
Form Methods Syst Des (2018) 53:83–112

https://doi.org/10.1007/s10703-018-0319-x

Quantitative monitoring of STL with edit distance

Stefan Jakšić1,2
· Ezio Bartocci2 · Radu Grosu2

·

Thang Nguyen3
· Dejan Ničković1

Published online: 27 March 2018

© The Author(s) 2018

Abstract In cyber-physical systems (CPS), physical behaviors are typically controlled by

digital hardware. As a consequence, continuous behaviors are discretized by sampling and

quantization prior to their processing. Quantifying the similarity between CPS behaviors and

their specification is an important ingredient in evaluating correctness and quality of such

systems. We propose a novel procedure for measuring robustness between digitized CPS

signals and signal temporal logic (STL) specifications. We first equip STL with quantitative

semantics based on the weighted edit distance, a metric that quantifies both space and time

mismatches between digitized CPS behaviors. We then develop a dynamic programming

algorithm for computing the robustness degree between digitized signals and STL speci-

fications. In order to promote hardware-based monitors we implemented our approach in

FPGA. We evaluated it on automotive benchmarks defined by research community, and also

on realistic data obtained from magnetic sensor used in modern cars.

Keywords Weighted edit distance · Robustness · Hardware monitors · Runtime verification ·

Dynamic programming

B Stefan Jakšić

Stefan.Jaksic@ait.ac.at

Ezio Bartocci

ezio.bartocci@tuwien.ac.at

Radu Grosu

radu.grosu@tuwien.ac.at

Thang Nguyen

Thang.Nguyen@infineon.com

Dejan Ničković

dejan.nickovic@ait.ac.at

1 Austrian Institute of Technology, Donau-City-Straße 1, Vienna, Austria

2 Faculty of Informatics, TU Wien, Treitlstraße 3, Vienna, Austria

3 Infineon Technologies AG, Siemensstraße 2, 9500 Villach, Austria

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10703-018-0319-x&domain=pdf
http://orcid.org/0000-0002-3203-9415

84 Form Methods Syst Des (2018) 53:83–112

1 Introduction

Cyber-physical systems (CPS) integrate heterogeneous collaborative components that are

interconnected between themselves and their physical environment. They exhibit complex

behaviors that often combine discrete and continuous dynamics. The sophistication, com-

plexity and heterogeneity of CPS makes their verification a difficult task. Runtime monitoring

addresses this problem by providing a formal, yet scalable, verification method. It achieves

both rigor and efficiency by enabling evaluation of systems according to the properties of

their individual behaviors.

In the recent past, property-based runtime monitoring of CPS centered around signal

temporal logic (STL) [29] and its variants have received considerable attention [2,6,7,14,

15,18,31]. STL is a formal specification language for describing properties of continuous

and hybrid behaviors. In its original form, STL allows to distinguish correct from incorrect

behaviors. However, the binary true/false classification may not be sufficient for real-valued

behaviors. The classical satisfaction relation can be replaced by a more quantitative robustness

degree [14,15,18] of a behavior with respect to a temporal specification. The robustness

degree provides a finer measure of how far is the behavior from satisfying or violating of the

specification.

Here we propose a novel quantitative semantics for STL that measures the behavior mis-

matches in both space and time. We consider applications in which continuous CPS behaviors

are observed by a digital device. In this scenario, continuous behaviors are typically dis-

cretized, both in time and space, by an analog-to-digital converter (ADC). As a consequence,

we interpret STL over discrete-time digitized behaviors.

We first propose the weighted edit distance as an appropriate metric for measuring sim-

ilarity between CPS behaviors. The weighted edit distance has the following desirable

characteristics:

1. It is cumulative, hence it can differentiate between a single and multiple deviations from

a reference behavior;

2. It combines spatial and temporal aspects, which are both important when reasoning about

CPS behaviors; and

3. It is defined in discrete time, which is an important aspect for the applications that we

consider.

We then provide the quantitative semantics for STL based on this distance and discuss the

effects of sampling and quantization on the distance value. We develop an efficient online

algorithm for computing the robustness degree between a behavior and an STL formula. The

algorithm can be directly implemented both in software and hardware. In the former case,

the implemented procedure can be connected to the simulation engine of the CPS design and

used to monitor its correctness and quality. In the latter case, the resulting implementation

can be deployed on the Field Programmable Gate Array (FPGA) and used to monitor real

systems or design emulations. We implement the above procedure in Verilog and evaluate it

on an automotive benchmark.

We now discuss the main contributions of this work. In contrast to the previous research

on STL robustness, we adopt a sampled-time automata-based approach. This choice has

several important consequences. First, it allows direct and uniform implementation of STL

robustness monitors in both software and hardware and naturally enables monitoring in real-

time. We implement the algorithms in Verilog and deploy them on FPGAs, thus providing

an effective bridge from design-time (e.g. Simulink) to deployment-time (e.g. autonomous

vehicles) quantitative monitoring. Second, the automata-based approach is capable of cap-

123

Form Methods Syst Des (2018) 53:83–112 85

turing contradictions and tautologies (by checking automata emptiness and universality) and

it guarantees that two semantically-equivalent but syntactically-different specifications have

the same robustness degree with respect to all behaviors. Finally, we use the weighted edit

distance (WED) to reason about the similarity between behaviors and specifications that is

novel in the context of STL robustness. This paper is an extended version of [25]. In this

paper we extend our preliminary work with new results:

– we provide extensive proofs of the theoretical results in [25]

– we test our approach on an industrial case study with data taken from a real magnetic

sensor and verify timing requirements of Single Edge Nibble Transmission Protocol [24],

which are crucial for the integrity of information transferred

– we further benchmark our approach with fault-tolerant fuel control system [5] model,

taken from the automotive domain

Organisation of the paper In Sect. 2 we present the related work while Sect. 3 provides all the

necessary formal background. In Sect. 4 we introduce the notion of weighted edit distance.

In Sect. 5 we propose a novel approach for computing, using the weighted edit distance, the

robustness degree of a discrete signal with respect to an STL property. In Sect. 6 we describe

the implementation of our quantitative monitors and we demonstrate our approach on two

case studies. Finally, we draw our conclusions in Sect. 7.

2 Related work

The Levenshtein (edit) distance [28] has been extensively used in information theory,

computer science and bioinformatics for many applications, including approximate string

matching, spell checking and fuzzy string searching. Levenshtein automata [37] were intro-

duced to reason about the edit distance from a reference string. A Levenshtein automaton of

degree n for a string w recognizes the set of all words whose edit distance from w is at most

n. A dynamic programming procedure for computing the edit distance between a string and

a regular language has been proposed in [42]. The problem of computing the smallest edit

distance between any pair of distinct strings in a regular language has been studied in [26]. In

contrast to our work, these classical approaches to edit distance consider only operations with

simple weights on unordered alphabets and are not applied to dynamic reactive behaviors.

The edit distance for weighted automata was studied in [30], where the authors propose a

procedure for computing the edit distance between weighted transducers. A space efficient

algorithm for computing the edit distance between a string and a weighted automaton over

a tropical semiring was developed in [3]. The resulting approach is generic and allows for

instance to assign an arbitrary cost to each substitution pair. However, all substitution pairs

must be enumerated by separate transitions. In contrast, we consider signals with naturally

ordered alphabets as input strings and hence can efficiently handle substitution over large

alphabets by treating allowed input values with symbolic constraints. In addition, we use the

edit distance to define the semantics of a temporal specification formalism.

The weighted Hamming and edit distances between behaviors are also proposed in [36],

where the authors use it to develop procedures for reasoning about the Lipshitz-robustness

of Mealy machines and string transducers. The notion of robustness is different from ours,

and in contrast to our work it is not computed against a specification.

The quantitative semantics for temporal logics were first proposed in [18,35], with the

focus on the spatial similarity of behaviors, given by their point-wise comparison. The spatial

quantitative semantics is sensitive to phase shifts and temporal inaccuracies in behaviors—a

123

86 Form Methods Syst Des (2018) 53:83–112

small temporal shift in the behavior may result in a large robustness degree change. This

problem was addressed in [15], in which STL with spatial quantitative semantics is extended

with time robustness. In [2], the authors propose another approach of combining space and

time robustness, by extending STL with averaged temporal operators. Another approach to

determining robustness of hybrid systems using self-validated arithmetics is shown in [19].

Monitoring of different quantitative semantics is implemented in tools such as S-TaLiRo [4]

and Breach [13].

The problem of online monitoring robustness was studied more recently in [9,12]. The

authors of [12] propose an online monitoring approach that uses a predictor, which requires

for the future fragment of the logic the access to a model of the system. This is in contrast

to our black-box view of monitoring. In [9], the authors propose an interval-based approach

of online evaluation that allows estimating the minimum and the maximum robustness with

respect to both the observed prefix and unobserved suffix of the trace. In our work, we do not

provide such estimation about the future. Instead, our robustness value at every point in time

gives the distance of the observed prefix from the satisfaction/violation of the specification.

The recent results on using Skorokhod metric [39] to compute the distance between

piecewise-linear or piecewise-constant continuous behaviors [10] partially inspired our work.

Skorokhod metric quantifies both space and time mismatches between continuous behaviors

by allowing application of time distortions in behaviors in order to minimize their point-wise

distance. The distortion of the timeline is achieved by applying a retiming function—a contin-

uous bijective strictly increasing function from time domain to time domain. Given a behavior

x(t), the resulting retimed behavior r(x(t)) preserves the values and their order but not the

duration between two values. This information-preserving distance relies on continuous time

and is not applicable to the discrete time domain—stretching and compressing the discrete

time axis results inevitably in an information loss. Finally, the computation of the Skorokhod

distance was extended to the flow-pipes in [11] and to the epsilon-tubes in [8],where the

authors consider computing the distance between hybrid (continuous and discrete-time) sig-

nals. We are not aware of any work addressing the problem of computing the Skorokhod

distance between a behavior and a temporal specification.

Our work is also related with the notions of (ε, τ)-closeness in [1] and (ε, τ)-similarity

(requires the retiming to be order-preserving) introduced in [34] to compare two mixed-

analog signals and in conformance testing [1]. The parameters τ and ε are used to specify

how much it is allowed to wiggle in both time and space in order to transform one trace

into another. The main difference with this work is that our distance provides a cumulative

measure, while the other notions try to find the max possible discrepancy.

Recently published industrial case study [38] shows an application of STL monitoring

for verifying the sensor which uses SENT [24] protocol. We regard that work as completely

orthogonal to this paper. The case study focuses on qualitative monitors able to recover

upon violation detection and that are able to detect and collect multiple violations in one go.

The framework in that paper is limited to a particular class of asynchronous communication

protocols. In contrast, this paper is about quantitative monitoring for arbitrary STL properties.

3 Preliminaries

In this section, we provide the necessary definitions to develop the algorithm presented in

subsequent sections of the paper. We first shortly recall the notion of metric spaces and

123

Form Methods Syst Des (2018) 53:83–112 87

distances. We then define signals and signal temporal logic. Finally, we introduce a variant

of symbolic and weighted symbolic automata.

3.1 Metric spaces and distances

A metric space is a set for which distances between all elements in the set are defined.

Definition 1 (Metric space and distance) Suppose that M is a set and d : M × M → R is

a function that maps pairs of elements in M into the real numbers. Then M is a metric space

with the distance measure d , if (1) d(m1, m2) ≥ 0 for all m1, m2 in M ; (2) d(m1, m2) = 0 if

and only if m1 = m2; (3) d(m1, m2) = d(m2, m1) for all m1, m2 in M ; and (4) d(m1, m2) ≤

d(m1, m) + d(m, m2) for all m, m1, m2 in M .

Given m ∈ M and M ⊆ M , we can lift the above definition to reason about the distance

between an element m of M and the subset M of M as follows

d(m, M) = inf
m′∈M

d(m, m′)

We define the robustness degree ρ(m, M) of m with respect to the set M as follows

ρ(m, M) =

{

d(m, M \M) if m ∈ M

−d(m, M) otherwise

3.2 Signals

Let X be a finite set of variables defined over some domain D. Then, a signal s is a function

s : T× X → D, where T is the time domain1. We distinguish between analog, discrete and

digital signals. Analog signals have continuous value and time domains. The time domain

of discrete signals is the set of integers, while digital signals have in addition their value

domain restricted to a finite set. Digital signals can be obtained by sampling and quantization

of analog signals. The conversion of analog to digital signals is at the core of the signal

processing field and is in practice done by an analog-to-digital converter (ADC).

Sampling is the process of reducing the continuous time in analog signals to the discrete

time in the resulting discrete signal. The ideal theoretical sampling function periodically

measures the value of the analog signal every T time units, where T denotes the sampling

interval. Similarly, we denote by f the sampling frequency, that is the average number of

measurements obtained by sampling in one second, where f = 1/T . Given an analog signal

sa : R≥0 × X → Rn and a sampling interval T , applying the ideal sampling function to sa

results in a discrete signal sdisc : N × X → R such that sdisc(i, x) = sa(iT, x) for all i ≥ 0

and x ∈ X .

When sampling real-valued signals, it is impossible to maintain the arbitrary precision

of its values, which consequently must be restricted to a finite set. Quantization consists

of converting real values to their discrete numerical approximations, and thus allows to

map discrete to digital signals. We consider the basic uniform quantization function with a

quantization step Q which is defined as follows

Q(r) = Q · ⌊|r |/Q + 0.5⌋,

where r ∈ R. We note that the quantization can be decomposed into two stages, classification

and reconstruction. The classification function c maps the real input value into an integer

1 We use s(t) to denote the valuation vector of the variables in X at time t .

123

88 Form Methods Syst Des (2018) 53:83–112

index k, and the reconstruction function y converts k into the actual discrete approximation

of the input. Hence, we have that Q(r) = y(c(r)) where

c(r) = ⌊|r |/Q + 0.5⌋

y(k) = Q · k

The decomposition of the quantization into two independent stages has a practical

advantage—without loss of generality, we can from now directly work with digital sig-

nals obtained after the classification stage with their value domain being a finite subset of

N. We also restrict ourselves to signals that have finite-length and hence are of the form

sdig : [0, l) × X → [vmin, vmax], where [0, l) and [vmin, vmax] are intervals in N, and X is

now the set of variables defined over the domain [vmin, vmax]. We extend the signal notation

s(i, X) to denote the vector D|X | of all variable values in X at time i . From now on, we refer

to digital signals of finite length simply as signals and denote them by s.

3.3 Signal temporal logic

In this paper, we study signal temporal logic (STL) with both past and future operators

interpreted over digital signals of finite length.2

Let X be a finite set of variables defined over a finite interval domain D = [vmin, vmax] ⊆ N.

We assume that X is a metric space equipped with a distance d . The syntax of an STL formula

ϕ over X is defined by the grammar

ϕ := x ∼ u | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 U I ϕ2 | ϕ1 S I ϕ2

where x ∈ X , ∼∈ {<,≤}, u ∈ D, I is of the form [a, b] or [a,∞) such that a, b ∈ N and

0 ≤ a ≤ b. The other standard operators are derived as follows: true = p ∨ ¬p, false =

¬true, ϕ1 ∧ϕ2 = ¬(¬ϕ1 ∨¬ϕ2), �I ϕ = true U I ϕ, �I ϕ = ¬ �I ¬ϕ, –�I ϕ = true S I ϕ,
–�I ϕ = ¬ –�I ¬ϕ, ©ϕ = false U [1,1]ϕ and ⊖ϕ = false S [1,1]ϕ.

The semantics of an STL formula with respect to a signal s of length l is described via

the satisfiability relation (s, i) |� ϕ, indicating that the signal s satisfies ϕ at the time index

i , according to the following definition where T = [0, l).

(s, i) |� x ∼ u ↔ s(i, x) ∼ u

(s, i) |� ¬ϕ ↔ (s, i) �|� ϕ

(s, i) |� ϕ1 ∨ ϕ2 ↔ (s, i) |� ϕ1 or (s, i) |� ϕ2

(s, i) |� ϕ1 U I ϕ2 ↔ ∃ j ∈ (i + I) ∩ T : (s, j) |� ϕ2 and ∀i < k < j, (s, k) |� ϕ1

(s, i) |� ϕ1 S I ϕ2 ↔ ∃ j ∈ (i − I) ∩ T : (s, j) |� ϕ2 and ∀ j < k < i, (s, k) |� ϕ1

We note that we use the semantics for S I and U I that is strict in both arguments and that

we allow punctual modalities due to the discrete time semantics. Given an STL formula ϕ,

we denote by L(ϕ) the language of ϕ, which is the set of all signals s such that (s, 0) |� ϕ.

3.4 Automata and weighted automata

In this section, we define a variant of symbolic automata [41] and also present its weighted

extension. The notion of weighted automata and its well-established theory is provided in

[16] while symbolic weighted automata accepting input string over not necessarily finite set

have been investigated in [21].

2 Although this segment of STL is expressively equivalent to LTL, use the STL name to highlight the explicit

notions of real-time and quantitative values in the language.

123

Form Methods Syst Des (2018) 53:83–112 89

Similarly to the definition of STL, we consider D = [vmin, vmax] to be the finite interval

of integers equipped with the distance d and let X to be a finite set of variables defined over

D. The variable valuation v(x) is a function v : X → D, which we naturally extend to the

valuation v(X) of the set X . A variable constraint γ over X is defined by the grammar in

negation normal form γ := x ≤ c | ¬(x ≤ c) | γ1 ∨ γ2 | γ1 ∧ γ2, where x ∈ X and c ∈ D.

We denote by Ŵ(X) the set of all constraints definable over X . Given the valuation v(X) and

a constraint γ over X , we write v(X) |� γ when v(X) satisfies γ.

Definition 2 (Symbolic automata) We define a symbolic automaton A as the tuple A =

(D, X, Q, I, F,�), where D is the finite alphabet, X is a finite set of variables over D, Q is

a finite set of states, I ⊆ Q is the set of initial states, F ⊆ Q is the set of final states and

� = �X ∪�ε is the transition relation, where �X ⊆ Q ×Ŵ(X)× Q and �ε ⊆ Q ×{ε}× Q

are sets of transitions that consume an input letter and silent transitions, respectively.

Given a q ∈ Q, let E(q) denote the set of states reachable from q by following ε-transitions

in � only. Formally, we say that p ∈ E(q) iff there exists a sequence of states q1, . . . , qk

such that q = q1, (qi , ε, qi+1) ∈ � for all 0 ≤ i < k, and p = qk . Let s : [0, l) × X → D

be a signal. We say that s is a trace of A if there exists a sequence of states q0, . . . , ql in Q

such that q0 ∈ E(q) for some q ∈ I , for all 0 ≤ i < l, there exists (qi , γ, qi+1) ∈ � for

some γ such that s(i, X) |� γ and qi+1 ∈ E(q) and ql ∈ F . We denote by L(A) the set of all

traces of A . A path π in A is a sequence π = q0 · δ0 ·q1 · · · δn−1 ·qn such that q0 ∈ I and for

all 0 ≤ i < n, δi is either of the form (qi , γ, qi+1) or (qi , ε, qi+1). We say that π is accepting

if qn ∈ F . Given a trace s : [0, l) × X → D and a path π = q0 · δ0 · q1 · δ1 · · · δn−1 · qn ,

we say that s induces π in A if π is an accepting path in A and its projection to observable

alphabet letters gives s. We denote by �(A, s) = {π | s induces π in A} the set of all paths

in A induced by s.

We now introduce weighted symbolic automata, by adding a weight function to the tran-

sitions of the symbolic automaton, relative to the consumed input letter.

Definition 3 (Weighted symbolic automata) A weighted symbolic automaton W is the tuple

W = (D, X, Q, I, F,�,λ), where A = (D, X, Q, I, F,�) is a symbolic automaton and

λ : � × (D|X | ∪ {ε}) → Q+ is the weight function.

Let s be a signal of size l and π = q0 ·δ0 · · · δn−1 ·qn a path in W induced by s. The value of

π in W subject to s, denoted by vπ(s, W), is the sum of weights associated to the transitions

in the path π and subject to the signal s. We define the value v(s, W) of s as the minimum

value from all the paths in W induced by s, i.e. v(s, W) = minπ∈�(W ,s) vπ(s, W).

4 Weighted edit distance

Measuring the similarity of sequences is important in many application areas, such as infor-

mation theory, spell checking and bioinformatics. The Hamming distance dH is the most basic

and common string measure arising from the information theory. It measures the minimum

number of substitution operations needed to match equal length sequences. The edit distance

dE extends the Hamming distance with two additional operations, insertion and deletion

and is defined as the minimum accumulation of edit operation costs used to transform one

sequence into the other.

Neither of these metrics provide satisfactory solution for comparing digitized signals.

They are defined over unordered alphabets and associate fixed costs to different kinds of

123

90 Form Methods Syst Des (2018) 53:83–112

operations. In contrast, the value domain of digital signals admits a natural notion of a

distance representing the difference between two signal valuations. In addition, the Hamming

distance provides only point-wise comparisons between sequences and consequently does

not account for potential timing discrepancies in the sampled signals. Two discrete signals

that differ only in a constant time delay will typically have a large Hamming distance. The

edit distance addresses this problem by allowing us to bridge the time shifts using insertion

and deletion operations.

Inspired by [30,36], we propose the weighted edit distance as the measure for comparing

the similarity of two discrete signals. It adopts the insertion and deletion operations from

the edit distance and adapts the substitution operation to the ordered alphabets. Since we

consider multi-dimensional signals, we extend the cost of the substitution operation to take

into account different variable valuations.

Let X be a finite set of variables defined over some interval domain D = [vmin, vmax]. Given

two valuation vectors a, b ∈ D|X | of X , we denote by dM (a, b) the Manhattan distance [27]

between a and b, where dM (a, b) = �
|X |−1
i=0 |ai −bi |. Let wi , wd ∈ Q be weight constants for

the insertion and deletion operations. We then define the costs of the substitution cs , insertion

ci and deletion cd operations as follows: (1)cs(a, b) = dM (a, b); (2)ci = wi ; (3)cd = wd .

The definition of the WED adapts the classical edit distance recursive definition with the new

costs.

Definition 4 (Weighted edit distance) Let s1 : [0, l) × X → D and s2 : [0, l) × X → D

be discrete-time signals. The weighted edit distance dW (s1, s2) equals to dl,l(s1, s2) :

d−1,−1(s1, s2) = 0

di,−1(s1, s2) = di−1,−1(s1, s2) + ci

d−1, j (s1, s2) = d−1, j−1(s1, s2) + cd

di, j (s1, s2) = min

⎧

⎨

⎩

di−1, j−1(s1, s2) + cs(s1(i, X), s2(j, X))

di−1, j (s1, s2) + ci

di, j−1(s1, s2) + cd

Proposition 1 The weighted edit distance is a distance.

Remark We chose the Manhattan distance for the substitution cost because it combines the

absolute difference of several signal components.

We now further motivate the use of the weighted edit distance and discuss in more depth

its characteristics. We do this by comparing the weighted edit distance (dW) to the Hamming

distance (dH) and to the distance based on the infinity norm (dmax). In order to compare these

three distances, we record the data from a device implementing an automotive communication

protocol. We manually manipulate the data to illustrate specific distance properties. We note

that we normalize the two cumulative distances with the total number of data samples, in

order to have comparable results.

We first study the cumulative property of WED. Figure 1a, b depict two scenarios, both

consisting of a reference (sr) and a measured (sr) behavior. In the first scenario, the two

behaviors are equivalent, except for a short spike that happens during each pulse. In the

second scenario, the spikes are continuously repeated. Figure 1c, d show the evolution of

the three distances over time, where the distance value at time t corresponds to the distance

between the reference and measured behavior prefixes of size t . We can observe that dmax

measures the maximum deviation between sr and sm and hence does not distinguish between

a single and multiple deviations. On the other hand, both dH and dW are cumulative, and

123

Form Methods Syst Des (2018) 53:83–112 91

Fig. 1 Measuring similarity di,i (s1, s2) between a reference s1 and a measured s2 behavior—single versus

multiple deviations

the distance between the reference and the measured behavior increases with the number of

deviations.

Figure 2a–c show three scenarios with the measured signal being equivalent to the refer-

ence signal shifted by an increasing amount, respectively. Figure 2d–f show the evolution of

dW , dH and dmax over time. We first note that dmax does not make the distinction between

the three scenarios. Second, we can observe that dW grows slower than dH over time. This

happens because dW counts a small number of insertion and deletion operations, while dH

accumulates all the pointwise differences between sr and sm over time. Finally, we notice

that dH does not make a distinction between the second and the third scenario, despite the

different time shifts. This happens because in both scenarios the pulses from the measured

signal are superimposed over the the non-pulse segments of the reference behavior. In con-

trast, dW makes a distinction between the two situations and assigns a higher distance to the

third scenario.

Finally, we illustrate the difference between the weighted edit distance and the classical

edit distance (dE). Figure 3a, b show two scenarios consisting of a reference and a measured

behavior, that are in both cases the same, except for a short spike in each pulse. In the first

scenario, the magnitude of the spike is smaller than in the second scenario. Figure 3c, d

depict the evolution of dW and dE over time. We can see that in contrast to dW , dE cannot

distinguish between the two scenarios because its substitution operation has a fixed cost.

123

92 Form Methods Syst Des (2018) 53:83–112

Fig. 2 Measuring similarity di,i (s1, s2) between a reference s1 and a measured s2 behavior—phase shifts

4.1 Sampling, quantization and weighted edit distance

We compute the WED between digital signals resulting from physical behavior observa-

tions after sampling and quantization. In this section, we discuss the effect of inaccuracies

introduced by these operations on the WED.

Let s be an analog signal, T a sampling period and Q a quantization step. We assume that

s has a band limit fM and T ≤ 1/(2 fM). We denote by s[T] the discrete signal obtained

from s by sampling with the period T , and by s[T][Q] the digital signal obtained from s[T]

by quantization with the step Q.

We cannot directly relate the WED to the analog signals, because it is not defined in

continuous time. However, this distance allows tackling phase shifts in the sampled signals.

Consider two analog signals s1(t) and s2(t − τ) such that τ = iT for some i ≥ 0 and

their sampled variants s1[T](t) and s2[T](t). It is clear that with 2 · i insertion and deletion

operations, s2[T] can be transformed into s1[T] such that their remaining substitution cost

equals to 0. This situation is illustrated in Fig. 4 (see signals s1 and s2). We see that the

distance between the two signals initially grows due to the insertion and deletion operations,

but that eventually it becomes perfectly stable.

Now consider another signal s3(t) = s1(t − τ) such that τ is not a multiple of T . In this

case, the sampled signal s3[T](t) cannot be perfectly transformed into s1[T](t) by using

insertion and deletion operations because of the mismatch between the sampling period and

the phase shift. As a consequence, the distance between s1[T](t) and s3[T](t) will accumulate

substitution costs due to this mismatch. This scenario is also depicted in Fig. 4 (see signals s1

and s3). The figure shows that after an initial steep increase of the distance due to the insertion

and deletion operations, its value does not converge, but continues slowly increasing due to

the accumulation of remaining substitution costs.

It is obvious that the actual distance between two behaviors is affected by the sampling

frequency. We refer to [40] for the survey on the sampling theory, a field that studies the

effects of sampling continuous behaviors.

123

Form Methods Syst Des (2018) 53:83–112 93

Fig. 3 Measuring similarity di,i (s1, s2) between a reference s1 and a measured s2 behavior—magnitude of

deviations

Fig. 4 Weighted edit distances dW (s1, s2) and dW (s1, s3), where s1(t) = sin(2π f t), s2(t) = sin(2π f (t −

0.1)), s3(t) = sin(2π f (t − τ)), T = 0.01, f = 1H z and τ = π/15

4.2 Normalized weighted edit distance

The weighted edit distance is an accumulative distance. It follows that the distance between

two behaviors depends on several factors, including: 1) the size of the value domains; 2)

the frequency at which the two signals are sampled; and 3) the total duration of the trace.

123

94 Form Methods Syst Des (2018) 53:83–112

(a) (b)

Fig. 5 Computation of a dW (s, ϕ) and ρ(s, ϕ)

For instance, the comparison of two analog behaviors sampled at two different frequencies

can result in completely different absolute distance values. In order to have a more uniform

robustness valuation that is less affected by the above factors, we propose normalizing the

robustness values as follows.

Given signals s1, s2 of length l defined over X , the value domain D = [vmin, vmax], we

define the normalized weighted edit distance, which is always bounded by [0, 1] as follows:

d#
W (s1, s2) =

dW (s1, s2)

l|X |(vmax − vmin)
.

5 Weighted edit robustness for signal temporal logic

In this section, we propose a novel procedure for computing the robustness degree of a

discrete signal with respect to an STL property. In our approach, we set ci and cd to be equal

to |X |(vmax − vmin). In other words, the deletion and insertion costs are equal to the largest

substitution cost. The rationale behind this choice is that by inserting/deleting a data point,

we can add/remove the maximum value from the domain in the worst case.

5.1 From STL to weighted edit automata

Our procedure relies on computing the WED between a signal and a set of signals, defined by

the specification. It consists of several steps, illustrated in Fig. 5. We first translate the STL

formula ϕ into a symbolic automaton Aϕ that accepts the same language as the specifica-

tion. The automaton Aϕ treats timing constraints from the formula enumeratively, but keeps

symbolic guards on data variables3. We then transform Aϕ into a weighted edit automa-

ton Wϕ, a weighted symbolic automaton that accepts all the signals but with the value

that corresponds to the WED between the signal and the specification (Fig. 5a). We pro-

pose an algorithm for computing this distance. Computing the robustness degree between

a signal and an STL specification follows from the calculation of their WED, as shown in

Fig. 5b.

Let X be a set of finite variables defined over the domain D = [vmin, vmax] ⊆ N. We

consider an STL formula ϕ defined over X . Let s : [0, l) × X → D be a digital signal.

3 The time in Aϕ cannot be treated symbolically with digital clocks since every pair of states and clock

valuation may behave differently with respect to the WED.

123

Form Methods Syst Des (2018) 53:83–112 95

(a) (b)

Fig. 6 a Aϕ accepting L(ϕ)—all states are accepting and b Wϕ

5.1.1 From ϕ to Aϕ

In the first step, we translate the STL specification ϕ into the automaton Aϕ such that

L(ϕ) = L(Aϕ). The translation from STL interpreted over discrete time and finite valued

domains to finite automata is standard, and can be achieved by using for instance on-the-fly

tableau construction [20] or the temporal testers approach [33]. We note that we need to

accommodate these classic constructions to the finitary semantics of the temporal logic by

adapting accordingly the acceptance conditions (see for instance [17] for the interpretation

of LTL over finite traces).

Example 1 Consider the past STL formula ϕ = �(x = 4 → –�(x < 3)), where x is defined

over the domain [0, 5]. The resulting automaton Aϕ is shown in Fig. 6a.

5.1.2 From Aϕ to Wϕ

In this step, we translate the automaton Aϕ to the weighted edit automaton Wϕ. The automa-

ton Wϕ reads an input signal and mimics the weighted edit operations. In essence, Wϕ

accepts every signal along multiple paths. Each accepting path induced by the signal corre-

sponds to a sequence of weighted edit operations needed to transform the input signal into

another one allowed by the specification. The value of the least expensive path corresponds

to the weighted edit distance between the input signal and the specification. The weighted

automaton Wϕ explicitly treats substitution, insertion and deletion operations, by augment-

ing Aϕ with additional transitions and associating to them the appropriate weight function.

We now provide details of the translation and describe the handling of weighted edit oper-

ations. Let Aϕ = (D, X, Q, I, F,�) be the symbolic automaton accepting the language of

the specification ϕ.

Substitution In order to address substitutions in the automaton, we define a new set of substi-

tution transitions �s and associate to them the weight function λs as follows. Given q, q ′ ∈ Q,

let γ(q, q ′) =
∨

(q,γ,q ′)∈� γ. Then, we have:

123

96 Form Methods Syst Des (2018) 53:83–112

– (q, true, q ′) ∈ �s if there exists (q, γ, q ′) ∈ � for some γ; and

– λs((q, true, q ′), v) = dM (v, γ(q, q ′)), for all v ∈ D|X |.

We define the Manhattan distance of valuation v from a γ(q, q ′) as the minimum of

Manhattan distances of the valuation v from all the possible valuations that satisfy γ(q, q ′):

dM (v, γ(q, q ′)) = min{dM (v,w)},∀w ∈ W where W = {w | w |� γ(q, q ′)}.

Intuitively, we replace all the transitions in Aϕ with new ones that have the same source

and target states. We relax the guards in the new transitions and make them enabled for any

input. On the other hand, we control the cost of making a transition with the weight function

λs , which computes the substitution cost needed to take the transition with a specific input.

This cost is the Manhattan distance between the input value and the guard associated to the

original transition.

Deletion Addressing deletion operations consists in adding self-loop transitions that consume

all the input letters to all the states with the deletion cost cd = |X |(vmax − vmin), thus

mimicking deletion operations. We skip adding a self-loop transition to states that already

have the same substitution self-loop transition—according to our definition cd ≥ cs(a, X)

for all a, hence taking the deletion transition instead of the substitution one can never improve

the value of a path and is therefore redundant. We define the set of deletion transitions �d

and the associated weight function λd as follows:

– (q, true, q) ∈ �d if (q, true, q) /∈ �s ; and

– λd(δ, v) = cd for all δ ∈ �d and v ∈ D|X |.

Insertion In order to mimic the insertion operations, we augment the transitions relation of

Wϕ with silent transitions. For every original transition in �, we associate another transition

with the same source and target states, but labeled with ε and having the insertion cost

ci = |X |(vmax − vmin). Formally, we define the set of insertion transitions �i and the

associated weight function λi as follows:

– (q, ε, q ′) ∈ �i if (q, γ, q ′) ∈ � for some γ; and

– λi (δ, {ε}) = ci for all δ ∈ �i .

Given the symbolic automaton Aϕ = (D, X, Q, I, F,�) accepting the language is the

tuple (D, X, Q, I, F,�′,λ′), where �′ = �s ∪ �d ∪ �i and λ′(δ, v) = λs(δ, v) if δ ∈ �s ,

λ′(δ, v) = λd(δ, v) if δ ∈ �d and λ′(δ, ε) = λi (δ, ε) if δ ∈ �i .

Example 2 The weighted edit automaton Wϕ obtained from Aϕ is illustrated in Fig. 6b.

Both automatons from Fig. 6b use the same input alphabet D = {0, 1, 2, 3, 4, 5}. The blue

transitions, such as (A, 0, A) with weight 5, correspond to the deletion transitions. The red

transitions, such as (A, ε, B), correspond to the insertion transitions.

The resulting weighted automaton Wϕ allows determining the weighted edit distance

between a signal w and the formula ϕ, by computing the value of s in Wϕ.

Theorem 1 dW (s,ϕ) = v(s, Wϕ).

The consequence of this Theorem is that two symbolic automata that accept the same language

will always give the same distance from the same input.

5.2 Computing the value of a signal in a weighted edit automaton

We now present an on-the-fly algorithm Val, shown in Algorithm 1, that computes the value of

a signal s in a weighted automaton W . In every step i , the algorithm computes the minimum

123

Form Methods Syst Des (2018) 53:83–112 97

cost of reaching the state q with the prefix of s consisting of its first i values. After reading

a prefix of s, we may reach a state q ∈ Q in different ways with different costs. Note that

it is sufficient to keep the state with the minimum value in each iteration. It follows that the

algorithm requires book keeping |Q| state value fields in every iteration. We now explain the

details of the algorithm. The procedure first initializes the costs of all the states in W (see

Algorithm 2). The initial states are set to 0 and the non-initial ones to ∞. Then, we compute

the effect of taking the ε transitions without reading any signal value. It is sufficient to iterate

this step |Q| times, since within |Q| iterations, one is guaranteed to reach a state q that was

already visited with a smaller value v. In every subsequent iteration i , we first update the state

values by applying the cost of taking all transitions labeled by s(i, X) and then update the

effect of taking ε transitions |Q| times. The weight function of a substitution cost is computed

as follows: λ(v, x ≤ k) gives 0 if v ≤ k, and v − k otherwise; λ(v,¬(x ≤ k)) is symmetric;

λ(v,ϕ1 ∧ ϕ2) = max(λ(v,ϕ1),λ(v,ϕ2)) and λ(v,ϕ1 ∨ ϕ2) = min(λ(v,ϕ1),λ(v,ϕ2)).

Upon termination, the algorithm returns the minimum cost of reaching an accepting state

in the automaton.

Theorem 2 Val(s, W) = v(s, W).

Theorem 3 Given a signal s of length l defined over X and a weighted automaton W with

n states and m transitions, Val(s, W) takes in the order of O(lnm)) iterations to compute

the value of s in W , and requires in the order of O(n(⌈log(l(vmax − vmin))⌉)) memory.

Algorithm 1 Val(s, W)

Input: s and Wψ

Output: v

InitVal(W)

for all i ∈ [0, l) do

for all δ = (q, γ, q ′) ∈ � do

v′(q ′) ← min(v′(q ′), v(q) + λ(s(i, X), δ))

end for

for i = 0; i < |Q|; i + + do

for all δ = (q, ε, q ′) ∈ � do

v′(q ′) ← min(v′(q ′), v(q) + λ(δ, ε))

end for

for all q ∈ Q do

v(q) ← v′(q)

v′(q) ← ∞

end for

end for

end for

v ← minq∈F v(q)

return v

Algorithm 2 InitVal(W)

for all q ∈ Q do

v(q) ← (q ∈ I) ? 0 : ∞; v′(q) ← ∞

end for

for i = 0; i < |Q|; i + + do

for all δ = (q, ε, q ′) ∈ � do

v′(q ′) ← min(v′(q ′), v(q) + λ(δ, ε))

end for

for all q ∈ Q do

v(q) ← v′(q)

v′(q) ← ∞

end for

end for

Example 3 Consider the STL property ϕ from Example 1, the associated weighted edit

automaton Wϕ from Fig. 1 and the signal4 s : [0, 2] → [0, 5] such that s(0) = 5, s(1) = 5

and s(2) = 4. It is clear that (s, 0) �|� ϕ, since s(2) = 4, while there was not a single

0 ≤ i < 2 where s(i) < 3. We illustrate in Fig. 7 the computation of v(s, Wϕ). We can see

that with the signal s, we can reach one of the accepting states (B or C) with the value 1.

This value corresponds to one substitution operation, replacing the value of 4 in s(2) by 5,

which allows vacuous satisfaction of the property ϕ.

4 Since s has only one component, we skip the variable name.

123

98 Form Methods Syst Des (2018) 53:83–112

Fig. 7 Example—computation of v(s, Wϕ)

6 Implementation and case study

We now describe our implementation of quantitative monitors for STL. In order to evaluate

our approach, we conducted two case studies. The first case study takes specification from

automotive benchmarks published in [5]. In second case study we applied our quantitative

monitors on Single Edge Nibble Transmission (SENT) protocol, a standard for sensor to

controller communication in the automotive industry [24].

In both cases, parser for STL formulas is developed in Java using ANTLR [32]. In order

to translate STL properties into temporal testers, we take basic temporal testers for STL

operators and create their product. Then, we convert such top level temporal tester into an

acceptor automaton. We use JAutomata [22] library to represent the testers and the acceptors.

We then generate quantitative monitor code in Verilog HDL. The resulting monitor is a hard-

ware implementation of the weighted automata and the underlying algorithm for computing

the weighted edit distance. The monitor operates at the frequency limited by the maximum

achievable frequency of the FPGA.

6.1 Benchmarks for automotive systems

For the evaluation of our approach, we apply it to two benchmarks implemented in Mat-

lab/Simulink and published in [5].

6.1.1 Automatic transmission system

We first consider the slightly modified automatic transmission deterministic Simulink demo

provided by Mathworks as our system-under-test (SUT). It is a model of an automatic trans-

mission controller that exhibits both continuous and discrete behavior. The system has two

inputs—the throttle ut and the break ub. The break allows the user to model variable load

on the engine. The system has two continuous-time state variables—the speed of the engine

ω (RPM), the speed of the vehicle v (mph) and the active gear gi . The system is initialized

with zero vehicle and engine speed. It follows that the output trajectories depend only on

the input signals ut and ub, which can take any value between 0 and 100 at any point in

time. The Simulink model contains 69 blocks including 2 integrators, 3 look-up tables, 2

two-dimensional look-up tables and a Stateflow chart with 2 concurrently executing finite

state machines with 4 and 3 states, respectively. The benchmark defines 8 STL formalized

requirements that the system shall satisfy, shown in Table 1.

123

Form Methods Syst Des (2018) 53:83–112 99

Table 1 Automatic transmission properties [5]

ϕ

ϕ1 �(ω < 4500)

ϕ2 �((ω < 4500) ∧ (v < 120))

ϕ3 �((g2 ∧ ©g1) → �(0,2.5]¬g2)

ϕ4 �((¬g1 ∧ ©g1) → �(0,2.5]g1)

ϕ5

∧4
i=1 �((¬gi ∧ ©gi) → �(0,2.5]gi)

ϕ6 ¬(�[0,4](v > 120) ∧ �(ω < 4500))

ϕ7 �[0,4]((v > 120) ∧ �(ω < 4500))

ϕ8 ((g1 U g2 U g3 U g4) ∧ �[0,10](g4 ∧ �[0,2](ω > 4500))) →

�[0,10](g4 → ©(g4 U [0,1](v ≥ 120)))

Fig. 8 A simulation trace s from the automatic transmission model and dW (s, ¬ϕ6)

We now describe the evaluation setup. We simulated the Simulink model with fixed-step

sampling and recorded the results. The obtained traces, as the one shown in Fig. 8, were then

further discretized with the uniform quantization. We have obtained 751 samples from the

Simulink model and normalized all variables’ value domain to the interval [0, 5000] which

is the range of RPM variable, thus achieving fair reasoning about their substitution cost.

We designed a testbench in Verilog to stimulate the monitor with generated values from the

Simulink model. We used Xilinx Vivado to perform monitor simulation and synthesis.

Figure 8 illustrates the monitoring results for ϕ6 on a specific gear input. In the depicted

scenario, the speed does not reach 120 mph in 4 s, a sufficient condition for the satisfaction

of the formula. In order to violate the formula, we need to alter both v and ω signals such

that 1) v reaches 120 mph at any moment within the first 4 s; and (2) ω remains continuously

below 4500 rpm. These alterations result in (1) a single substitution happening within the

123

100 Form Methods Syst Des (2018) 53:83–112

Table 2 Evaluation results for automatic transmission benchmark

ρ Wϕ W¬ϕ

|Q| |�| #FF #LUT |Q| |�| #FF #LUT

ϕ1 −2528 2 2 62 260 4 8 94 657

ϕ2 −11,423 2 2 75 306 4 11 107 799

ϕ3 1000 496 1374 4106 53,033 992 2878 8127 106,937

ϕ4 1000 496 692 3061 22,777 992 1445 6025 44,968

ϕ5 n/a n/a n/a n/a n/a n/a n/a n/a n/a

ϕ6 5337 405 813 6540 66,085 409 903 6504 73,657

ϕ7 −5336 403 903 6504 73,766 405 813 6545 66,116

ϕ8 n/a n/a n/a n/a n/a n/a n/a n/a n/a

first 4 s which is necessary to bring v to 120 mph; and (2) the accumulation of substitution

costs in the interval between 7 and 8 s of the simulation where ω actually exceeds 4500 rpm.

Note that the robustness degree decreases in the first 4 s. This happens because the actual

v increases and the substitution cost needed for v to reach 120 mph is continuously being

improved.

The evaluation results are shown in Table 2. We tested the correctness of STL to automata

translation by generating both acceptors for ϕ and ¬ϕ. The presented robustness degrees are

not normalized, which can be statically computed using the formula from Sect. 4. It is clear

from our table that either the distance from ϕ or from its negation is always 0. The dominant

type of resources when implementing our monitors on FPGA hardware are LUTs. This is not

surprising, due to the large combinatorial and arithmetic requirements of the computation.

We can also note that the size of our monitors is sensitive to the timing bounds in the formulas

and the sampling period of the input signals. Our monitor automata enumerate clock ticks

instead of using a symbolic representation. The enumeration is necessary because state—

clock valuation pairs can have different values associated and thus cannot be grouped. We

were not able to generate monitors for ϕ5 and ϕ8 due to the state explosion. However, ϕ5 can

be decomposed into 4 independent sub-properties. We can see several ways to handle large

properties such as ϕ8 that we will investigate in the future—by reformulating the specification

using both past and future operators, by using larger sampling periods (smaller time bounds

in the formula) and by using more powerful FPGA.

6.1.2 Fault-tolerant fuel control system

The second automotive benchmark is based on fault-tolerant fuel control system model [5,23].

This system ensures proper air-to-fuel ratio in modern car engines. It must be adaptive to any

kind of external failures, such as sensor failures. Since the occurrence of failures is modeled

by Poisson stochastic processes, this benchmark will evaluate our quantitative monitors with

a model of a Stochastic Cyber Physical System.

The system has throttle as an input which affect failure arrival rates. The change in detected

fuel level can be caused either by throttle or a sensor failure. Such change directly affects

air-to-fuel ratio λ which is the output of the model. We sample this variable over time in

order to create stimulus for our monitors. We collected 10,000 samples from the model

output. We rounded double precision output to 2 decimals, and multiplied it by 100 for easier

representation in hardware testbench.

123

Form Methods Syst Des (2018) 53:83–112 101

Fig. 9 Calculated positive and negative robustness for obtained air-to-fuel λ

The requirement for air-to-fuel ratio λ specifies that no matter what kind of disturbance

in system occurs, the value of λ must stabilize within certain value limit in specified time

window. We call this a bounded stabilization property and formalize it in STL with the

following formula:

ϕ9 = �(λ > Vlimit → �[0,1s]�[0,1s](λ < Vlimit))

As suggested by the authors of [5], we use Vlimit = 1.1 · Vid , where Vid corresponds to

ideal air-to-fuel ratio when no throttle change or a sensor failure occurs.

In Fig. 9 we can observe change of λ and robustness values w.r.t. the formula. We see

several λ pulses caused by the disturbance in the system. Due to the initial conditions, negative

robustness is greater than zero. The first pulse is satisfying the requirement since it stabilizes

to required Vlimit within 1 second time window. Since it satisfies the bounded stabilization

property and does not add any WED cost, the negative robustness value remains the same

before and after the pulse.

The next disturbance in the system generates more impact on air-to-fuel ratio. In this case

the signal does not stabilize fast enough. Therefore the WED algorithm suggests to substitute

problematic parts of the trace with correct values. Since the substitution costs accumulate,

the negative robustness keeps increasing. Positive robustness equals zero throughout the

simulation due to the fact that the trace is violating the formula from the start.

We report on monitor size and FPGA resource consumption in Table 3. The large negative

robustness value is due to several bounded stability violations and significantly larger num-

ber of samples compared to automatic transmission system testbench. Increased resource

consumption is consequence of the fact that the formula uses future time STL operators over

bounded time intervals.

123

102 Form Methods Syst Des (2018) 53:83–112

Table 3 Evaluation results for fault-tolerant fuel control system properties [5]

ρ Wϕ W¬ϕ

|Q| |�| #FF #LUT |Q| |�| #FF #LUT

ϕ9 −43,878 882 1493 13,203 119,989 1574 2648 23,624 212,341

Fig. 10 A SENT frame starts with a mandatory synchronization pulse (SYNC), followed by a status nibble

(ST), data nibbles (D1, D2, D3), rolling counters (RC1, RC2), bit inverse of D1 (ND1), cyclic redundancy

check (CRC), and finishes with an optional pause

6.2 SENT protocol case study

Single Edge Nibble Transmission Protocol (SENT) protocol is an industry standard SAE

J2716 [24] that specifies unidirectional data encoding scheme from transmitting device (typ-

ically a sensor) to a controller. It is usually found in automotive applications such as the

Electronic Power Steering (EPS), or the Electronic Braking System (EBS) where sensors

continuously send data to the Engine Control Unit (ECU). SENT information is encoded

into frames and transmitted over a single line in serial fashion. A SENT frame consists of

several consecutive components, each defined by a dedicated pulse. Presence of certain pulses,

such as the pause pulse, may vary depending on the system configuration. Data is always

transmitted in nibbles and encoded in data nibble pulse length (Pulse Width Modulation),

regardless of the configuration. Figure 10 shows an example of a SENT frame.

6.2.1 Formalized SENT requirements

In order to communicate without errors, SENT transmitter must comply to timing and elec-

trical requirements specified by the standard. We focus on monitoring timing requirements

of the rising and falling edges of a pulse. If these timing constraints are not met, it is not

guaranteed that the controller will be able to decode the data from the pulse. A correct SENT

pulse with timing requirements is shown in Fig. 11.

The timing requirements of interest can be stated in natural language as follows: the

fall/rise time from V1 to V2 must be no longer than T f all /Trise µs. Before applying our

approach we formalize the requirements with following STL formulas:

ϕ10 = �(↓ high → mid U [0,T f all] ↑ low)

ϕ11 = �(↓ low → mid U [0,Trise] ↑ high)

where start and end operators are defined by ↑ p = ⊖(¬p) ∧ p and ↓ p = ⊖(p) ∧ ¬p,

respectively. The SENT standard allows the following values: T f all ≤ 6.5 µs and Trise ≤

18 µs. Voltage levels are also specified in the standard, however in our experiments they are

scaled to the Analog-to-Digital converter output range.

123

Form Methods Syst Des (2018) 53:83–112 103

Fig. 11 SENT nibble pulse: a pulse starts (Nstart) with a falling edge f, followed by a low region l, followed

by a rising edge r, followed by a high region h

6.2.2 Evaluation results

In order to test the monitors with realistic data, we recorded output from a real magnetic sensor

which implements the SENT protocol. We used the Hall-effect sensor with SENT interface

from Infineon Technologies. The Hall-effect cell in this sensor measures the magnetic flux.

Such information can be used for linear and angular position sensing. In the automotive

domain, this sensor is used to sense steering torque and pedal and throttle position.

According to the SENT standard, devices are configured prior to operation. Therefore, we

are allowed to assume that the configuration of SENT frame is static and its structure cannot

change during runtime.

In Fig. 12 we can see the first SENT requirement monitored on a trace which represents

a correct SENT pulse falling edge. For this pulse we compute both positive and negative

robustness degree. In the beginning of the trace, the left hand side of the implication is

not satisfied, therefore the entire formula is trivially satisfied and the negative robustness is

zero. In contrast, the positive robustness is equal to the WED cost of creating a violating

trace—which can be done simply by substituting high sample with mid, thus making ↓ high

condition true and the entire formula false. We note that the positive robustness decreases

in the course of the execution—this happens because the robustness algorithm dynamically

discovers a cheaper way to transform the trace into a violating one.

We now analyze these results in more detail. At the moment when the left hand side of

the implication becomes satisfied (dashed yellow marker in Fig. 12, the right hand side of the

formula is not yet satisfied. This results in an increase of the negative robustness that comes

from the accumulated WED substitution costs needed to disarm the ↓ high condition. After

observing a sufficient number of trace samples, the robustness algorithm realizes that it is

cheaper to perform substitutions at the low value end of the falling edge in order to make

the right hand side of the formula hold. As a consequence, the negative robustness starts

also decreasing. Finally, the monitor starts observing the samples that satisfy the right hand

side of the implication, thus also satisfying the entire formula. This results in the negative

robustness dropping to zero, but also in an increase of the positive robustness (see the trace

segment after the yellow mark in Fig. 12). The small positive robustness degree conveys two

123

104 Form Methods Syst Des (2018) 53:83–112

Fig. 12 Calculated positive and negative robustness for SENT pulse falling edge which satisfies T f all require-

ment

Fig. 13 Calculated positive and negative robustness for SENT pulse rising edge which violates Trise require-

ment

important messages: (1) the observed execution satisfies the timing requirements; and (2) a

small change of the trace could violate the requirement.

In Fig. 13 we can see the rising edge timing requirement monitored on a trace which

represents a violating SENT pulse. The violating pulse was artificially created from a correct

trace which was recorded from the actual sensor. The violation was created by replaying the

correct recorded values at a slower speed, which prolonged the rising edge length.

123

Form Methods Syst Des (2018) 53:83–112 105

Table 4 Evaluation results for SENT protocol properties

ρ Wϕ W¬ϕ SAT

|Q| |�| #FF #LUT |Q| |�| #FF #LUT trace

ϕ10 11 208 627 3272 50,046 498 1945 7745 148,852 Yes

ϕ11 − 41 558 1677 8865 136,321 1338 5224 21, 191 405,604 No

In this case the evolution of positive and negative robustness degree over time is converse

to the previous case. The obvious difference is that the final value of the positive robustness

is zero and the negative robustness degree is non-negative. This is valid result because the

trace is violating the rising edge timing requirement Trise ≤ 18 µs. The negative robustness

is larger than the positive robustness degree of the previous example in Fig. 12, due to the

larger cost of compensating for timing violation of the rising edge.

In Table 4 we report on FPGA resource consumption of the generated monitors. Flip-flops

(FF) represent memory elements which are used to implement automaton states. Lookup

tables (LUT) implement dynamic programming calculations on taking the minimum cost in

every step for every state. The linear dependency between increase in number of transitions

of automaton and amount of LUTs used can be observed in Table 4. The same conclusion

can be drawn for the number of states and the number of FFs consumed.

7 Conclusions and future work

In this paper, we proposed a new procedure for measuring robustness of STL properties

based on the weighted edit distance. The distance is cumulative by definition which allows

robustness degree to be sensitive on the number of violations of the formula. It is also sensitive

to the length of the signal, but also to the sampling rate and the number of components in the

signal. Distance normalization would help to obtain a uniform measure of “goodness” of a

behavior. Although in this paper we focus on the quantitative semantics of STL, the weighted

edit distance can be applied to other specification languages over finite signals.

Our FPGA implementation provides the possibility to quantify the distance to the violation

of safety requirements in real-time on actual or emulated hardware. We have successfully

demonstrated our approach to check relevant safety properties in the automotive domain,

i.e. by monitoring the behavior of the engine through the observation of essential signals

such as air-to-fuel ratio. Furthermore, we show that our method is also suitable to verify

well-established industrial standard such as the SENT protocol.

Future work Treating the value domain symbolically is natural and we exploit this fact

in the paper. On the other hand, combining quantitative semantics with symbolic time is

not straightforward. In the qualitative case, representing the time symbolically can be done

because there is a certain equivalence between states that have the same discrete location

and different clock valuations, and such states can be grouped together. In the quantitative

setting, this is not the case—two states with the same discrete location and different clock

valuations will in general have different values and hence cannot be grouped together. Such

a symbolic representation of quantitative states might be possible if some accuracy can be

dropped. We will consider extending our algorithm to automata with discrete clocks.

123

106 Form Methods Syst Des (2018) 53:83–112

We plan to exploit the quantitative robustness degree of our framework to gain predictive

ability and extend our monitors for the system health and fail-aware applications.

Acknowledgements Open access funding provided by Austrian Science Fund (FWF).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-

tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and

reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons license, and indicate if changes were made.

A Appendix: Theorem Proofs

Proposition 1 The weighted edit distance is a distance.

Proof The proof is similar to the proof that edit distance is a distance, and is given for

completeness reason.

1. dW (s, s) = 0 : in order to transform s to itself, no insertions or deletions are needed, and

all substitutions have cost 0.

2. dW (s1, s2) = dW (s2, s1) : insertions and deletions are inverses of each other, while

substitution is symmetric.

3. dW (s1, s2) ≥ 0 : by definition, all costs are greater or equal to 0.

4. dW (s1, s2) ≤ dW (s1, s)+dW (s, s2) :by definition, dW (s1, s2) is the minimum summation

of insertion, deletion and substitution costs needed to transform s1 to s2. Transforming

s1 to s, and then s to s2 is one way of transforming s1 to s2, and hence cannot be cheaper

than dW (s1, s2).

⊓⊔

For the next two theorems, we first prove an auxiliary lemma.

Lemma 1 Let s be a signal, W a weighted symbolic automaton and π1 and π2 two paths

in W induced by s such that both paths terminate in the same state q ∈ Q and vπ1(s, W) <

vπ2(s, W). Then, for all continuations s′ of s and all paths π1 · π and π2 · π induced by

s · s′, vπ1·π(s · s′, W) < vπ2·π(s · s′, W).

Proof The proof follows directly from the definition of path and the definition of path value

in weighted automaton W . Each continuation path of either π1 or π2 must start from the state

q . Since both π1 and π2 terminates at state q it means that all symbols from s are consumed

once a state q ′ is reached. For this reason, it is clear that only s′ affects transition weights in

π. As a consequence, and by the definition of vπ(s, W) the following holds:

vπi ·π(s · s′, W) = vπi
(s, W) + vπ(s′, W).

By definition, vπ(s, W) is a sum of non-negative transition weights. Consequently, the

following holds:

vπ1(s, W) + vπ(s′, W) < vπ2(s, W) + vπ(s′, W .

⊓⊔

Theorem 1 dW (s,ϕ) = v(s, Wϕ).

Due to the length of the proof, it is presented in separate appendix below.

123

http://creativecommons.org/licenses/by/4.0/

Form Methods Syst Des (2018) 53:83–112 107

Theorem 2 Val(s, W) = v(s, W).

Proof The algorithm iteratively explores the paths in W induced by s and computes their

values after reading the current prefix. Although the number of paths grows with the number

of iterations, by Lemma 1 it is sufficient to keep in every iteration only the minimum value

of reaching each state in Q after reading the current prefix. We also bound the number of

consecutive silent transitions (insertion operations) to |Q| in every iteration—it is guaranteed

that if a state q ′ is reachable from state q , it can be reached within |Q| steps. When the main

loop of the algorithm terminates, the values associated to each state clearly correspond to

the minimal values of reaching them with the signal s—the minimum value of an accepting

state hence corresponds to v(s, W). ⊓⊔

Theorem 3 Given a signal s of length l defined over X and a weighted automaton W with

n states and m transitions, Val(s, W) takes in the order of O(l(nm)) iterations to compute

the value of s in W , and requires in the order of O(n(⌈log(l(vmax − vmin))⌉)) memory.

Proof In Algorithm 1, there are l main iterations, and in each iterations one needs to do m

updates due to substitutions/deletions and mn updates due to ε-transition propagation. For the

space complexity, we need to keep for each state a value, that can be at most l(vmax − vmin)

and can be encoded in binary. ⊓⊔

B Proof of Theorem 1

In this section, we provide the proof that d(s,ϕ) = v(s, Wϕ). In order to achieve this goal,

we decompose the problem into the following smaller instances:

dW (s,ϕ) = v(s, Wϕ) ⇔

(1) dW (s, L(ϕ)) = v(s,
⋃

s′∈L(ϕ)

W s′

ϕ) ⇔

(2) min
s′∈L(ϕ)

dW (s, s′) = min
s′∈L(ϕ)

v(s, Ws′) ⇔

(3) dW (s, s′) = v(s, Ws′)

where s′ represents an arbitrary word from the language of formula ϕ.

In (1), we first decompose Wϕ into a (possibly infinite) union of weighted symbolic

automata W s′
, where each W s′

models all possible edit operations that are applicable to

transform an arbitrary signal s into another signal s′ ∈ L(ϕ). In (2), we then show that

finding s′ ∈ L(ϕ) that minimizes the distance dW (s, s′) is equivalent to finding the s′ ∈ L(ϕ)

that minimizes the value v(s, W s′
). Finally, in (3) we show that for an arbitrary s′, the distance

dW (s, s′) equals to the value of the value v(s, W s′
). We proceed in the bottom up fashion, by

proving first (3), i.e. d(s, s′) = v(s, W s′
), where W s′

is a weighted edit automaton obtained

by applying the procedure from Sect. 5.1.2 to the automaton As′
that accepts only the trace

s′.

Definition 5 Given a signal s, we define a single word acceptor (SWA) for s, As , as the

minimal automaton such that L(As) = {s} holds. We denote by W s the single word weighted

acceptor (SWWA) that is constructed from As by applying the procedure from Sect. 5.1.2.

We note that for every s of size n, both As and W s consist of a sequence of locations

q0, . . . , qn , where q0 is the only initial location, qn is the only final location, and for all

123

108 Form Methods Syst Des (2018) 53:83–112

Fig. 14 An array of SWWAs W s[0, j) that model all possible edit operations on each prefix s[0, j) ∈ P(s)

of s ∈ L(ϕ)

0 < i ≤ n, the incoming transitions to qi have a source either in qi−1 or in qi . We define

by P(s) the set of all prefixes of a signal s, where s[0, i) denotes the prefix of s of size i ,

where 0 ≤ i ≤ |s|. In Fig. 14, we illustrate the array of weighted edit automata W s[0,i) for

the prefixes of the signal s of size 4.

Lemma 1 Let s and s′ be two arbitrary signals of size m and n, respectively. Then, for all

0 ≤ i ≤ m and 0 ≤ j ≤ n, we have that dW (s[0, i), s′[0, j)) = v(s[0, i), W s′[0, j)).

Proof We prove this lemma by induction.

Base case: We first prove that (1) dW (ε, s′[0, j)) = v(ε, W s′[0, j)) for all 0 ≤ j ≤ n and

(2) dW (s[0, i), ε) = v(s[0, i), W ε) for all 0 ≤ i ≤ m. In the case (1), by the definition of

the weighted edit distance dW (ε, s′[0, j)) = jci . The cheapest path from the initial to the

finite location in W s′[0, j) induced by an empty word is by taking j consecutive ε (insertion)

transition, each inducing a cost of ci . In the case (2), by the definition of the weighted edit

distance dW (s[0, i), ε) = icd . The cheapest path from the initial to the accepting state in W ε

induced by s[0, i) is to consume the i letters by consecutive self-loop (deletion) transition,

each inducing a cost of cd .

Inductive step: By inductive hypothesis, we assume that d(s[0, i − 1), s′[0, j − 1)) =

v(s[0, i − 1), W s′[0, j−1)), d(s[0, i − 1), s′[0, j)) = v(s[0, i − 1), W s′[0, j)) and d(s[0, i),

s′[0, j − 1)) = v(s[0, i), W s′[0, j−1)). We now prove that d(s[0, i), s′[0, j)) = v(s[0, i),

W s′[0, j)). By definition of the weighted edit distance, we have that

dW (s[0, i), s′[0, j)) = min

⎧

⎨

⎩

dW (s[0, i − 1), s′[0, j − 1)) +cs(s(i), s′(j))

dW (s[0, i), s′[0, j − 1)) +ci

dW (s[0, i − 1), s′[0, j)) +cd

123

Form Methods Syst Des (2018) 53:83–112 109

We now prove that

v(s[0, i), W s′[0, j)) = min

⎧

⎨

⎩

v(s[0, i − 1), W s′[0, j−1)) +cs(s(i), s′(j))

v(s[0, i), W s′[0, j−1)) +ci

v(s[0, i − 1), W s′[0, j)) +cd

We first observe that W s′[0, j) has only one final location q j . By the definition of the

weighted symbolic automata, path values are non-negative and additive, and by the definition

of W s′[0, j), any location q j ′ , where 0 < j ′ ≤ j can be reached in one step only from q j ′

or q j ′−1. It follows that it is sufficient to consider s[0, i) and s[0, i − 1) and q j and q j−1

in order to prove d(s[0, i), s′[0, j)) = v(s[0, i), W s′[0, j)). Let π = π′ · δ · q j be the path

with minimum value induced by s[0, i) in W s′[0, j). By the the definition of W s′[0, j), q j

has 3 incoming transitions: (1) a substitution transition from q j−1 to q j ; (2) an ε (insertion)

transition from q j−1 to q j ; and (3) a self-loop (deletion) transition in from q j to q j .

By the definition of the value in a weighted symbolic automaton, the value ofπ corresponds

to the value of π′ to which the cost of the last transition δ is added, which is the minimum of

the above three cases. In the case (1), π′ reaches q j−1 with s[0, i − 1) consumed. The value

accumulated by π′ corresponds to the value of π′ induced by s[0, i − 1) in W s′[0, j−1), i.e.

v(s[0, i −1), W s′[0, j−1)). The added cost of the last transition corresponds to cs(s(i), s′(j)).

In the case (2), π′ reaches q j−1 with s[0, i) consumed. The value accumulated by π′ cor-

responds to the value of π′ induced by s[0, i) in W s′[0, j−1), i.e. v(s[0, i), W s′[0, j−1)). The

added cost of the last transition corresponds to the cost ci of an insertion. In the case (3), π′

reaches q j with s[0, i −1) consumed. The value accumulated by π′ corresponds to the value

of π′ induced by s[0, i − 1) in W s′[0, j), i.e. v(s[0, i − 1), W s′[0, j)). The added cost of the

last transition corresponds to the cost cd of a deletion. ⊓⊔

Corollary 1 dW (s, s′) = v(s, W s′
)

Corollary 1 is a special case of Lemma 1, where i = m and j = n. We can now generalize

Corollary 1 with the following lemma, in order to take into account all the (possibly infinite

number of) signals that are in a language of an STL formula ϕ.

Lemma 2 mins′∈L(ϕ) dW (s, s′) = mins′∈L(ϕ) v(s, W s′
).

Proof Follows directly from Corollary 1 and the definition of a minimum. ⊓⊔

Corollary 2 dW (s,ϕ) = v(s,
⋃

s′∈L(ϕ) W s′
)

The above corollary follows from the definition of the weighted edit distance, and the fact that

min distributes over the union. We finally need to show that the decomposition of Wϕ into
⋃

s′∈L(ϕ) W s′
preserves the value induced by s. We first show that the above decomposition

preserves paths, that is all possible sequences of edit operations that transform s into any

s′ ∈ L(ϕ) and the values of these paths.

Lemma 3 Consider an arbitrary trace s and an STL formula ϕ. For every path π in

Wϕ induced by s, there exists π′ in
⋃

s′∈L(ϕ) W s′
induced by s, and for every path π′

in
⋃

s′∈L(ϕ) W s′
induced by s, there exists a path π in Wϕ induced by s, such that

v(s,π, Wϕ) = vπ′(s,
⋃

s′∈L(ϕ) W s′
).

123

110 Form Methods Syst Des (2018) 53:83–112

Proof We create a SWWA W s′
for every trace s′ ∈ L(ϕ). It follows that

⋃

s′∈L(ϕ) W s′

contains the paths that model all the edit operations that transform an arbitrary s into an

arbitrary s′ ∈ L(ϕ). By the construction in Sect. 5.1.2, Wϕ also models all the edit operations

that transform an arbitrary s into an arbitrary s′ ∈ L(ϕ). The substitution operations are by

definition preserved in the decomposition of Wϕ into
⋃

s′∈L(ϕ) W s′
, while the insertion and

deletion transitions are systematically added in both Wϕ and
⋃

s′∈L(ϕ) W s′
with the same

costs. It follows that for an arbitrary s, both Wϕ and
⋃

s′∈L(ϕ) W s′
contain paths π and π′

induced by s that model the same edit operations with the same value. ⊓⊔

Lemma 4 v(s, Wϕ) = v(s,
⋃

s′∈L(ϕ) W s′
).

Proof Follows directly from the preservation of all paths and their values proved in Lemma 3

and the definition of a value in a weighted symbolic automata. ⊓⊔

The combination of Lemma 4, Corollary 2, Lemma 2 and Corollary 1 constitutes the proof

of Theorem 1.

References

1. Abbas H, Mittelmann HD, Fainekos GE (2014) Formal property verification in a conformance testing

framework. In: Proceedings of MEMOCODE 2014: the twelfth ACM/IEEE international conference on

formal methods and models for codesign, pp 155–164. IEEE. https://doi.org/10.1109/MEMCOD.2014.

6961854

2. Akazaki T, Tasuo I (2015) Time robustness in MTL and expressivity in hybrid system falsification. In:

Proceedings of CAV 2015: the 27th international conference on computer aided verification, LNCS, vol

9207. Springer. https://doi.org/10.1007/978-3-319-21668-3

3. Allauzen C, Mohri M (2009) Linear-space computation of the edit-distance between a string and a finite

automaton. CoRR arXiv:0904.4686

4. Annpureddy Y, Liu C, Fainekos GE, Sankaranarayanan S (2011) S-TaLiRo: a tool for temporal logic

falsification for hybrid systems. In: Proceedings of TACAS 2011: the 17th international conference on

tools and algorithms for the construction and analysis of systems, LNCS, vol 6605, pp 254–257. Springer.

https://doi.org/10.1007/978-3-642-19835-9_21

5. Bardh Hoxha HA, Fainekos G (2015) Benchmarks for temporal logic requirements for automotive

systems. In: Proceedings of ARCH@CPSWeek 2014 and ARCH@CPSWeek 2015: the 1st and 2nd

international workshop on applied verification for continuous and hybrid systems, vol 34

6. Bartocci E, Bortolussi L, Sanguinetti G (2014) Data-driven statistical learning of temporal logic properties.

In: Proceedings of FORMATS 2014: the 12th international conference on formal modeling and analysis

of timed systems, LNCS, vol 8711, pp 23–37. Springer. https://doi.org/10.1007/978-3-319-10512-3_3

7. Brim L, Dluhos P, Safránek D, Vejpustek T (2014) ST L∗: extending signal temporal logic with signal-

value freezing operator. Inf Comput 236:52–67. https://doi.org/10.1016/j.ic.2014.01.012

8. Davoren JM (2009) Epsilon-tubes and generalized Skorokhod metrics for hybrid paths spaces. In: Pro-

ceedings of HSCC 2009: the 12th international conference on hybrid systems: computation and control,

LNCS, vol 5469, pp 135–149. Springer. https://doi.org/10.1007/978-3-642-00602-9_10

9. Deshmukh JV, Donzé A, Ghosh S, Jin X, Juniwal G, Seshia SA (2017) Robust online monitoring of signal

temporal logic. Form Methods Syst Des 51(1):5–30. https://doi.org/10.1007/s10703-017-0286-7

10. Deshmukh JV, Majumdar R, Prabhu VS (2015) Quantifying conformance using the Skorokhod metric

(full version). CoRR arXiv:1505.05832

11. Deshmukh JV, Majumdar R, Prabhu VS (2017) Quantifying conformance using the Skorokhod metric.

Form Methods Syst Des 50(2–3):168–206. https://doi.org/10.1007/s10703-016-0261-8

12. Dokhanchi A, Hoxha B, Fainekos GE (2014) On-line monitoring for temporal logic robustness. In:

Proceedings RV 2014: the 5th international conference on runtime verification, LNCS, vol 8734, pp

231–246. Springer. https://doi.org/10.1007/978-3-319-11164-3_19

13. Donzé A (2010) Breach, a toolbox for verification and parameter synthesis of hybrid systems. In: Pro-

ceedings of CAV 2010: the 22nd international conference on computer aided verification, LNCS, vol

6174, pp 167–170. Springer. https://doi.org/10.1007/978-3-642-14295-6_17

123

https://doi.org/10.1109/MEMCOD.2014.6961854
https://doi.org/10.1109/MEMCOD.2014.6961854
https://doi.org/10.1007/978-3-319-21668-3
http://arxiv.org/abs/0904.4686
https://doi.org/10.1007/978-3-642-19835-9_21
https://doi.org/10.1007/978-3-319-10512-3_3
https://doi.org/10.1016/j.ic.2014.01.012
https://doi.org/10.1007/978-3-642-00602-9_10
https://doi.org/10.1007/s10703-017-0286-7
http://arxiv.org/abs/1505.05832
https://doi.org/10.1007/s10703-016-0261-8
https://doi.org/10.1007/978-3-319-11164-3_19
https://doi.org/10.1007/978-3-642-14295-6_17

Form Methods Syst Des (2018) 53:83–112 111

14. Donzé A, Ferrère T, Maler O (2013) Efficient robust monitoring for STL. In: Proceedings of CAV 2013:

the 25th international conference on computer aided verification, LNCS, vol 8044, pp 264–279. Springer.

https://doi.org/10.1007/978-3-642-39799-8

15. Donzé A, Maler O (2010) Robust satisfaction of temporal logic over real-valued signals. In: Proceedings

of FORMATS 2010: the 8th international conference on formal modeling and analysis of timed systems,

LNCS, vol 6246, pp 92–106. Springer. https://doi.org/10.1007/978-3-642-15297-9

16. Droste M, Kuich W, Vogler H (2009) Handbook of weighted automata. Springer, Berlin (2009). https://

doi.org/10.1007/978-3-642-01492-5

17. Eisner C, Fisman D, Havlicek J, Lustig Y, McIsaac A, Campenhout DV (2003) Reasoning with temporal

logic on truncated paths. In: Proceedings of the computer aided verification, 15th international conference,

CAV 2003, Boulder, CO, USA, July 8–12, 2003, pp 27–39

18. Fainekos GE, Pappas GJ (2009) Robustness of temporal logic specifications for continuous-time signals.

Theor Comput Sci 410(42):4262–4291. https://doi.org/10.1016/j.tcs.2009.06.021

19. Fainekos GE, Sankaranarayanan S, Ivancic F, Gupta A (2009) Robustness of model-based simulations. In:

Proceedings of RTSS 2009: the 30th IEEE real-time systems symposium, pp 345–354. IEEE Computer

Society. https://doi.org/10.1109/RTSS.2009.26

20. Gerth R, Peled D, Vardi MY, Wolper P (1996) Simple on-the-fly automatic verification of linear temporal

logic. In: Proceedings of the fifteenth IFIP WG6.1 international symposium on protocol specification,

testing and verification, IFIP conference proceedings, vol 38, pp 3–18. Chapman & Hall

21. Herrmann L, Vogler H (2016) Weighted symbolic automata with data storage. In: Proceedings of DLT

2016: the 20th international conference on developments in language theory, LNCS, vol 9840, pp 203–215.

Springer. https://doi.org/10.1007/978-3-662-53132-7

22. http://jautomata.sourceforge.net/. Accessed 28 March 2017

23. http://www.mathworks.com/products/demos/stateflow/fuelsys.html. Accessed 28 March 2017

24. International S (2016) SENT—single edge nibble transmission for automotive applications, J2716, Stan-

dard. http://standards.sae.org/j2716_201001/. Accessed 21 Jan 2017

25. Jaksic S, Bartocci E, Grosu R, Nickovic D (2016) Quantitative monitoring of STL with edit distance. In:

Proceedings of RV 2016: the 16th international conference on runtime verification, LNCS, vol 10012, pp

201–218. Springer. https://doi.org/10.1007/978-3-319-46982-9_13

26. Konstantinidis S (2007) Computing the edit distance of a regular language. Inf Comput 205(9):1307–1316.

https://doi.org/10.1016/j.ic.2007.06.001

27. Krause EF (2012) Taxicab geometry: an adventure in non-Euclidean geometry. Courier Corporation,

North Chelmsford

28. Levenshtein VI (1966) Binary codes capable of correcting deletions, insertions and reversals. Sov Phys

Dokl 10:707

29. Maler O, Nickovic D (2013) Monitoring properties of analog and mixed-signal circuits. STTT 15(3):247–

268. https://doi.org/10.1007/s10009-012-0247-9

30. Mohri M (2003) Edit-distance of weighted automata: general definitions and algorithms. Int J Found

Comput Sci 14(6):957–982. https://doi.org/10.1142/S0129054103002114

31. Nguyen T, Nickovic D (2014) Assertion-based monitoring in practice—checking correctness of an auto-

motive sensor interface. In: Proceedings of FMICS 2014: the 19th international conference on formal

methods for industrial critical systems, LNCS, vol 8718, pp 16–32. Springer. https://doi.org/10.1007/

978-3-319-10702-8

32. Parr T (2013) The definitive ANTLR 4 reference, 2nd edn. Pragmatic Bookshelf, Dallas

33. Pnueli A, Zaks A (2008) On the merits of temporal testers. In: 25 years of model checking—history,

achievements, perspectives, LNCS, vol 5000, pp 172–195. Springer. https://doi.org/10.1007/978-3-540-

69850-0

34. Quesel J (2013) Similarity, logic, and games—bridging modeling layers of hybrid systems. Ph.D. thesis,

Universität Oldenburg

35. Rizk A, Batt G, Fages F, Soliman S (2008) On a continuous degree of satisfaction of temporal logic

formulae with applications to systems biology. In: Proceedings of CMSB 2008: the 6th international

conference on computational methods in systems biology, LNCS, vol 5307, pp 251–268. Springer. https://

doi.org/10.1007/978-3-540-88562-7

36. Samanta R, Deshmukh JV, Chaudhuri S (2013) Robustness analysis of string transducers. In: Proceedings

of ATVA 2013: the 11th international symposium on automated technology for verification and analysis,

LNCS, vol 8172, pp 427–441. Springer. https://doi.org/10.1007/978-3-319-02444-8_30

37. Schulz UK, Mihov S (2002) Fast string correction with Levenshtein automata. Int J Doc Anal Recognit

5(1):67–85. https://doi.org/10.1007/s10032-002-0082-8

38. Selyunin K, Jaksic S, Nguyen T, Reidl C, Hafner U, Bartocci E, Nickovic D, Grosu R (2017) Runtime

monitoring with recovery of the SENT communication protocol. In: Proceedings of CAV 2017: the 29th

123

https://doi.org/10.1007/978-3-642-39799-8
https://doi.org/10.1007/978-3-642-15297-9
https://doi.org/10.1007/978-3-642-01492-5
https://doi.org/10.1007/978-3-642-01492-5
https://doi.org/10.1016/j.tcs.2009.06.021
https://doi.org/10.1109/RTSS.2009.26
https://doi.org/10.1007/978-3-662-53132-7
http://jautomata.sourceforge.net/
http://www.mathworks.com/products/demos/stateflow/fuelsys.html
http://standards.sae.org/j2716_201001/
https://doi.org/10.1007/978-3-319-46982-9_13
https://doi.org/10.1016/j.ic.2007.06.001
https://doi.org/10.1007/s10009-012-0247-9
https://doi.org/10.1142/S0129054103002114
https://doi.org/10.1007/978-3-319-10702-8
https://doi.org/10.1007/978-3-319-10702-8
https://doi.org/10.1007/978-3-540-69850-0
https://doi.org/10.1007/978-3-540-69850-0
https://doi.org/10.1007/978-3-540-88562-7
https://doi.org/10.1007/978-3-540-88562-7
https://doi.org/10.1007/978-3-319-02444-8_30
https://doi.org/10.1007/s10032-002-0082-8

112 Form Methods Syst Des (2018) 53:83–112

international conference on computer aided verification, LNCS, vol 10426, pp 336–355. Springer. https://

doi.org/10.1007/978-3-319-63387-9

39. Skorokhod AV (1956) Limit theorems for stochastic processes. Theory Probab Appl 1(3):261–290

40. Unser M (2000) Sampling 50 years after Shannon. Proc IEEE 88(4):569–587

41. Veanes M, Bjørner N, de Moura LM (2010) Symbolic automata constraint solving. In: Proceedings

of LPAR-17: the 17th international conference on logic for programming, artificial intelligence, and

reasoning, LNCS, vol 6397, pp 640–654. Springer. https://doi.org/10.1007/978-3-642-16242-8

42. Wagner RA (1974) Order-n correction for regular languages. Commun ACM 17(5):265–268. https://doi.

org/10.1145/360980.360995

123

https://doi.org/10.1007/978-3-319-63387-9
https://doi.org/10.1007/978-3-319-63387-9
https://doi.org/10.1007/978-3-642-16242-8
https://doi.org/10.1145/360980.360995
https://doi.org/10.1145/360980.360995

	Quantitative monitoring of STL with edit distance
	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 Metric spaces and distances
	3.2 Signals
	3.3 Signal temporal logic
	3.4 Automata and weighted automata

	4 Weighted edit distance
	4.1 Sampling, quantization and weighted edit distance
	4.2 Normalized weighted edit distance

	5 Weighted edit robustness for signal temporal logic
	5.1 From STL to weighted edit automata
	5.1.1 From to mathcalA
	5.1.2 From mathcalA to mathcalW

	5.2 Computing the value of a signal in a weighted edit automaton

	6 Implementation and case study
	6.1 Benchmarks for automotive systems
	6.1.1 Automatic transmission system
	6.1.2 Fault-tolerant fuel control system

	6.2 SENT protocol case study
	6.2.1 Formalized SENT requirements
	6.2.2 Evaluation results

	7 Conclusions and future work
	Acknowledgements
	A Appendix: Theorem Proofs
	B Proof of Theorem 1
	References

