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Abstract
A quantitative model of coarticulation is presented that accu-

rately predicts formant dynamics in fluent speech using the prior
information of resonance targets in the phone sequence, in ab-
sence of actual acoustic data. Realistic formant undershoot (reduc-
tion) and “static” sound confusion is produced naturally from the
model for fast-rate speech in a contextually assimilated manner.
The model developed is capable of resolving the confusion with
dynamic speech specification. As a source of a-priori knowledge
about the speech structure, the model is a central component of our
Bayesian generative modeling approach to automatic recognition
of conversational speech, where varying degrees of sound reduc-
tion abound due to the free-varying speaking style and rate. We
present details of the model simulation that demonstrates quantita-
tive effects of speaking rate and segment duration on the magnitude
of reduction, agreeing closely with experimental measurement re-
sults in the acoustic-phonetic literature. The model simulation also
gives quantitative effects of varying the “stiffness’ parameter in the
model.

1. Introduction
Dynamic patterns for the spectral prominences or formants in flu-
ent speech, especially in vowel sounds, have been a subject of
intensive research in phonetics and in speech synthesis for many
years [1, 2, 3, 4, 5, 6, 7, 8]. The research has been focusing on
the central issue that the same formant values taken from the mid-
dle portion of a speech sound from its dynamic pattern can cor-
respond to different sound classes specified solely in static terms.
This inherent “static” confusion of speech classes without dynamic
aspects of speech sound specification is believed to be one signif-
icant factor impeding current HMM-based speech recognition for
casual-style, conversational speech.

In this paper, we present a modeling approach to dynamic
specification of speech sounds, where the observed dynamic pat-
tern of speech is the result of an interaction among phonetic con-
text, speaking rate/duration, and spectral rate of change as related
to speaking style [4]. The quantitative model that we have devel-
oped and will be presented in this paper assumes that each speech
sound is specified by a largely context-independent target distribu-
tion in the vocal tract resonance (formant) space, together with a
dynamic, stiffness parameter specifying how formant trajectories
may be formed in any specific phonetic and prosodic environment.
In the implementation of the model, the stiffness parameter is used
to control temporal filtering of the sequentially arranged, statis-
tically sampled formant targets, and is dependent on a range of
prosodic factors, speaking style in particular. The result of the tem-

poral filtering, in both forward and backward directions, gives rise
to the phonetically realized dynamic formant patterns. A direct
consequence of this filtering operation is as follows: the shorter
a segment is, the greater the difference becomes between the fil-
ter’s input (target formant values) and the output (observed for-
mant values).1 Therefore, our model naturally simulates the target-
undershooting, or reduction phenomenon [1, 4, 6]. Because the
input to the filter is the phonetically composed, discontinuous tar-
get sequence, which is smoothed by the filter resulting in contin-
uous, “reduced” trajectories, our filter-based model represents the
reduction phenomenon in a contextually assimilated manner. This
is similar to the mechanism suggested in [1, 4].

In the remaining of this paper, details of the model construction
are presented in Section 2. A series of model simulation results are
provided in Section 3 and conclusions drawn in Section 4.

2. Model of formant dynamics and reduction
The model presented here for formant dynamics directly exhibits
contextually assimilated reduction. The model is constructed using
a (slowly time-varying) finite impulse response (FIR) filter charac-
terized by the following non-causal impulse response function:
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where � represents time frame, typically with a length of 10 msec
each. ����� is the “stiffness” parameter, and is positive and real-
valued, ranging between zero and one.2 The subscript ���� in �����
indicates that the stiffness parameter is dependent on the segment
state ���� on a moment-by-moment, time-varying basis. � in (1)
is the unidirectional length of the impulse response. It represents
the temporal extent of coarticulation, assumed for simplicity to be
equal in length for the forward direction (anticipatory coarticula-
tion) and for the backward direction (regressive coarticulation).

In (1), � is the normalization constant to ensure that the filter
weights add up to one. This is essential for the model to produce
target “undershoot”, instead of “overshoot”. To determine �, we
note first:
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1The precise difference also depends on the stiffness parameter associ-
ated with speaking style, in addition to the dependency on the filter input.

2In this paper, � is treated as a deterministic quantity for simplicity pur-
poses. In the more comprehensive version of the model, �� is a Gaussian
random vector characterized by the (automatically learned) mean vector
and covariance matrix.



For simplicity, we make the assumption that over the temporal span
of �� � � � �, the stiffness parameter’s value stays approxi-
mately constant

����� � �

That is, the adjacent segments within the temporal span of ����
in length which contribute to the coarticulated home segment have
a similar stiffness parameter value to that of the home segment.
Under this assumption, we simplify (2) to
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The input to the system is the target sequence (discontinuous
function) represented as a sequence of step-wise functions with
variable durations and heights:
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where 
��� is the unit step function, ��� � � � ��� ��� ���� �� are
the right boundary sequence of the segments (� in total) in the
utterance, and ���� � � ��� ��� ���� �� are the left boundary se-
quence. The difference of the two gives the duration sequence.
	�� � � ��� ��� ���� �� are the target values for the segments.3

In the work presented in this paper, we assume that both left
and right boundaries (and hence the durations) of all the segments
in an utterance are known (e.g., those provided in TIMIT database).
However, in general cases where the current model is used to pre-
dict the formant trajectories as the FIR’s filter’s output, the bound-
aries in the target sequence input to the filter are not given. They
either need to come from a recognizer’s forced alignment results,
or to be learned automatically using algorithms such as those de-
scribed in [10].

Given the filter’s impulse response and the input to the filter as
described above, the filter’s output as the model’s prediction for the
formant trajectories is the convolution between these two signals.
The result of the convolution within the boundaries of the home
segment � is
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where the input target value and the filter’s stiffness parameter
value may take not only those associated with the current home
segment, but also those associated with the adjacent segments.
The latter case happens when the time � in (6) goes beyond the
home segment’s boundaries; i.e., when the segment ���� occupied
at time � switches from the home segment of an adjacent one.

A sequential concatenation of all outputs 
����� � �
��� ��� ���� �� in (5), each corresponding to a single segment in the
utterance, constitutes the model prediction of formant trajectories
for the entire utterance:
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3In a more comprehensive version of the model, the target values are
drawn from a statistical distribution, whose parameters (e.g., means and
variances) are automatically learned in a manner similar to [9].

Note that the convolution operation carried out by the filter in the
model guarantees continuity of the trajectories at each junction of
two adjacent segments, contrasting the discontinuous jump in the
input to the filter at the same junction. This continuity applies to
all classes of speech sounds including consonantal closure.

3. Results of model prediction and formant
measurements

In this section, we present the model simulation results demon-
strating contextually assimilated reduction, and compare the results
with the corresponding results from direct formant measurements
in the literature.

To illustrate formant undershoot, we first show the spectro-
gram of three renditions of a three-segment /iy aa iy/ (uttered by
one author of this paper) in Fig. 1. From left to right, the speaking
rate increases (and speaking effort decreases), with the durations
of the /aa/’s decreasing from approximately 230 msec to 130 msec.
Formant target undershoots for F1 and F2 are clearly shown in the
spectrogram (where automatically tracked formants are superim-
posed).

 

Figure 1: Spectrogram of three renditions of /iy aa iy/ by one au-
thor, with an increasingly higher speaking rate and increasingly
lower speaking efforts.

3.1. Effects of stiffness parameter on reduction

The same kind of target undershoot for F1 and F2 as in Fig. 1 is
exhibited in the model prediction, shown in Fig. 2, where we also
illustrate the effects of the FIR filter’s stiffness parameter on the
magnitude of formant undershoot or reduction. The model predic-
tion is the FIR filter’s output for F1/F2 according to 
��� in (6).
Fig. 2a, b, and c correspond to the use of the stiffness parameter
value set at � � ��
�� ���� and ��
�, respectively, where in each
plot the slower /iy aa iy/ sounds (with the duration of /aa/ set at
230 msec or 23 frames) are followed by the faster /iy aa iy/ sounds
(with the duration of /aa/ set at 130 msec or 13 frames). F1 and
F2 targets for /iy/ and /aa/ are set appropriately in the model also.
Comparing the three plots, we have the model’s quantitative pre-
diction for the magnitude of reduction during the faster /aa/ that is
decreasing as the � value decreases.

In Fig. 3a, b, and c, we show the same model prediction as
in Fig. 2 but for different sounds /iy eh iy/, where the targets for
/eh/ are much closer to those of the adjacent sound /iy/ than in the
previous case for /aa/. As such, the absolute amount of reduction
becomes smaller. However, the same effect of the filter parameter’s
value on the size of reduction is shown as for the previous sounds
/iy aa iy/.
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Figure 2: F1 and F2 formant trajectories produced from the model
(
��� in (6)) for a slow /iy aa iy/ followed by a fast /iy aa iy/. (a),
(b), and (c) correspond to the use of the stiffness parameter values
of � � ��
�� ���� and ��
�, respectively. The amount of formant
undershoot or reduction during the fast /aa/ is decreasing as the
� value decreases. The dashed lines indicate the formant target
values and their switch at the segment boundaries.
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Figure 3: Same as Figure 2 except for the /iy eh iy/ sounds. Note
that the F1/F2 target values for /eh/ are closer to /iy/ than those for
/aa/.

3.2. Effects of speaking rate on reduction

In Fig. 4a, b, and c, we show the effects of speaking rate, measured
as the inverse of the sound segment’s duration, on the magnitude of
formant undershoot. (a), (b), and (c) correspond to three decreas-
ing durations of the sound /aa/ in the /iy aa iy/ sound sequence.
The plots illustrate an increasing amount of the reduction with the
decreasing duration or increasing speaking rate. Symbol ’x’ in
Fig. 4 indicates the F1/F2 formant values at the central portions
of vowels /aa/, which are predicted from the model and are used
to quantify the magnitude of reduction. These values (separately
for F1 and F2) for /aa/ are plotted against the inversed duration in
Fig. 5, together with the corresponding values for /eh/ (i.e. �) in
the /iy eh iy/ sound sequence. The most interesting observation is
that as the speaking rate increases, the distinction between vowels
/aa/ and /eh/ gradually diminishes if their static formant values ex-
tracted from the dynamic patterns are used as the sole measure for
the difference between the sounds. We refer to this phenomenon
as the “static” sound confusion induced by increased speaking rate
(or/and by a greater degree of sloppiness in speaking).

3.3. Comparisons with formant measurement data

The “static” sound confusion between /aa/ and /eh/ quantitatively
predicted by the model as shown in Fig. 5 is consistent with the
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Figure 4: F1 and F2 formant trajectories produced from the model
for three different durations of /aa/ in the /iy aa iy/ sounds: (a)
25 frames (250 ms), (b) 20 frames, and (c) 15 frames. The same �
value of 0.85 is used. The amount of target undershoot increases as
the duration is shortened or the speaking rate is increased. Symbol
’x’ indicates the F1/F2 formant values at the central portions of
vowels of /aa/.
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Figure 5: Relationship, based on model prediction, between the
F1/F2 formant values at the central portions of vowels and the
speaking rate. Vowel /aa/ is in the carry-phrase /iy aa iy/, and
vowel /eh/ in /iy eh iy/. Note that as the speaking rate increases,
the distinction between vowels /aa/ and /eh/ measured by the differ-
ence between their static formant values gradually diminishes. The
same � value of 0.9 is used in generating all points in the figure.

formant measurement data published in [6], where thousands of
natural sound tokens were used to investigate the relationship be-
tween the degree of formant undershoot and speaking rate.4 We
re-organized and re-plotted the raw data from [6] in Fig. 6, in the
same format as Fig. 5. While the measures of speaking rate differ
between the measurement data and model prediction, the general
trend for the greater degree of “static” sound confusion as speaking
rate increases is clear from both the data and prediction.

3.4. Model prediction of formant trajectories for natural
speech utterances

We have used the model presented in this paper to predict actual
formant trajectories for natural speech utterances. Only the phone
identities and their boundaries are input to the model for the pre-
diction, and no use is made of speech acoustics (as is the case in
formant tracking).

Given the phone sequence in any utterance, we first broke up
the compound phones (affricates and diphthongs) into their con-

4We are grateful to Dr. M. Pitermann for providing us with the raw data
of formant measurements published in [6] and for useful discussions.
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Figure 6: The formant measurement data from [6] are re-organized
and plotted, showing similar trends to the model prediction in Fig-
ure 5.
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Figure 7: Fitting the F1/F2/F3 formant trajectories generated from
the model to a typical fluent speech utterance (male) taken from
TIMIT database. The utterance is “hello, anyone at home?”

stituents. Then we obtained the formant target values5 based on
limited context dependency by table lookup (see details in Chapter
13 of [11]). These target values, together with the phone bound-
aries provided (such as in TIMIT database), form the input to the
FIR filter in the model and the output of the filter gives the pre-
dicted formant trajectories.

One example is provided in Fig. 7 for a TIMIT utterance. The
step-wise dashed lines (F1/F2/F3) are the input to the filter, and
the continuous lines (F1/F2/F3) are the output of the filter as the
predicted formant trajectories. To facilitate assessment of the ac-
curacy in the prediction, the input and output are superimposed
on the spectrogram of the utterance, where the true formants are
shown as the dark bands. For the majority of the frames, the fil-
ter’s output either coincides or is close to the true formants, even
though no acoustic information is used. Also, comparing the input
and output of the filter, we observe only a rather mild degree of
formant undershoot or reduction.6

5These target values are provided not only to vowels, but also to conso-
nants for which the resonance frequency targets are used with weak or no
acoustic manifestation.

6When we do the same kind of model prediction for formant trajectories
for the casual speech data (such as those in the Switchboard database), a
greater degree of reduction is observed.

4. Conclusions
We have presented a quantitative model for predicting formant or
vocal tract resonance dynamics, and for the related reduction and
“static” speech sound confusion phenomena. The prediction re-
quires only the phone sequence and the individual phone bound-
aries, and requires no acoustic information. The development of
the model is motivated by phonetic theories and experiments on
sound reduction in free-style speech. We intend to use the model
as one source of a-priori knowledge about the speech structure for
automatic recognition of conversational speech. We have accumu-
lated evidence that the strong reduction and “static” sound confu-
sion in this mixed style of speech, ranging widely in the hyper-
hypo speaking continuum, are responsible for many recognition
errors by state-of-the-art automatic systems.

Our current research in this direction involves extension of the
formant trajectory prediction discussed in this paper to the predic-
tion of trajectories of cepstra and of other types of acoustic features
through an additional nonlinear mapping function. This will en-
able automatic learning of the input and filter parameters (targets,
boundaries, and stiffness parameter) directly from these reliable
acoustic measurements, instead of from automatically tracked for-
mants which may be prone to errors.
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