.1 Expressing the Probability

We assume that A = R(A) is a single-clock timed au-

tomaton satisfying hypotheses (†) and (‡). We let s0 =
(ℓ0, 0) be the initial state of A. For every location ℓ of A,

we write λℓ for the speed rate of ℓ.

Proposition 14 Let ϕ be a prefix-independent location-

based property. Then, PA(s0 |= ϕ) can be expressed as

f
Ä
e−

1
q

ä
for some positive integer q, where f ∈ Q(X) is a

rational function.

To prove this result, we first show that any value labelling

a transition ofMA, the finite Markov chain constructed in

the previous section, is the evaluation of some polynomial

at e−
1
q (for some q ∈ N>0).

Lemma 15 Let e1, . . . , en be edges of A and let (ℓ, r) be a

state of R(A). Then the function

r → [0, 1]

t 7→ PA
(

Cyl
(
π((ℓ, t), e1 . . . en)

))

can be written as a function of the form:

t ∈ r 7→
∑

ℓ∈L

exp(λℓt) · Pℓ

(
(eλℓ′ )ℓ′∈L, (e

−λℓ′ )ℓ′∈L

)

+ P
(
(eλℓ′ )ℓ′∈L, (e

−λℓ′ )ℓ′∈L

)

where (Pℓ)ℓ∈L, P ∈ Q[(Xℓ)ℓ∈L, (Yℓ)ℓ∈L].

The proof of this lemma is by induction on the length of

unconstrained symbolic paths. It consists in a simple but

tedious case inspection and is therefore postponed to Ap-

pendix ??.

We now come to the proof of Proposition 14.

Proof. By Theorem 11 we know that computing the proba-

bility of satisfying ϕ inA can be converted into the compu-

tation of the probability of a reachability property inMA.

We then use the following two facts:

• Computing the probability to reach a set of states in a

finite Markov chain amounts to solving a system of lin-

ear equations, whose coefficients are probability val-

ues labelling the transitions of the Markov chain [9].

• By construction, values labelling transitions leaving

a state of the form (ℓ,∞) are rational. According to

Lemma 15, the value labelling a transition leaving a

state (ℓ, 0) is of the form P
(
(eλℓ)ℓ, (e

−λℓ)ℓ

)
for some

polynomial P ∈ Q[(Xℓ)ℓ∈L, (Yℓ)ℓ∈L]. Hence the

transition probabilities inMA can all be written in the

previous form.

7
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Fig. 4. An example with a non-resetting bounded cycle

We now prove that solving the linear equation system yields

a solution of the desired form. Since the λℓ’s are all as-

sumed to be positive rational numbers, there exists q ∈ N>0

and integers (pℓ)ℓ such that for every ℓ, λℓ = pℓ

q . As

a consequence, and using the property of the exponential

function that e−a/b = (e−1/b)a, each transition probability

P ((eλℓ)ℓ, (e
−λℓ)ℓ) can be rewritten as (e1/q)k · Q(e−1/q)

where k ∈ N, and Q ∈ Q[X]. With such coefficients, the

solution of the linear equations system has the desired form

f(e−1/q), with f ∈ Q(X) a rational function. �

Example 16 We illustrate on an example why Proposi-

tion 14 really relies on hypothesis (†), and more precisely

on the hypothesis that any bounded cycle of R(A) contains

at least one resetting edge. Consider the automaton in

Figure 4, in which we assume a weight 1 per edge, and an

exponential distribution of density t 7→ λ · e−λt in locations

ℓ and ℓ′. The probability of reaching the black location is 1
from the black location, and 0 from the grey location. Now

we write pℓ (resp. pℓ′ ) the function which associate to every

x ∈ R+ the probability of reaching the black location from

(ℓ, x) (resp. (ℓ′, x)). It is not hard to be convinced that for

every x ≥ 1, pℓ(x) = pℓ′(x) = 0, and that for every x ≤ 1,





pℓ(x) =

∫ 1−x

t=0

λ

2
· e−λt · pℓ′(x+ t) dt

+

∫ 1−x

t=0

λ

2
· e−λt · pℓ(x+ t) dt

pℓ′(x)=

∫ 1−x

t=0

λ

2
· e−λt

pℓ(x+ t) dt

+

∫ 1−x

t=0

λ

2
· e−λt dt

Deriving the above integral equations, we get differential

equations that we can solve, and we get the following solu-

tions for all x ≤ 1:





pℓ(x) =1− 5+3
√

5
10 exp(λ

4 (3−
√

5)(x− 1))

+ 3
√

5−5
10 exp(λ

4 (3 +
√

5)(x− 1))

pℓ′(x)=1− 5+
√

5
10 exp(λ

4 (3−
√

5)(x− 1))

− 5−
√

5
10 exp(λ

4 (3 +
√

5)(x− 1))

We immediately notice that these expressions do not match

the general form described in Proposition 14.

4.2 Approximating the Probability

From the previous subsection, given a timed automa-

ton A with initial state s0 = (ℓ0, 0), and a location-based

prefix-independent property ϕ, we can effectively compute

a rational function f ∈ Q(X) and a positive integer

q ∈ N>0 such that PA((ℓ0, 0) |= ϕ) = f
(
e−1/q

)
.

We now explain how to approximate this quantity with a

precision ε > 0.

First we notice that we can compute two approximat-

ing sequences (ai)i∈N and (bi)i∈N of rational numbers such

that:

• ∀i, ai ≤ ai+1 ≤ e−
1
q ≤ bi+1 ≤ bi, and

• limi→∞ ai = limi→∞ bi = e−
1
q .

These two sequences (ai)i∈N and (bi)i∈N can be obtained

using the Maclaurin series of the exponential function. In-

deed, for all x ∈ R>0, e−x =
∑∞

k=0
(−x)k

k! . Hence, in

order to approximate e−
1
q , one can set bi =

∑2i
k=0

(−1/q)k

k!

and ai =
∑2i+1

k=0
(−1/q)k

k! .

Then, we remark that e−1/q is a transcendental number

(because e is), and we prove that, on a sufficiently small

(computable) interval (a, b) containing a transcendental

real ζ, a rational function f ∈ Q(X) is monotonic.

Lemma 17 Let f ∈ Q(X) be a rational function, and

ζ ∈ R be a transcendental number. There exist two ra-

tional numbers α, β ∈ Q such that ζ ∈ (α, β), and f is

monotonic over the interval (α, β). Moreover, if ζ has two

approximating sequences as described above, then α and β
can be effectively computed.

Proof. Let P,Q ∈ Q[X] such that f = P/Q. Since

f ′ = P ′Q− PQ′/Q2 it is sufficient to prove that the poly-

nomial R
def
= P ′Q − PQ′ has a constant sign over some

interval (α, β) containing ζ. The reason for that is that ζ is

8



transcendental, hence R(ζ) 6= 0 (provided R 6= 0) and by

continuity, R has a constant sign over some neighbourhood

of ζ.

To show the effectiveness of the construction of (α, β),
provided that ζ can be approximated by two sequences

(one increasing and one decreasing) (ai), (bi) ∈ QN, one

first prove that given a polynomial R ∈ Q[X], there exist

(α, β) ∈ Q2 such that ζ ∈ (α, β) and R has a constant sign

over (α, β) (see Lemma 18 below). Applying this result to

R yields an interval (α, β) that contains ζ and over which

f is monotonic. �

Lemma 18 Let P ∈ Q[X] be a non-zero polynomial and

ζ ∈ R be a transcendental number. Then, there exist α, β ∈
Q such that ζ ∈ (α, β) and P has constant sign over (α, β).
Moreover, if there are approximating sequences (ai)i∈N and

(bi)i∈N in QN as described above, then α and β can be

effectively computed.

Proof. The existence of α, β is due both to the fact that

R(ζ) 6= 0 (since ζ is transcendental) and to the continuity

of R.

The computability of some α, β requires assumptions

on ζ. We assume that there are two approximating se-

quences (ai)i∈N and (bi)i∈N in QN as described before.

Under this assumption, we now prove that we can com-

pute such values α and β by induction on the degree of

polynomial R.

degree 0: Assume R has degree 0, or equivalently R is a

constant function over R. Letting, e.g., α = a1 and

β = b1 works.

degree n+1: Assume now that the degree of R is n + 1
for n ∈ N. The induction hypothesis applied to R′

yields the existence and computability of αn, βn ∈ Q

such that ζ ∈ (αn, βn) and R′ is of constant sign

over the interval (αn, βn). Hence R is monotonic over

(αn, βn). Since R(ζ) 6= 0 and R is continuous, the

monotonicity of R over (αn, βn) implies the existence

of an interval I ⊆ (αn, βn) containing ζ and over

which R has a constant sign. Now, starting from ai, bi
with i large enough to have (ai, bi) ⊆ (αn, βn), it suf-

fices to find some index j ≥ i with R(aj) ·R(bj) > 0.

Letting (αn+1, βn+1) = (aj , bj) yields the expected

result.

This ends the proof of Lemma 18. �

Approximation scheme. Let ε > 0 be an approximant.

To approximate f
(
e−1/q

)
ε-closely, the idea is to eval-

uate f at (ai)i≥N and (bi)i≥N for some N ∈ N large

enough so that f is monotonic over the interval (aN , bN ).
These evaluations lead to two sequences (f(ai))i≥N and

(f(bi))i≥N , one of which is increasing and the other

decreasing, both converging towards f(e−1/q) (because

f is continuous). The difference (|f(ai) − f(bi)|)i≥N

decreases to 0, hence eventually, for some index i, we will

have that |f(ai)− f(bi)| < ε. Hence one of f(ai) or f(bi)
will be an over-approximation for f

(
e−1/q

)
, and the other

will be an under-approximation of f
(
e−1/q

)
. We thus get

the following result:

Theorem 19 Let A be a single-clock timed automaton sat-

isfying the hypotheses (†) and (‡), let ϕ be a location-based

prefix-independent property. Assume that s0 is the initial

state of A. We can decide if PA(s0 |= ϕ) is a rational,

compute it if it is rational, and if not, for every ε > 0, we

can compute two rationals P−
ε and P+

ε such that:

ß
P−

ε ≤ PA(s0 |= ϕ) ≤ P+
ε

P+
ε − P−

ε < ε

4.3 Deciding the Threshold Problem

We recall that the threshold problem asks, given a timed

automatonAwith its initial state s0, an omega-regular prop-

erty ϕ, and a threshold ∼ c with ∼ ∈ {<,≤,=,≥, >} and

c ∈ Q, whether PA(s0 |= ϕ) ∼ c.
As a consequence of the previous subsection, we get the

decidability of the threshold problem.

Theorem 20 The threshold problem is decidable for

single-clock timed automata satisfying hypotheses (†)
and (‡).

Proof. Thanks to Theorem 19, we can decide whether

PA(s0 |= ϕ) is rational or not, and compute it (and answer

the threshold problem) if it is rational.

Now assume that PA(s0 |= ϕ) is not rational. Then the

answer to the threshold problem is negative when ∼ is =
(since c is rational), and the answer to the problem coincide

when∼ is< and≤ (similarly for> and≥). Hence we need

only be able to solve the problem when ∼ is < or >.

We have seen that we could compute ε-close upper

and lower approximations of PA(s0 |= ϕ) for arbitrarily

small ε > 0. Hence, it suffices to obtain ε-approximations

for ε ≤ |c− PA(s0 |= ϕ)|. This is achieved as follows: for

every n ∈ N, compute 1
2n -approximations γ1 and γ2, and

stop when both are on the same side of c. �

5 Conclusion

In this paper we have studied the probabilistic (and quan-

titative) model-checking problem for single-clock timed au-

tomata, in which choices for delays and discrete events are

probabilized. We have defined an abstraction, which takes

the form of a finite Markov chain, which is correct for a

subclass of automata for computing the probability that an

9



ω-regular property holds in the system. However, the prob-

ability that is computed might not be a closed-form expres-

sion. Hence we have described a more restricted frame-

work, where distributions over delays are given as expo-

nential distributions, and in which we can compute closed-

form expressions for the probability of ω-regular properties,

we can approximate these values, and decide the threshold

problem.

Further work includes approximation schemes for more

general frameworks than the one described here, for in-

stance for bounded automata, when distributions over de-

lays are given as uniform distributions, since this also con-

stitutes a natural framework.
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Technical Appendix

Lemmas numbered with letters do not appear in the core of the paper.

A Details for Section 2

ℓ0

x≤1

ℓ1

{p1}

ℓ2

x≤2

{p2}

ℓ3

{p1}e2, x≤1

e3, x≤2, x:=0

e4, x≥2, x:=0

e5, x≤2

e6, x=0
e1, x≤1, x:=0 e7, x≤1, x:=0

Fig. 5. A running example

Example 4 Consider the timed automaton A depicted on Fig. 5, and assume that we put the uniform

distribution over delays in all locations except ℓ1 and discrete moves, and that we put the distribution

t 7→ e−t over R+ in ℓ1. If s0 = (ℓ0, 0) is the initial state, then we have that:

P(π(s0, e2e3)) =

∫

t∈I(s0,e2)

ps0+t(e2) · P(π((ℓ1, t), e3)) dt

=

∫ 1

t=0

1

2
·
Ç∫ 2−t

t′=0

e−tdt′
å

dt

=
1

2

∫ 1

t=0

(1− et−2) dt

=
1

2

[
t− et−2

]1
t=0

=
1

2
(1− e−1 + e−2)

B Details for Section 3

In this section, we prove the correctness ofMA for computing the probability of prefix-independent

location-based properties.

We recall that E:=0 is the set of edges of A which reset clock x, and E>M is the set of edges which

are guarded by the constraint x > M . We also write E = E:=0 ∪ E>M . For every e ∈ E, we write

(ℓe, re) the target location (in R(A)) of edge e. We have either re = (x = 0) (in case e ∈ E:=0), or

re = (x > M) (in case e ∈ E>M \ E:=0). Moreover, we write r̃e = 0 if re = (x = 0), and r̃e =∞ if

re = (x > M). We also write qe = (ℓe, r̃e).

We first prove a technical lemma, which links probabilities computed in A, and probabilities com-

puted inMA.
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Lemma A Let π = π((ℓ, α), e1 . . . ep) be a symbolic path such that α = 0 or α > M , ep ∈ E,

and write I = {1 ≤ i ≤ p | ei ∈ E}. We let i0 = 0, and i1 < i2 < . . . < ik be such that

I = {ij | 1 ≤ j ≤ k}. Then,

PA
(

Cyl(π)
)

=
k∏

h=1

PMA

(
qeih−1

eih−1+1 ... eih−−−−−−−−−→ qeih

)
.

Proof. We prove this lemma by induction on the cardinal k of the set I , and strengthen the induction

hypothesis by assuming that if α > M , the value of PA(Cyl(π)) is independent of the value α.

The case k = 1 is by definition of the transitions of MA (for transitions leaving the region x >
M , this is due to the fact that the distribution over delays does not depend on the state, thanks to

hypothesis (†)).
We assume now that k > 1, and that we have proved the result for k− 1. We assume that α = 0 and

we write si0 = (ℓ, 0). The probability of Cyl(π) can be expressed as:

PA(Cyl(π)) =

∫

t1∈I(si0
,e1)

psi0
+t1(e1) · · ·

∫

ti1
∈I(si1−1,ei1

)

psi1−1+ti1
(ei−1)·

PA(π(si1 , ei1+1 . . . ep)) dµsi1−1+ti1
(ti1) . . . dµsi0

(t1)

where for every 1 ≤ i ≤ i1, si is the image of si−1 + ti by transition ei. The edge ei1 either resets

clock x, or it checks that x > M . In particular, PA(π(si1 , ei1+1 . . . ep)) is independent of si1 (the case

when ei1 does not reset clock x is a consequence of the reinforcement of the induction hypothesis), i.e.,

it is equal to PA(π((ℓi1 , αi1), ei1+1 . . . ep)), where αi1 = 0 if ei1 resets clock x, and αi1 = M + 1
otherwise. We can then make the following computation, which concludes the case.

PA(Cyl(π)) = PA(Cyl(π(si0 , e1 . . . ei1))) ·
k∏

h=2

PMA

(
qeih−1

eih−1+1 ... eih−−−−−−−−−→ qeih

)

(by induction hypothesis)

= PMA

(
qei0

ei0+1 ... ei1−−−−−−−→ qei1

)
·

k∏

h=2

PMA

(
qeih−1

eih−1+1 ... eih−−−−−−−−−→ qeih

)

(by construction ofMA)

=
k∏

h=1

PMA

(
qeih−1

eih−1+1 ... eih−−−−−−−−−→ qeih

)
.

We now assume that α > M , and we write s = (ℓ, α). In that case, i1 = 1. We have that:

PA(Cyl(π)) =

∫

t∈I(s,e1)

ps+t(e1) · PA(Cyl(π(s′, e2 . . . ep))) dµs(t)

where s′ is the image of s + t by transition e1. As previously, the value PA(Cyl(π(s′, e2 . . . ep))) is
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independent of the choice of s′ —we pick a representative s′, and we get the following computation:

PA(Cyl(π)) =

Ç∫

t∈I(s,e1)

ps+t(e1) · dµs(t)

å
· PA(Cyl(π(α′, e2 . . . ep)))

= w(e1)/

Ñ
∑

e′ enabled from (ℓ,x>M)

w(e′)

é
·

k∏

h=2

PMA

(
qeih−1

eih−1+1 ... eih−−−−−−−−−→ qeih

)

(by induction hypothesis)

=
k∏

h=1

PMA

(
qeih−1

eih−1+1 ... eih−−−−−−−−−→ qeih

)
(by definition ofMA)

Note that the computed value is independent of the initial value of α, which concludes the proof of the

inductive case. �

Lemma 10 MA is a finite Markov chain.

Proof. Take (ℓ, 0) a state ofMA. We have to prove that the sum of the values labelling edges leaving

(ℓ, 0) is 1. We do that by proving that this sum is equal to PA(Runs(A, (ℓ, 0))) (which is 1, because

PA is a probability measure over Runs(A, (ℓ, 0)), see [3]).

Pick a run ̺ ∈ Runs(A, (ℓ, 0)). We can uniquely decompose ̺ as ̺1 · ̺2 such that

̺1 ∈ π((ℓ, 0), e1, . . . , ep) for some edges (ei)1≤i≤p such that for every 1 ≤ i < p, ei 6∈ E
and ep ∈ E. Hence,

Runs(A, (ℓ, 0)) ⊆
⋃

(e1,...,ep)∈(Ec)∗E

Cyl(π((ℓ, 0), e1, . . . ep))

where Ec denotes the complement of E. The converse inclusion is trivial, hence the equality. Now

it is not hard to be convinced that two such cylinders are disjoint (the choice of the first transition in

E is unique), and that there are finitely many such cylinders (thanks to hypothesis (†)). Hence, we

have finitely many transitions leaving (ℓ, 0), and the sum of their values, each corresponding to the

probability of the cylinder (because of Lemma A), is equal to PA(Runs(A, (ℓ, 0))) = 1.

Take (ℓ,∞) a state of MA. This case is even simpler, because for each edge leaving the region

(ℓ, x > M) inA = R(A), we have a corresponding edge inMA labelled with the probability of taking

the original edge e in A, hence the sum is 1. �

Before proving Theorem 11, we prove the following lemma, which considers BSCCs.

Lemma B Let B be a set of states of R(A) that is closed by the transition relation (if ℓ ∈ B and there

is an edge from ℓ to ℓ′ in R(A), then ℓ′ ∈ B), and write FB = {(ℓ, 0) | (ℓ, x = 0) ∈ B} ∪ {(ℓ,∞) |
(ℓ, x > M) ∈ B}. Then,

PA
(
(ℓ0, 0) |= 3B

)
= PMA

(
(ℓ0, 0) |= 3FB

)
.

Proof. Let R = {̺ ∈ Runs(A, (ℓ0, 0)) | ̺ |= 3B}. Let ̺ ∈ R. There is a unique symbolic infinite

path π̺ = π((ℓ0, 0), e1, . . . , ei, . . .) in R(A) such that ̺ ∈ π̺. We write (ℓi, ri) for the state of R(A)
that is reached after transition ei along π̺. We then write I = {0} ∪ {i | ei ∈ E}. Note that for every

i ∈ I , ri is either x = 0 or x > M . As previously, if ri is x = 0 (resp. x > M ), we write r̃i for
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0 (resp. ∞). Furthermore note that I is infinite (by hypothesis (†) on A), and there exists i ∈ I such

that (ℓi, r̃i) ∈ FB (because B is closed by the transition relation). Define i̺ as the smallest element

in I such that (ℓi̺
, r̃i̺

) ∈ FB . Then we have that ̺ ∈ Cyl(π((ℓ0, 0), e1, . . . , ei̺
)), and for every

̺′ ∈ Cyl(π((ℓ0, 0), e1, . . . , ei̺
)), ̺′ |= 3B. We write EB for the set of edges that end up in FB , and

E¬B for the complement of EB . Applying the previous analysis we get that:

PA(R) =
∑

p

∑

(ei)1≤i≤p∈E
p

¬B

e∈EB

PA
(

Cyl(π((ℓ0, 0), e1, . . . , ep, e))
)

Thanks to Lemma A, we get that this is precisely equal to PMA
((ℓ0, 0) |= 3FB). �

We can now prove Theorem 11.

Theorem 11 Let ϕ be a location-based prefix-independent property on A. We can compute a set of

states Fϕ ofMA which is SCC-closed such that

PA
(
(ℓ0, 0) |= ϕ

)
= PMA

(
(ℓ0, 0) |= 3Fϕ

)
.

Proof. Thanks to [3], we know that in A, almost-surely we will end up in a BSCC of Gb(A) (this is

R(A) where all small transitions have been removed, see [3] for details), and that we will almost-surely

visit all states of this BSCC. Hence, the probability of verifying ϕ coincides with the probability of

reaching BSCC of Gb(A) that are ’good for ϕ’, i.e., such that property ϕ is satisfied with probability

1 from any state in these BSCC (this is possible thanks to [11]). We write Bϕ for the set of states of

Gb(A) such that

PA
(
(ℓ0, 0) |= ϕ

)
= PA

(
(ℓ0, 0) |= 3Bϕ

)
.

We close the set Bϕ by the transition relation of R(A) (all added states will be reachable with probabil-

ity 0 — this is due to the property of Gb(A) which removes transitions that happen with probability 0),

and call ‹Bϕ this new set of states. We have that

PA
(
(ℓ0, 0) |= ϕ

)
= PA

(
(ℓ0, 0) |= 3‹Bϕ

)
.

Then, applying Lemma B, we get that

PA
(
(ℓ0, 0) |= ϕ

)
= PMA

(
(ℓ0, 0) |= 3F

B̃ϕ

)
.

Setting Fϕ = F
B̃ϕ

, we get the expected result. �

C Details for Section 4

Lemma 15 Let e1, . . . , en be edges of A and let (ℓ, r) be a state of R(A). Then the function

r → [0, 1]

t 7→ PA
(

Cyl
(
π((ℓ, t), e1 . . . en)

))

can be written as a function of the form:

t ∈ r 7→
∑

ℓ∈L

exp(λℓt) · Pℓ

(
(eλℓ′ )ℓ′∈L, (e

−λℓ′ )ℓ′∈L

)
+ P

(
(eλℓ′ )ℓ′∈L, (e

−λℓ′ )ℓ′∈L

)

where (Pℓ)ℓ∈L, P ∈ Q[(Xℓ)ℓ∈L, (Yℓ)ℓ∈L].
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Proof. In this proof, given an edge ei we denote by pi the relative weight of ei (compared to other

edges) in the region where ei is enabled. As A = R(A), pi is correctly defined.

If e1 cannot be fired from (ℓ, t) for t ∈ g, the result is trivial. The proof otherwise proceeds by

induction on the number of edges.

Assume the lemma holds for any i ≤ n, and let r0 be a region, e1 · · · en+1 a sequence of edges

firable from r0. Let us first get rid of the case where the guard in e1 is an equality: x = c. In this case,

either the probability to fire e1 from r0 is a rational number. Indeed, it is either 0 if some transition

enabled in r0 has a non-equality guard, or it is a ratio of the distinct equality-guarded transition enabled

in r0. Coming back to the (most interesting) case when e1 can be fired in a non-trivial interval, we need

to distinguish between several cases: e1 is a resetting edge or not ; e1 is enabled in r0 or only later ; the

guard in e1 is x > M or not.

(1) Let us first consider the case where the guard in e1 is not x > M , i.e. e1 can only be fired in a

bounded interval. Let (ℓ0, t0) ∈ r0 be an initial state. The probability P((ℓ0, t0), e1 · · · en) has different

expressions depending on whether e1 is enabled in (ℓ0, t0) (i.e., 0 ∈ I((ℓ0, t0), e1)) or not, and whether

e1 is a resetting edge or not.

(1.1) If e1 can be fired in (ℓ0, t0):

P(π((ℓ0, t0), e1 · · · en)) =

∫ c0+1

t=t0

p1 · P(π(st, e2 · · · en)) · λℓ0 · exp(−λℓ0(t− t0)) dt

where e1 is guarded by c0 < x < c0 + 1 and (ℓ0, t0)
t,e1−−→ st.

(1.1.1) Now, if e1 is a resetting edge, for all t, st = (ℓ1, 0) for some location ℓ1. By induction hypoth-

esis, P(π((ℓ1, 0), e2 · · · en)) = R
(
(eλℓ)ℓ∈L, (e

−λℓ)ℓ∈L

)
with R ∈ Q[(Xℓ)ℓ∈L, (Yℓ)ℓ∈L]. Hence,

P(π((ℓ0, t0), e1 · · · en)) =

∫ c0+1

t=t0

p1 ·R
(
(eλℓ)ℓ∈L, (e

−λℓ)ℓ∈L

)
· λℓ0 · exp(−λℓ0(t− t0)) dt

= p1 ·R
(
(eλℓ)ℓ∈L, (e

−λℓ)ℓ∈L

)
·
∫ c0+1

t=t0

λℓ0 · exp(−λℓ0(t− t0)) dt

= p1 ·R
(
(eλℓ)ℓ∈L, (e

−λℓ)ℓ∈L

)
·
(
1− e−λℓ0

(c0+1) · exp(λℓ0t0)
)

= exp(λℓ0t0) · Pℓ0

(
(eλℓ)ℓ∈L, (e

−λℓ)ℓ∈L

)
+ P

(
(eλℓ)ℓ∈L, (e

−λℓ)ℓ∈L

)

for some polynomials Pℓ0 , P ∈ Q[(Xℓ)ℓ∈L, (Yℓ)ℓ∈L].

(1.1.2) If e1 is not a resetting edge:

P(π((ℓ0, t0), e1 · · · en)) =

∫ c0+1

t=t0

p1 · P(π((ℓ1, t), e2 · · · en)) · λℓ0 · exp(−λℓ0(t− t0)) dt

for some location ℓ1. By induction hypothesis, there are |L| + 1 polynomials (Pℓ)ℓ∈L, P ∈
Q[(Xℓ)ℓ∈L, (Yℓ)ℓ∈L] such that, if r is the target region of edge e1, for every t ∈ r,

P(π((ℓ1, t), e2 · · · en)) =
∑

ℓ∈L

exp(λℓt) · Pℓ((e
λℓ′ )ℓ′∈L, (e

−λℓ′ )ℓ′∈L) + P ((eλℓ′ )ℓ′∈L, (e
−λℓ′ )ℓ′∈L)
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Hence,

P(π((ℓ0, t0), e1 · · · en))

= p1 ·
∫ c0+1

t=t0

(∑

ℓ∈L

exp(λℓt) · Pℓ((e
λℓ′ )ℓ′∈L, (e

−λℓ′ )ℓ′∈L) + P ((eλℓ′ )ℓ′∈L, (e
−λℓ′ )ℓ′∈L)

)
· λℓ0 · exp(−λℓ0(t− t0)) dt

= p1 · exp(λℓ0t0) · λℓ0 ·
[ ∑

ℓ∈L

Pℓ((e
λℓ′ )ℓ′∈L, (e

−λℓ′ )ℓ′∈L) ·
∫ c0+1

t=t0

exp((λℓ − λℓ0)t) dt
]

+ p1 · P ((eλℓ′ )ℓ′∈L, (e
−λℓ′ )ℓ′∈L) ·

∫ c0+1

t=t0

λℓ0 · exp(−λℓ0(t− t0)) dt

= p1 · exp(λℓ0t0) · λℓ0 ·
[ ∑

ℓ∈L

Pℓ((e
λℓ′ )ℓ′∈L, (e

−λℓ′ )ℓ′∈L) · 1

λℓ − λℓ0

· (exp((λℓ − λℓ0)(c0 + 1))− exp((λℓ − λℓ0)t0))
]

+ p1P ((eλℓ′ )ℓ′∈L, (e
−λℓ′ )ℓ′∈L)(1− exp(−λℓ0(c0 + 1)) exp(λℓ0t0))

= p1 · λℓ0 ·
[ ∑

ℓ∈L

Pℓ((e
λℓ′ )ℓ′∈L, (e

−λℓ′ )ℓ′∈L) · 1

λℓ − λℓ0

· (− exp(λℓt0) + exp((λℓ − λℓ0)(c0 + 1)) · exp(λℓ0t0))
]

+ p1 · P ((eλℓ′ )ℓ′∈L, (e
−λℓ′ )ℓ′∈L) · (1− exp(−λℓ0(c0 + 1)) · exp(λℓ0t0))

=
∑

ℓ∈L

[
exp(λℓt0) · P 1

ℓ ((eλℓ′ )ℓ′∈L, (e
−λℓ′ )ℓ′∈L) + exp(λℓ0t0) · P 2

ℓ ((eλℓ′ )ℓ′∈L, (e
−λℓ′ )ℓ′∈L)

]

+ P1((e
λℓ′ )ℓ′∈L, (e

−λℓ′ )ℓ′∈L) + exp(λℓ0t0) · P2((e
λℓ′ )ℓ′∈L, (e

−λℓ′ )ℓ′∈L)

=
∑

ℓ∈L

Qℓ((e
λℓ′ )ℓ′∈L, (e

−λℓ′ ) +Q((eλℓ′ )ℓ′∈L, (e
−λℓ′ )ℓ′∈L)

with appropriate polynomials P1, P2, P
1
ℓ , P

2
ℓ , Q,Qℓ ∈ Q[(Xℓ)ℓ∈L, (Xℓ)ℓ∈L].

(1.2) If e1 cannot be fired in (ℓ0, t0) but only in some future region (c0, c0 + 1):

P(π((ℓ0, t0), e1 · · · en)) =

∫ c0+1

t=c0

p1 · P(π(st, e2 · · · en)) · λℓ0 · exp(−λℓ0(t− t0)) dt

where (ℓ0, t0)
t,e1−−→ st.

(1.2.1) Now, if e1 is a resetting edge, for all t, st = (ℓ1, 0) for some location ℓ1. By induction hypoth-

esis, P(π((ℓ1, 0), e2 · · · en)) = R
(
(eλℓ)ℓ∈L, (e

−λℓ)ℓ∈L

)
where R ∈ Q[(Xℓ)ℓ∈L, (Yℓ)ℓ∈L]. Hence

P(π((ℓ0, t0), e1 · · · en)) =

∫ c0+1

t=c0

p1 ·R
(
(eλℓ)ℓ∈L, (e

−λℓ)ℓ∈L

)
· λℓ0 · exp(−λℓ0(t− t0)) dt

= p1 ·R
(
(eλℓ)ℓ∈L, (e

−λℓ)ℓ∈L

)
· exp(λℓ0t0) ·

∫ c0+1

t=c0

λℓ0 · exp(−λℓ0t) dt

= p1 ·R
(
(eλℓ)ℓ∈L, (e

−λℓ)ℓ∈L

)
· exp(λℓ0t0) · (e−λℓ0

c0 − e−λℓ0
(c0+1))

= exp(λℓ0t0) · Pℓ0

(
(eλℓ)ℓ∈L, (e

−λℓ)ℓ∈L

)

with Pℓ0 ∈ Q[(Xℓ)ℓ∈L, (Yℓ)ℓ∈L]

(1.2.2) If e1 is not a resetting edge:

P(π((ℓ0, t0), e1 · · · en)) =

∫ c0+1

t=c0

p1 · P(π((ℓ1, t), e2 · · · en)) · λℓ0 · exp(−λℓ0(t− t0)) dt

vi



for some location ℓ1. By induction hypothesis, there are |L| + 1 polynomials P, (Pℓ)ℓ∈L ∈
Q[(Xℓ)ℓ∈L, (Yℓ)ℓ∈L] such that

P(π((ℓ1, t), e2 · · · en)) =
∑

ℓ∈L

exp(λℓt) · Pℓ((e
λℓ′ )ℓ′∈L, (e

−λℓ′ )ℓ′∈L) + P ((eλℓ′ )ℓ′∈L, (e
−λℓ′ )ℓ′∈L)

Hence,

P(π((ℓ0, t0), e1 · · · en))

= p1 ·
∫ c0+1

t=c0

[ ∑

ℓ∈L

exp(λℓt) · Pℓ((e
λℓ′ )ℓ′∈L, (e

−λℓ′ )ℓ′∈L) + P ((eλℓ′ )ℓ′∈L, (e
−λℓ′ )ℓ′∈L)

]
· λℓ0 · exp(−λℓ0(t− t0)) dt

A similar computation to that of case (1.1.2) yields:

P(π((ℓ0, t0), e1 · · · en))

= exp(λℓ0t0) ·
∑

ℓ∈L

Rℓ((e
λℓ′ )ℓ′∈L, (e

−λℓ′ )ℓ′∈L) + exp(λℓ0t0) ·R((eλℓ′ )ℓ′∈L, (e
−λℓ′ )ℓ′∈L)

= exp(λℓ0ℓ0) ·Q((eλℓ′ )ℓ′∈L, (e
−λℓ′ )ℓ′∈L)

with Rℓ, R,Q ∈ Q[(Xℓ)ℓ∈L, (Yℓ)ℓ∈L].

(2) We now consider the case when e1 is guarded by x > M . In this situation, either all edges e1 to en

share this same guard, or there is an edge, say ei which resets the clock x.

(2.1) Let us assume that e1 · · · en have x > M has guard.

(2.1.1) If e1 is enabled in (ℓ0, t0) (i.e., t0 > M ), a simple calculation gives:

P(π((ℓ0, t0), e1 · · · en)) =
n∏

i=1

pi.

(2.1.2) If e1 is not enabled in (ℓ0, t0) but only later on:

P(π((ℓ0, t0), e1 · · · en)) =

∫ ∞

t1=M

p1 · P((ℓ1, t1), e2 · · · en) · λℓ0 · exp(−λℓ0(t1 − t0)) dt1

And by case (2.1.1), P((ℓ1, t1), e2 · · · en) =
∏n

i=2 pi. Hence:

P(π((ℓ0, t0), e1 · · · en)) =
n∏

i=1

pi · exp(λℓ0t0) ·
∫ ∞

t1=M

λℓ0 · exp(−λℓ0t1) dt1

= (
n∏

i=1

pi) · exp(λℓ0t0) · exp(−λℓ0)
M

= exp(λℓ0t0) · P ((eλℓ′ )ℓ′∈L, (e
−λℓ′ )ℓ′∈L).

(2.2) Assume now ei is the first resetting edge of the sequence e1 · · · en.

P(π((ℓ0, t0), e1 · · · en)) =

∫

t1∈I((ℓ0,t0),e1)

p1 · λℓ0 · exp(−λℓ0t1) · · ·
∫ ∞

ti=0

pi · λℓi−1
· exp(−λℓi−1

ti) · P((ℓi, 0), ei+1 · · · en) dti · · ·dt1.
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By induction hypothesis,

P((ℓi, 0), ei+1 · · · en) = R
(
(eλℓ)ℓ∈L, (e

−λℓ)ℓ∈L

)

with R ∈ Q[(Xℓ)ℓ∈L, (Yℓ)ℓ∈L]. Hence:

P(π((ℓ0, t0), e1 · · · en))

=

∫

t1∈I((ℓ0,t0),e1)

p1 · λℓ0 · exp(−λℓ0t1) · · ·
∫ ∞

ti=0

pi · λℓi−1
· exp(−λℓi−1

ti) ·R
(
(eλℓ)ℓ∈L, (e

−λℓ)ℓ∈L

)
dti · · ·dt1

= (
i∏

j=1

pj) ·R
(
(eλℓ)ℓ∈L, (e

−λℓ)ℓ∈L

)
·
∫

t1∈I((ℓ0,t0),e1)

λℓ0 · exp(−λℓ0t1) dt1.

The latter integral evaluates differently if t0 < M or t0 ≥M .

(2.2.1) Assume t0 < M . Then, e1 is not enabled in (ℓ0, t0), I((ℓ0, t0), e1) = (M − t0,∞) and

P(π((ℓ0, t0), e1 · · · en)) = (
i∏

j=1

pj) ·R
(
(eλℓ)ℓ∈L, (e

−λℓ)ℓ∈L

)
·
∫ ∞

t1=M

exp(−λℓ0(t1 − t0)) dt1

= (
i∏

j=1

pj) ·R
(
(eλℓ)ℓ∈L, (e

−λℓ)ℓ∈L

)
· exp(−λℓ0)

M · exp(λℓ0t0)

= exp(λ0t0) · P
(
(eλℓ)ℓ∈L, (e

−λℓ)ℓ∈L

)
.

(2.2.2) In the case t0 ≥M , I((ℓ0, t0), e1) = R+ and

P(π((ℓ0, t0), e1 · · · en)) = (
i∏

j=1

pj) ·R
(
(eλℓ)ℓ∈L, (e

−λℓ)ℓ∈L

)
·
∫ ∞

t=0

λℓ0 · exp(−λℓ0t) dt

= (
i∏

j=1

pj) ·R
(
(eλℓ)ℓ∈L, (e

−λℓ)ℓ∈L

)

= P
(
(eλℓ)ℓ∈L, (e

−λℓ)ℓ∈L

)
.

This concludes the cases inspection of the induction proof. �
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