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ABSTRACT

The human kinome is gaining importance through its promising cancer therapeutic 

targets, yet no general model to address the kinase inhibitor resistance has emerged. 

Here, we constructed a systems biology-based framework to catalogue the human 

kinome, including 538 kinase genes, in the broader context of the human interactome. 

Specifically, we constructed three networks: a kinase-substrate interaction network 
containing 7,346 pairs connecting 379 kinases to 36,576 phosphorylation sites in 1,961 

substrates, a protein-protein interaction network (PPIN) containing 92,699 pairs, 

and an atomic resolution PPIN containing 4,278 pairs. We identified the conserved 
regulatory phosphorylation motifs (e.g., Ser/Thr-Pro) using a sequence logo analysis. 

We found the typical anticancer target selection strategy that uses network hubs as 

drug targets, might lead to a high adverse drug reaction risk. Furthermore, we found 

the distinct network centrality of kinases creates a high anticancer drug resistance 

risk by feedback or crosstalk mechanisms within cellular networks. This notion is 

supported by the systematic network and pathway analyses that anticancer drug 

resistance genes are significantly enriched as hubs and heavily participate in multiple 
signaling pathways. Collectively, this comprehensive human kinome interactome map 

sheds light on anticancer drug resistance mechanisms and provides an innovative 

resource for rational kinase inhibitor design.

INTRODUCTION

The human kinome has become one of the most 

important classes of drug targets in the pharmaceutical 

industry [1-3]. So far, more than 20 drugs targeting one 

or more kinases have been approved for clinical use in 

a variety of cancers, including lung, breast, melanoma, 

colorectal, pancreatic, and prostate cancers [1,4,5]. 

Moreover, as of 2012, more than 500 kinase inhibitors 

have been used as therapeutic drugs, approximately 

a third of which are undergoing clinical trials [4,6]. 

However, patients treated with those kinase inhibitors 

eventually develop resistance, and their prolong survivals 

are typically only a few months [5,7-12]. One reason 

for resistance is that kinases are extensively involved 

in complex biological mechanisms through adaptive 

crosstalk or feedback within cellular networks.

Most kinases are proteins, while others are lipids or 

small molecules. There are more than 600 putative kinase 

genes that account for ~3% of human protein-coding genes 

[13]. The kinases catalyze the reversible phosphorylation 

of ~500,000 phosphorylation sites in ~20,000-22,000 

human proteins, playing critical roles in human cells as 

well as other eukaryotic cells. Furthermore, kinases are 

involved in various key cellular signaling pathways, 

including transcription, cancer cell metabolism, cell cycle 

progression, apoptosis, and differentiation [2,4,13]. It has 

been estimated that more than 400 human diseases are 
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caused by kinase signaling pathway defects (http://www.

kinasenet.ca/). So far, more than 80% of kinases have been 

investigated as drug targets for therapeutic development. 

However, a quantitative network measurement of 

functional relationships among drugs, kinases, and 

the human protein interactome at the kinome level 

remains largely unknown. Constructing a global human 

kinase phosphorylation network and the human kinome 

interactome resource is therefore essential to further 

explore the relationship among drug responses, network 

properties, and cellular functions, thereby accelerating 

rational kinase inhibitor design for cancer therapy.

In this study, we developed a systems biology-

based framework to construct a global human kinome 

interactome map by integrating the kinase-substrate 

interaction network (KSIN), kinase-drug interaction 

network (KDIN), physical protein-protein interaction 

network (PPIN), and atomic resolution three-dimensional 

structural PPIN (3DPPIN). We systematically examined 

and compared the network topological and functional 

properties of several important gene or protein sets in this 

global human kinome interactome. These sets include 

kinase genes, Mendelian disease genes (MDGs), orphan 

disease-causing mutant genes (ODMGs), Cancer Gene 

Census (CGC) genes, essential genes, anticancer drug 

sensitivity genes, drug target proteins, and adverse drug 

reaction-associated proteins (ADRPs). We identified the 
conserved regulatory phosphorylation motifs (e.g., Ser/

Thr-Pro) using a sequence logo analysis, which provides 

the evidence that the proline direction of kinases is a 

crucial mechanism in the conserved phosphorylation 

signaling pathways. We found that the distinct network 

centrality (e.g., hubs) of kinases creates a high risk 

for the evasion of single kinase target inhibition by 

feedback or crosstalk mechanisms. This notion is further 

supported by the systematic network and pathway 

analyses that anticancer drug resistance genes are 

significantly enriched as hubs and heavily participate 
in multiple cancer signaling pathways. Furthermore, 

we provided the statistical evidence that the typical 

anticancer target selection strategy, which uses network 

hubs as drug targets, might lead to a high risk for adverse 

drug reactions. Collectively, this study sheds light on 

kinase inhibitor resistance mechanisms and provides an 

innovative systems biology resource for rational kinase 

inhibitor design in individualized cancer therapy.

RESULTS

We developed a systems biology-based framework 

(Figure 1) and used it to construct a global human 

Figure 1: Diagram of systems biology-based framework for the human kinome interactome map building. This human 

kinome interactome map across 538 kinase genes includes five components: (i) kinase-substrate interaction network, (ii) physical protein-
protein interaction network (PPIN) and an atomic resolution three-dimensional structural PPIN, (iii) drug-target interaction network, (iv) 

disease gene annotations, and (v) network, pathways, and bioinformatics analyses.
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kinome interactome map. The current version of the 

human kinome [13] includes 637 genes categorized into 

10 groups: tyrosine kinases (TK), tyrosine kinase-like 

kinases (TKL), casein kinases (CK1), PKA/PKG/PKC-

family kinases (AGC), calcium/calmodulin-dependent 

kinases (CAMK), sterile homologue kinases (STE), 

CDK/MAPK/GSK3/CLK-family kinases (CMGC), 

receptor guanylate cyclases (RGC), atypical protein 

kinases (Atypical), and kinases that did not belong to 

any group above (Other). After mapping them to the 

GeneCards and the National Center for Biotechnology 

Information (NCBI) [14] databases, 538 genes had official 
gene symbols and Entrez IDs (Supplementary Table S1). 

Figure 2A shows the distribution of these 538 kinase 

genes in 10 groups. Starting with these 538 kinase genes, 

we systematically constructed a global human kinome 

interactome map using the following data: a KSIN with 

7346 pairs, a PPIN with 92,699 pairs, an atomic resolution 

3DPPIN with 4278 pairs, and a drug-target interaction 

network with 13,582 pairs (Supplementary Table S1 and 

Figure 1). The collection of the human kinome and four 

networks is available at http://bioinfo.mc.vanderbilt.edu/

kinomenetworkX/. Next, we systematically examined the 

topological features and functional relationships of these 

networks to better understand kinase inhibitor responses 

and molecular networks of the human kinome.

Functional mapping of the human kinome

We compared the 538 kinase genes with each of the 

following gene sets: 487 CGC genes, 1,855 known drug 

target proteins (genes), 2,123 ODMGs, 2,714 MDGs, and 

2,721 essential genes (Supplementary Table S1). Within 

the current human kinome, 422 kinase genes (78.4%) are 

found in at least one of these five gene sets, including 
45 CGC genes, 126 drug target proteins (genes), 101 

MDGs, 85 ODMGs and 386 essential genes (Figure 2). 

This observation indicated that kinase genes tended to 

be CGC genes more often as compared to MDGs (odds 

ratio=2.6, p=1.3×10-6, Fisher’s exact test) or ODMGs 

(p=8.3×10-6). Among the 45 CGC kinase genes, 28 kinases 

have been approved by the United States Food and Drug 

Administration (FDA) for molecularly targeted cancer 

treatment. In order to further our understanding of the 

biological functions of the human kinome, we examined 

the cellular component features of 538 kinases using the 

ClueGO [15]. We found kinases tended to locate in the 

plasma membrane integral region (p=9.0×10-9, two-sided 

hypergeometric test), plasma membrane (p=6.1×10-8), 

cytoskeletal region (p=3.5×10-5), cytoskeleton (p=3.5×10-

4), or cleavage furrow (p=4.5×10-3) (Supplementary 

Table S2). It is not surprising that kinases are enriched 

in membrane components, as the cell membrane is 

a key location for signal transduction and cell-cell 

communications.

Figure 2: Functional annotations of the human kinome. 
(A) Pie chart of 538 kinase genes grouped by 10 different kinase 

groups: tyrosine kinases (TK), tyrosine kinase-like kinases 

(TKL), casein kinases (CK1), PKA/PKG/PKC-family kinases 

(AGC), calcium/calmodulin-dependent kinases (CAMK), sterile 

homologue kinases (STE), CDK/MAPK/GSK3/CLK-family 

kinases (CMGC), receptor guanylate cyclases (RGC), atypical 

protein kinases (Atypical), and kinases that did not belong to any 

groups above (Other). (B) The Venn diagram of overlaps among 

538 kinase genes, 1,855 drug target proteins, 487 Cancer Gene 

Census (CGC) genes, and 2,721 essential genes. (C) The Venn 

diagram of overlaps among 538 kinase genes, 2,714 Mendelian 

disease genes (MDGs), 2,123 orphan disease-causing mutant 

genes (ODMGs), and 2,721 essential genes.
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Kinase-substrate interaction network

We constructed a high-resolution KSIN using 

a systems biology-based framework in Figure 1. The 

current version of KSIN includes 7,346 experimentally 

validated or literature-curated kinase-substrate interaction 

(KSI) pairs connecting 379 kinases and 1,961 non-

kinase substrate proteins (Supplementary Table S1). 

The details of kinase genes categorized by each kinase 

group are shown in Supplementary Figure S1. We further 

collected high-resolution in vivo phosphorylation sites 

from dbPTM3 [16] and PhosphositePlus [17], and used 

the data to annotate each protein kinase and its substrate 

protein. In total, we collected 173,460 non-redundant 

phosphorylation sites in 18,610 proteins (Supplementary 

Table S2). This collection included 94,693 phosphoserine 

(pS) sites (54.6%), 44,023 phosphothreonine (pT) 

sites (25.4%), and 34,744 phosphotyrosine (pY) sites 

(20.0%) (Supplementary Figure S1C). Among these 

phosphorylation sites, 10,374 sites were found in a total 

of 490 kinases (91.1% of kinome), including 5,364 pS 

sites (51.7%), 2,581 pT sites (24.9%), and 2,429 pY 

sites (23.4%) (Supplementary Figure S1D). Next, we 

compared the kinases and substrates in KSIN with their 

phosphoproteome sites. In total, 36,576 phosphorylation 

sites were found in 1,919 non-kinase substrate proteins in 

KSIN, including 21,184 pS sites (57.9%), 8,812 pT sites 

(24.1%), and 6,580 pY sites (18.0%) (Supplementary 

Figure S1E).

Topological characteristics of KSIN

We visualized KSIN in Cytoscape and examined 

its network topological characteristics in Figure 3. In 

this network, 379 kinases were denoted by circles, and 

1,961 non-kinase substrate proteins were denoted by 

squares. A straightforward exploration of the network 

revealed several major hubs, including PRKACA 

(connectivity=333), CDK2 (255), AKT1 (234), CSNK2A1 

(227), PRKAC (223), MAPK1 (194), SRC (163), MAPK3 

(141), MAPK3 (124), and GSK3B (123), all of which were 

involved in multiple substrate protein phosphorylation 

reactions. An examination of the connectivity distribution 

of KSIN showed that it follows a power-law distribution 

(y=axb, a=380.1, b=-1.3), with an average connectivity of 

6.3 and an average shortest path of 3.5 (Supplementary 

Figure S1F).

Figure 3: Kinase-substrate interaction network (KSIN). The size of each node reflects its degree of connectivity in KSIN. 
Abbreviations of kinase groups (circles) are provided in the Figure 2 legend. Non-kinase substrate nodes (squares) are color-coded according 

to their phosphorylation sites, including phosphoserine (pS), phosphothreonine (pT), and phosphotyrosine (pY).
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Modularity characteristics

Network modules, also known as network 

communities, represent groups of interconnected nodes 

that typically have similar biological functions. We used 

CFinder [18] to identify functional modules of KSIN. 

A total of 21 functional modules (Supplementary Table 

S2) were generated by CFinder (k-clique, k=4). The giant 

module included 733 KSI pairs connecting 110 kinases 

and 140 substrate proteins. Modules were further analyzed 

for overlaps and correlations using the ModuLand 

algorithm [19,20]. In total, we identified 89 overlapped 
modules (Supplementary Figure S2A). The correlation of 

89 modules is shown in Supplementary Figure S2B.

Substrate specificity of the human kinome

We examined sequence motifs of phosphorylation 

site using a sequence logo analysis tool [21]. 

Supplementary Table S2 shows the results for the targeted 

phosphorylation sites of the top 12 kinases that have 

the highest connectivity in KSIN. We found kinases 

recognized distinct sequence motifs (Figure 4A). For 

example, a serine or threonine residue preceding a proline 

(Ser/Thr-Pro) is a major regulatory phosphorylation motif 

that plays crucial functions in a diverse array of cellular 

processes.[22] Figure 4A showed several important 

functional hubs, including CDK2, MAPK1, MAPK3, 

and MAPK8 that harbored the conserved Ser/Thr-Pro 

motif. Similarly, glycogen synthase kinase-2 (GSK3B) 

is more likely to recognize and phosphorylate the first 
serine in the conserved motif Ser-X-X-X-Ser-Pro [23]. 

The Ser/Thr-Pro-directed kinases play crucial roles in cell 

cycle, transcription, and diverse signaling transduction 

pathways as well as in Alzheimer’s disease and various 

cancers [24]. For CSNK2A1, its +1 position has an Asp/

Glu (Figure 4A), confirming that CSNK2A1 is a Ser-
Asp/Glu-directed kinase [25]. The -3 and -2 positions of 

PRKACA, AKT1, PAK1, PRKCA, and PRKCD form 

Figure 4: Sequence motif analysis of kinase phosphorylation sites. (A) Logo analysis of target phosphorylation site sequence 

motifs (four amino acids before and after the phosphorylation residues) for 12 kinases that have the strongest connectivity in kinase-

substrate interaction network. The amino acids are labeled according to their chemical properties: green for polar amino acids (G, S, T, Y, 

C, Q, N), blue for basic amino acids (K, R, H), red for acidic amino acids (D, E), and black for hydrophobic amino acids (A, V, L, I, P, W, 

F, M). (B) A substrate peptide binding pocket of CDK2 (PDB ID: 1QMZ). (C) Another substrate peptide binding pocket of CDK2 (PDB 

ID: 1GY3). B and C were prepared using the software PyMOL (http://www.pymol.org/).



Oncotarget3702www.impactjournals.com/oncotarget

conserved phosphorylation consensus motifs, such as Arg-

Arg-X-Ser/Thr and Arg/Lys-X-X-Ser/Thr [26]. Moreover, 

distinct regulatory phosphorylation motifs were verified 
by kinase-substrate co-crystal structures. The pocket of 

phospho-CDK2-cyclinA3-peptide complex [27,28] tended 

to accommodate proline at the +1 position (Figure 4B,C). 

However, it should be noted that analyses here are limited 

due to the incompleteness and inaccuracy of existing data.

Kinase-drug interaction network

We searched drugs that target any of the 538 kinases 

from DrugBank [6] and Therapeutics Target Database 

(TTD) [29] and found a total of 567 drugs targeting 126 

kinases (Supplementary Table S2, as of April 30, 2013). 

Then, we used these drugs and their target kinases to build 

a bipartite graph of the kinase-drug interaction network 

(KDIN) in Figure 5. The bipartite graph analysis of KDIN 

could provide a useful survey of the current status of kinase 

inhibitor discovery and clinical applications. In KDIN, a 

drug (square) and a kinase (circle) are linked if the kinase 

is a known target of the drug (Figure 5). The average 

connectivity (4.6) of 11 FDA approved small molecularly 

targeted kinase inhibitors is significantly stronger than 
that of 527 experimental drugs (1.2, p=1.6×10-8, Wilcoxon 

test). The bipartite graph analyses showed that most FDA-

approved kinase inhibitors often target the cancer kinome 

through polypharmacology. For instance, dasatinib is an 

oral dual ABL1 and SRC family tyrosine kinase inhibitor 

for chronic myelogenous leukemia treatment. As shown 

in Figure 5, dasatinib targets 9 protein kinases, including 

ABL1, ABL2, EPHA2, KIT, PDEGFRB, FYN, SRC, 

YES1, and LCK. Furthermore, a kinase may be targeted 

by multiple drugs. For example, CDK2 binds 142 

experimental drugs in DrugBank and TTD. Since most 

Figure 5: Kinase-drug interaction network. In this network, a drug node (square) and a target kinase node (circle) are connected 

to each other by a grey edge if the target is annotated as a known interaction with the drug. The size of each node reflects its degree of 
connectivity. Drug nodes (circles) are green (experimental drugs) or gold (FDA approved drugs). Kinase nodes (circles) are color-coded 

according to the kinase groups (see Figure 2 legend).
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tumors could evade the inhibition of any single kinase [5], 

development of a polypharmacological inhibitor would 

be a promising strategy to improve clinical benefits for 
cancer therapy [5,30,31]. The two-dimensional chemical 

structures, detailed annotation data, and FDA-approved 

clinical usages of 11 small molecular kinase inhibitors are 

provided in Supplementary Figure S3.

Topological properties of the human kinome 

interactome

Do hubs in the protein interactome tend to be 

drug targets? In KSIN, 468 proteins within the top 20% 

of connectivity were selected as hubs. After manually 

mapping, we found 116 target kinases in KSIN, of which 

90 were hubs (p=3.6×10-43, Fisher’s exact test, Table 1). In 

PPIN, 2,602 proteins within the top 20% of connectivity 

were selected as hubs. After manual mapping, we found 

125 target kinases, among which 90 target kinases were 

hubs (p=2.5×10-35, Table 1). This target kinase enrichment 

in hubs was observed in 3DPPIN as well (p=1.5×10-22).

Furthermore, we compiled 13,582 drug-target 

interactions to construct a complementary drug target 

protein network (DTPN). In DTPN, nodes are target 

proteins, and two target proteins are connected if they 

are both targeted by at least one common FDA-approved 

or experimental drug [32]. This DTPN included 28,989 

pairs connecting 1,811 target proteins. Statistical analysis 

showed that DTPN target proteins were more likely KSIN 

hubs (p=2.8×10-7, Table 1). There were 1,550 target 

proteins shared by DTPN and PPIN. Within these proteins, 

438 (28.3%) were hubs, indicating a significant enrichment 
of DTPN target proteins in PPIN hubs (p=1.3×10-14). The 

same enrichment was found when 3DPPIN was compared 

to DTPN (p=3.2×10-12). Collectively, drug target proteins 

(e.g., target kinases) were more likely to be hubs in KSIN, 

PPIN, and 3DPPIN.

The emerging use of network hubs as drug targets 

has the following rationale [33]. Perturbation of hubs 

by a drug would create cascading effects, leading to 

functional changes in a major segment of the network. In 

contrast, peripheral nodes (non-hubs) that are blocked by a 

molecule would likely have only limited effects. However, 

our analyses below revealed that selecting network hubs as 

drug targets lead to a high risk of adverse drug reactions. 

We compiled 527 ADRPs that are involved in adverse drug 

reactions. When 527 ADRPs were manually matched to 

PPIN, 441 proteins were found, among which 122 proteins 

were hubs in PPIN (p=3.1×10-4, Table 1). In addition, the 

ADRPs were significantly enriched as network hubs in 
KSIN (p=2.0×10-5) and 3DPPIN (p=5.4×10-5). Therefore, 

there is a high risk for adverse drug reactions when using 

the hubs in the human protein interactome as drug targets.

To further investigate whether targeting a signaling 

pathway is more effective, we used the ClueGO [15] to 

identify KEGG pathways enriched with the 126 target 

kinases. Three important signaling pathways were 

identified: MAPK signaling pathway (including EGFR, 
BRAF, PDGFR, MAPK1, TGFBR1, and RAF1, p=2.3×10-

15, two-sided hypergeometric test, Supplementary Table 

Table 1: The network topological analysis for five gene sets in human protein interactome.

Network Gene sets
Number of 

hubs

Number of non-

hubs
Odds ratio p-value

KSIN

Kinome 277 152 16.4 1.2×10-119

Drug target kinases 90 26 16.9 3.6×10-43

Drug target proteins 121 288 1.9 2.8×10-7

ADRPs 54 105 2.2 2.0×10-5

Drug sensitivity genes 40 84 2.0 1.1×10-3

PPIN

Kinome 209 253 3.4 5.9×10-34

Drug target kinases 90 35 10.2 2.5×10-35

Drug target proteins 438 1112 1.6 1.3×10-14

ADRPs 122 319 1.5 3.1×10-4

Drug sensitivity genes 137 245 2.2 3.0×10-12

3DPPIN

Kinome 117 154 3.0 2.1×10-15

Drug target kinases 68 33 7.8 1.5×10-22

Drug target proteins 162 293 2.2 3.2×10-12

ADRPs 47 75 2.2 5.4×10-5

Drug sensitivity genes 58 75 2.8 3.2×10-8

KSIN: kinase-substrate interaction network (468 hubs versus 1,872 non-hubs). PPIN: protein-protein 
interaction network (2,602 hubs versus 10,041 non-hubs). 3DPPIN: three-dimensional structural PPIN 
(591 hubs versus 2,018 non-hubs). ADRPs: adverse drug reaction-associated proteins. The p-value was 
calculated using Fisher’s exact test.
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S3), VEGF signaling pathway (including SRC, PRKCA, 

MAPK, and KDR, p=1.3×10-12), and mTOR signaling 

pathway (including BRAF, AKT1, RPS6KA1, and mTOR, 

p=1.7×10-7).

Do kinases tend to be hubs in the human protein 

interactome?

We manually matched 538 kinases to PPIN and then 

constructed a kinase-protein interaction subnetwork. This 

subnetwork included 14,238 pairs connecting 462 kinases 

and 4,414 non-kinase proteins (Supplementary Table 

S4). Among the 462 kinases, 209 were hubs in PPIN, 

indicating a significant enrichment of kinases in PPIN hubs 
(p=5.9×10-34, Table 1). The average connectivity of the 

462 kinases was 33.2, which is significantly stronger than 
that of the 12,181 non-kinases in PPIN (14.0, p<2.2×10-

16, Wilcoxon test, Supplementary Table S4). We further 

matched 538 kinases in 3DPPIN and found 271 kinases, 

including 117 hubs (p=2.1×10-15, Table 1). The average 

connectivity (6.0) of the 271 kinases is significantly 
stronger than that of the 2,338 non-kinases in 3DPPIN 

(3.0, p<2.2×10-16). Collectively, kinases are significantly 
enriched as network hubs in the protein interactome.

Do hubs in KSIN tend to be hubs/bottlenecks in 

the protein interactome?

We manually matched 2,340 proteins in KSIN to 

PPIN. A total of 2,213 proteins (including 361 kinases 

and 1,852 non-kinase substrates) were found, among 

which 1,119 proteins (including 194 kinases and 925 non-

kinases) were hubs in PPIN (p=3.6×10-275, Supplementary 

Table S4). In addition, 965 proteins (including 169 

kinases and 796 non-kinases) were bottlenecks in PPIN 

(p=1.1×10-166). The average connectivity (9.8) of the 965 

bottleneck proteins is significantly stronger than that of the 
1,248 non-bottleneck proteins in KSIN (3.8, p<2.2×10-16). 

These findings revealed that proteins in KSIN tended to be 
bottlenecks in PPIN.

Network topology of anticancer drug response-

associated genes

A systematic identification of anticancer drug 
response markers in cancer cells is highly promising 

for individualized cancer therapy [34]. In this study, 

we sought to determine the network topology of drug 

resistance genes in the protein interactome. We compiled 

458 genes that are involved in sensitivity or resistance to 

130 anticancer drugs from a previous work [35]. Among 

the 458 drug resistance genes, 82 were CGC genes and 

144 were essential genes (Supplementary Figure S4A). 

We found 124 among the 458 drug resistance proteins 

(genes) in KSIN, 40 of them were hubs, suggesting a 

significant enrichment of drug resistance proteins in 
KSIN hubs (p=1.1×10-3, Fisher’s test, Table 1). The 

average connectivity (10.5) of the 124 drug resistance 

proteins was significantly stronger than that of the 2,216 
remaining proteins in KSIN (6.1, p=2.6×10-4, Wilcoxon 

test, Supplementary Table S5). Furthermore, we found 

a significant enrichment of anticancer drug resistance 
proteins in PPIN hubs (137 hubs, p=3.0×10-12) and 

3DPPIN hubs (58 hubs, p=3.2×10-8).

Next, we constructed a drug resistance network to 

investigate the detailed molecular mechanisms of drug 

responses to specific FDA-approved small molecular 
kinase inhibitors (Supplementary Figure S3). The 

calculation of a p-value for each drug-gene association 

was described in a previous work [35]. Three kinase 

inhibitors are approved for renal cell carcinoma treatment 

by the FDA, including sunitinib, sorafenib, and pazopanib 

(Figure 6A). The kinase inert domain receptor (KDR) is 

involved in resistance or sensitivity to sunitinib (p=1.9×10-

4), sorafenib (p=1.0×10-3), and pazopanib (p=1.0×10-3) 

(Supplementary Table S5). The cyclin-dependent kinase 

inhibitor 2A gene (CDKN2A), which encodes the CDK 

inhibitory protein p16, was reported to be significantly 
associated with sensitivity to five kinase inhibitors 
(Supplementary Table S5): dasatinib (p=1.3×10-13), 

erlotinib (p=4.1×10-8), imatinib (p=8.2×10-5), sunitinib 

(p=5.0×10-3), sorafenib (p=6.0×10-3), and lapatinib 

(p=7.0×10-3). Gefitinib, a classical EGFR tyrosine kinase 
inhibitor, is approved to treat advanced or metastatic non-

small cell lung cancer. Recent work showed genes NRAS, 

BRAF, KRAS, and PIK3R1 are involved in gefitinib 
resistance (Figure 6B) [36]. In Figure 6C, most gefitinib 
resistance genes are located on the EGFR signaling 

pathway through the RAS/MEK/ERK or PI3K/PDK1/

AKT downstream pathways [34]. Collectively, selecting a 

network hub as the drug target in the protein interactome 

might create a high anticancer drug resistance risk.

DISCUSSION

Resistance to chemotherapy and molecularly 

targeted kinase inhibitor therapeutics is a major obstacle 

facing current cancer research [37]. Crosstalk and feedback 

that are poorly understood in most cellular networks are 

main contributors to resistance. Systems biology-based 

modeling on the human kinome level might provide a 

powerful network perspective and innovative tools to 

address this challenge. In this study, we systematically 

investigated the relationship between kinase inhibitors 

and the gene products of the human kinome in the broader 

context of the human kinase phosphorylation network 

and the protein interactome. We focused on addressing 

two questions. First, do kinases occupy a distinct 

network topology in the human interactome? Second, 

from a systems biology perspective, why do most tumors 
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escape from any single kinase inhibition? We found 

kinases significantly tended to be central hubs rather than 
peripheral nodes in the protein interactome. The distinct 

network centrality of kinases creates a high risk for the 

evasion of single kinase target inhibition through adaptive 

feedback or crosstalk within dynamic signaling networks. 

Moreover, this hypothesis is further supported by the 

systematic network and pathway analyses that anticancer 

drug sensitivity proteins are significantly enriched as 
hubs in the protein interactome. We further revealed that 

the typical anticancer drug target selection strategy that 

uses hubs as drug targets, might lead to a high risk for 

adverse drug reactions. In summary, these findings provide 
systems view of the human kinase interactions and kinase 

inhibitor resistance mechanisms.

Phosphorylation-mediated signaling networks 

play crucial roles in cellular physiology. Recent 

protein microarray experiments have provided high-

throughput data and facilitated the analyses of protein 

phosphorylation networks [38]. Here, we constructed 

a global and high-resolution kinase phosphorylation 

network using an integrative computational framework. 

We identified conserved regulatory phosphorylation 
motifs, e.g., Ser-X-X-X-Ser-Pro, using a sequence logo 

analysis. These conserved regulatory phosphorylation 

motifs were verified by the kinase-substrate co-crystal 
structures. Thus, we provided the evidence that the 

proline direction of kinases is a common mechanism for 

the conserved phosphorylation signaling pathways. The 

data size used in this study is reasonable and includes 

the data we were able to collect to date. However, some 

important properties might not be captured among this 

data due to knowledgebase incompleteness as well as the 

standard static networks that are prevalent in this field. 

Figure 6: Network analysis of kinase inhibitor response. (A) Drug sensitivity network of 11 molecularly targeted kinase inhibitors 

(Supplementary Figure S5). This network includes four types of edges: kinase-drug interaction (gold solid line), drug-cancer association 

(red solid line), gene-drug sensitivity associations (purple solid line with arrow), and target gene-drug sensitivity associations (blue solid 

line with arrow). Color codes of nodes: drug (gold square), target gene or target protein (green circle), drug sensitivity genes (cyan-blue 

circle), drug target and sensitivity gene (red circle), and cancer (purple hexagon). (B) Volcano plot of sensitivity response to Gefitinib, 
an epidermal growth factor receptor (EGFR) inhibitor. The calculation of a p-value for each drug-gene association was described in 

a previous work [35]. The data was from the Genomics of Drug Sensitivity (http://www.cancerrxgene.org). (C) The simplified EGFR 
signaling pathways involving Gefitinib sensitivity through the RAS/MEK/ERK and PI3K/PDK1/AKT pathways.
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Biological systems, e.g., the phosphorylation network, 

are highly dynamic profiles that continuously respond to 
a host of physical or physiological environments. So far, 

the completeness and accuracy of the human interactome 

is still a major obstacle. For example, the perturbation 

dynamics of signaling networks have been extensively 

investigated, including ~10,000 phosphorylation 

reactions in yeast cells [39]. The size of the whole human 

interactome was estimated to have ~650,000 interactions 

[40]. Although two large networks were constructed 

in this study, we still have a long way to decipher 

the complexity of the human kinome interactome. 

Advances in experimental measurement technologies 

and computational methods would enable large-scale 

screenings to fill in much of our missing knowledge in 
the future.

Here, we systematically examined the kinase-drug 

interaction network using a bipartite graph analysis. We 

found target kinases are significantly enriched as central 
hubs in the protein interactome. An inhibition or blocking 

of hub nodes may lead to cascading effects compromising 

the function of a major segment of the signaling networks 

[33]. The development of high efficacy kinase inhibitors 
that target hubs of the signaling networks is a typical 

strategy for cancer drug discovery [41]. However, 

network centrality of target kinases might create a high 

risk of drug resistance, as hub proteins easily provide the 

adaptive crosstalk or feedback within cellular networks. 

In addition, we found the current selection of hubs 

as drug targets might create a high risk for the adverse 

drug reactions. Many promising drug candidates fail in 

the last clinical trial phases due to a poor understanding 

of the signaling pathways or drug-target interactions 

that are involved in the mechanisms-of-action [42]. To 

overcome this challenge, we urge researchers to expand 

the knowledge of systems pharmacology through the 

construction of network models [5,43]. Here, we found 

most of the successful kinase inhibitors primarily target 

the cancer kinome through polypharmacology. The 

polypharmacology of kinase inhibitors would improve 

clinical efficiency by inhibiting multiple kinases in the 
signaling networks [5,33]. Thus, network-based modeling 

potentially opens a new avenue for rational kinase inhibitor 

discovery, e.g., “Allo-network drugs” development 

[33,34]. The human kinome interactome we constructed 

in this study, named Kinome NetworkX, is available 

at http://bioinfo.mc.vanderbilt.edu/kinomenetworkX/. 

This comprehensive data source would serve as a useful 

resource for the research community. Collectively, the 

global human kinome interactome map provide a systems 

biology perspective for the human kinome, and this map 

is a useful resource for rational kinase inhibitor design in 

individualized cancer therapy.

MATERIAL AND METHODS

Construction of the human interactome

Kinase-substrate interaction network (KSIN)

In KSIN, a node denotes a kinase or its substrate 

protein, and an edge denotes a phosphorylation reaction 

between a kinase and its substrate protein. We collected 

high-resolution KSI pairs from four databases: Phospho.

ELM [44], Human Protein Resource Database (HPRD) 

[45], PhosphoNetworks [38,46], and PhosphoSitePlus 

[17]. All genes were mapped to their Entrez ID based on 

the NCBI [14] as well as their official gene symbols based 
on GeneCards (http://www.genecards.org/). Duplicated 

KSI pairs and self-loops were removed. As a result, we 

compiled 7,346 unique KSI pairs connecting 379 kinases 

and 1,961 non-kinase substrate proteins. In addition, we 

collected human phosphorylation site information from 

the PhosphoSitePlus [17] and dbPTM3 [16] databases. In 

total, we obtained 173,460 non-redundant phosphorylation 

sites in 18,610 proteins.

Protein-protein interaction network (PPIN)

We downloaded human protein-protein interaction 

(PPI) pairs from the Protein Interaction Network 

Analysis (PINA) platform. PINA (v2.0, May 1, 2013) is 

a comprehensive PPI database that integrates six large-

scale, manually curated public databases: IntAct, MINT, 

BioGRID, DIP, HPRD, and MIPS MPact [47]. All protein-

coding genes were mapped to the NCBI database. Genes 

without an Entrez ID, duplicated PPI pairs, and self-loops 

were excluded. In total, we obtained 92,699 unique PPI 

pairs connecting 12,643 proteins.

Three-dimensional structural protein-protein 

interaction network (3DPPIN)

We downloaded three-dimensional structural PPI 

(3DPPI) pairs from the Instruct database [48]. The original 

Instruct database contained 6,534 human 3DPPI pairs. 

After excluding genes without Entrez IDs and 2,293 self-

loops, we collected 4,278 3DPPI pairs connecting 2,609 

proteins.

Drug-target interaction network We collected 

the drug-target interactions from two famous drug 

pharmacological databases: DrugBank [6] and TTD [29]. 

In total, we collected 13,582 drug-target interaction pairs 

connecting 2,716 target proteins and 3,779 FDA-approved 

and experimental drugs.
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Gene set categories

Mendelian disease genes (MDGs)

We downloaded 2,714 MDGs from the Online 

Mendelian Inheritance in Man (OMIM) database 

(December 2012) [49]. The OMIM contained 4,132 gene-

disease association pairs connecting 2,716 disease genes in 

3,294 Mendelian diseases or disorders (December 2012).

Orphan disease-causing mutant genes (ODMGs)

We collected 2,123 ODMGs from a previously 

published work [50]. According to the United States Rare 

Disease Act of 2002, an orphan disease is defined as a rare 
disease that affects fewer than 200,000 inhabitants, which 

is equivalent to approximately 6.5 patients per 10,000 

inhabitants [51].

Cancer Gene Census (CGC) genes

We collected 487 cancer genes from the Cancer 

Gene Census (CGC, http://cancer.sanger.ac.uk/

cancergenome/projects/census/). CGC genes are well-

curated and have been widely used as a reference cancer 

gene set in many cancer-related projects [52,53].

Essential genes

We downloaded 2,721 essential genes from the 

Online GEne Essentiality (OGEE) database [54]. Essential 

genes, whose knockouts result in cell inviability or 

embryonic lethality, are a crucial component to the study 

of biological systems robustness and effective drug target 

identification [54].

Adverse drug reaction-associated proteins 
(ADRPs)

We compiled 546 ADRPs from a previously 

published work [55]. ADRPs are proteins that mediate 

adverse drug reactions or toxicity by binding to drugs 

or their reactive metabolites. Duplicated proteins and 

genes without Entrez IDs were excluded, resulting in 527 

ADRPs.

Anticancer drug response-associated genes

We collected 458 genes that were involved in 

the sensitivity or resistance to 130 anticancer drugs 

from a previous work [35]. In this study, Mathew et al. 

systematically identified drug-sensitivity biomarkers 
(genes) on 639 human tumor cell lines, which provided a 

useful resource to probe drug sensitivity genes.

Measurement of network topology

We calculated connectivity (degree) and 

betweenness centrality values using the Cytoscape 

(v3.0) [56]. We defined “hubs” as those nodes that were 
ranked at the top 20% of the connectivity distribution 

and “bottleneck” as those nodes that were ranked at the 

top 20% of the betweenness centrality value distribution 

[50,57]. We identified network modules and communities 
using CFinder [18] (k-clique, k=4) and the ModuLand 

algorithm [19,20]. CFinder was used to locate and 

visualize overlapping, densely interconnected groups of 

nodes in undirected graphs [18]. The ModuLand algorithm 

was used to identify hierarchical layers of overlapping 

network modules and community centrality [19,20].

Functional enrichment analysis

We used ClueGo [15], a user-friendly Cytoscape 

plug-in, for the enrichment analysis of genes in Gene 

Ontology cellular components or KEGG canonical 

pathways. A two-sided hypergeometric test was performed 

to estimate statistical significance.

Statistical analysis and network visualization

All statistical tests (e.g., Fisher’s exact test and 

Wilcoxon’s test) were performed on the R platform (v3.01, 

http://www.r-project.org/). All network visualization and 

related network topological parameters were presented 

using Cytoscape (v3.0) [56].
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