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Abstract

The use of relative abundance data from next generation sequencing (NGS) can lead to

misinterpretations of microbial community structures, as the increase of one taxon leads to

the concurrent decrease of the other(s) in compositional data. Although different DNA- and

cell-based methods as well as statistical approaches have been developed to overcome the

compositionality problem, and the biological relevance of absolute bacterial abundances

has been demonstrated, the human microbiome research has not yet adopted these meth-

ods, likely due to feasibility issues. Here, we describe how quantitative PCR (qPCR) done in

parallel to NGS library preparation provides an accurate estimation of absolute taxon abun-

dances from NGS data and hence provides an attainable solution to compositionality in

high-throughput microbiome analyses. The advantages and potential challenges of the

method are also discussed.

Introduction

The use of relative abundance from next generation sequencing (NGS) data can lead to misin-

terpretations of microbial community structures as due to compositionality, the relative abun-

dances of the taxa being mutually dependent. This means that an increase of one taxon

inevitably leads to the concurrent decrease of the other(s). Since the changes of components

are mutually dependent, high false discovery rates occur when compositional data are analyzed

using traditional statistical methods [1]. Correlation analysis of relative abundance data is

strongly subject to a negative correlation bias and spurious associations [2]. Meanwhile, com-

positionality particularly hampers the interpretation of microbial changes in longitudinal stud-

ies, such as interventions. Without NGS-independent experiments as validation, it is

problematic to determine which taxon was truly affected by an intervention, i.e. to identify the

actual target organism(s) for a specific treatment (Fig 1).

Contrary to the speculation that compositionality is dismissible in high complexity environ-

ments [3], our simulations revealed that the compositionality effects may lead to extensive
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false positive findings in both complex microbial communities (e.g., gut) as well as samples

with low diversity (e.g., vaginal swab) (S1 and S2 Figs). Sophisticated statistical methods have

been developed in an effort to mitigate the effect of mutual dependence of component changes

in compositional sequencing data [1–4]. However, unknown absolute abundances cannot be

deduced from compositional data using statistical methods, yet recent studies have shown that

absolute abundances of bacteria are biologically meaningful [5–7]. Taken together, relying

solely on relative abundance results in false findings (Fig 1) as well as the omission of impor-

tant information on the interactions of different taxa with each other and the host [8].

Absolute quantification of microbial abundances from NGS datasets (i.e. quantitative

microbiome profiling) can be achieved by integrating cell-based or DNA-based methods into

standard NGS workflows. Flow cytometry has been applied to complement amplicon sequenc-

ing in an engineered freshwater ecosystem [9] and recently by Vandeputte et al. [6] for fecal

samples. For DNA-based methods, spike-in bacteria [10], synthetic DNA [11] as well as quan-

titative PCR (qPCR) have been employed to estimate NGS-derived absolute abundances of

penile microbiota [7] and environmental fungi [12]. Recently, DNA yield was used to docu-

ment quantitative variations in the fecal microbiota of numerous mammalian species as well

as in human patients after fecal microbiota transplant [5], and to investigate microbiota devel-

opment in premature infants [13]. Notwithstanding the variety of methods that have been

introduced to overcome artefacts related to data compositionality, they have not been adopted

for the human microbiome research. Of note, none of the clinical trials published during the

past year (except the ones specifically addressing the compositionality problem [5, 6]) utilized

quantitative microbiome profiling. Here, we present how quantitative PCR (qPCR)-based bac-

terial enumeration can be integrated to NGS pipelines to provide a feasible approach to esti-

mate absolute abundances from NGS data, and hence promote the use of quantitative

microbiome profiling in the field of human microbiome.

Materials andmethods

Study subjects and fecal sample collection

The study used the samples derived from an intervention registered at ClinicalTrials.gov as

NCT02133144. The study protocol was approved by the Medical Ethical Committees of the

Hospital District of Helsinki and Uusimaa and Helsinki University Central Hospital. All

Fig 1. Compositionality leading to false positive discoveries. To demonstrate the effect of compositionality on
interpretation of microbiome NGS data, an intervention was simulated where a single taxon increased in abundance.
The simulation was conducted in absolute abundance, which was converted to relative abundance for data analysis. (a)
The intervention (shaded area) increased a single taxon (green solid line), which remained true when converted to
relative abundance (black dashed line). (b) Other taxa (a single taxon represented here by the orange solid line) were
not affected by the intervention. However, the relative abundance (black dashed line) shows a negative impact of the
intervention, due to the increase in relative abundance of the affected taxon in (a).

https://doi.org/10.1371/journal.pone.0227285.g001
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volunteers provided an informed, written consent. The study cohort consisting of 38 adult

human subjects has been described previously [14]. The trial aimed to study the metabolic

effects of hypercaloric diets enriched in different macronutrients. The study protocol was

approved by the Medical Ethical Committees of the Hospital District of Helsinki and Uusimaa

and HUCH. For the current study, we additionally included follow-up samples collected after

the trial, amounting to a total of 114 samples. Fecal samples were self-collected and stored at

-20˚C, and then transferred to the long-term storage at -80˚C within 1 day.

Bacterial DNA extraction

Bacterial DNA was extracted from fecal samples using a modified version of repeated bead

beating [15] that efficiently extracts bacterial DNA from both Gram-positive and -negative

cocci [16]. Briefly, immediately after thawing, 0.125 g of feces were weighted and added into

2.0 ml screw-up tubes pre-filled with 0.25 g of 0.1 mm zirconia beads and 3 of 3 mm glass

beads. Fecal samples were re-suspended to 0.5 ml of lysis buffer (500 mMNaCl, 50 mM Tris-

HCL (pH 8), 50 mM EDTA, 4% SDS). Two successive rounds of 1-minute bead beating were

done using a FastPrep1-24 instrument (MP Biomedicals, Santa Ana, CA, USA) at 5.5 m/s.

The lysate fraction produced from the first round of bead beating was collected before the sec-

ond round to minimize DNA shearing [15]. Each round of bead beating was followed by a

15-min incubation period at 95˚C to further enhance the lysis. After precipitation of DNA, the

DNA was further purified by using the QIAamp DNAMini Kit columns (Qiagen, Hilden,

Germany). The purified DNA was quantified for DNA concentration using a Qubit1 fluorom-

eter (Invitrogen, CA, USA) before storing at -20˚ C until further use. All the fecal samples

were processed within 10 days.

16S rRNA gene sequencing

Illumina MiSeq paired-end sequencing of the hypervariable V3-V4 regions of the 16S rRNA

gene (primers 341F/785R) was performed according to the manual from Illumina with a slight

modification where dual index TrusSeq-tailed 1-step amplification [17] was used for library

preparation. The detailed protocol for library preparation has been described [14]. The pooled

libraries were sequenced with an Illumina MiSeq instrument using paired end 2 × 300 bp reads

and a MiSeq v3 reagent kit with 5% PhiX as spike-in. The sequencing was carried out at the

sequencing unit of the Institute for Molecular Medicine Finland (FIMM), Helsinki, Finland.

Sequencing data processing and analysis

The preprocessing was done in the R packagemare [18], utilizing USERACH for quality filter-

ing, chimera removal, and taxonomic annotation [19]. Only the high-quality forward reads

were used, as we have previously shown that this approach provides the most accurate results

[13]. The forward reads were truncated to length of 150 bases withmare’s “ProcessReads”

command. We used default settings for minimum quality score (2) and maximum expected

errors (1). Reads with prevalence below 0.01% were removed, as they are likely to contain

errors. To avoid potential biases in taxonomic annotation caused by OTU clustering [20],

truncated, filtered and dereplicated reads were directly annotated using the Silva 115 database

[21], restricted to gut-associated taxa as done in our previous studies [13, 22].

Quantitative PCR

Quantification of total bacteria, specific taxa and butyrate production capacity was carried out

by qPCR using a BioRad iCycler iQ thermal cycler system (BioRad, Hercules, CA) with HOT

qPCR for quantitative NGS
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FIREPol1 EvaGreen1 qPCRMix Plus (Solis BioDyne, Tartu, Estonia). The 331F/797R prim-

ers were chosen for the quantification of total bacteria, as the primers target the V3-V4 hyper-

variable regions as in Illumina MiSeq. A list of primers and references used in the present

study is summarized in S1 Table.

For bacterial enumeration, total bacteria, Clostridium cluster XIVa and Bacteroidetes were

quantified using 0.5 ng of fecal DNA, for the less abundant Bifidobacterium and E. coli groups

25 ng DNA/reaction was used. Detailed information on the PCR conditions has been

described previously [15, 23]. Briefly, the thermal cycling conditions started with a DNA-dena-

turation step at 95˚ C for 15 minutes, followed by 40 cycles of 1) denaturation at 95˚ C for 15

seconds, 2) annealing at a primer-specific temperature (Annealing (˚C) in S1A Table) for 20

seconds, 3) extension at 72˚ C for 30 seconds and 4) an incubation step at a primer-specific

temperature to detect the fluorescent data (Detection (˚C) in S1A Table). A melting curve

analysis was carried out to ensure the specificity of the amplification products. The 10-log-fold

standard curves ranging from 102 to 107 copies were produced using the full-length amplicons

of 16S rRNA gene of appropriate reference organisms [23] (Ruminococcus productus for Clos-

tridium cluster XIVa, Bacteroides fragilis for Bacteroidetes, Bifidobacterium longum for Bifido-

bacterium/total bacteria, and Escherichia coli DSM 6897 for E. coli) to convert the threshold

cycle (Ct) values into the average estimates of target bacterial genomes present in 1 g of feces

(copy numbers/g of wet feces) in each assay.

For quantification of butyrate production capacity of the microbiota, the butyryl-CoA:ace-

tate CoA-transferase gene was quantified by qPCR as described [24], and the output values

were converted based on comparative Ct method [25]. The results were correlated to the NGS-

based abundance of the dominant butyrate-producing genera Subdoligranulum, Faecalibacter-

ium, Anaerostipes, Butyrivibrio, and Roseburia/Eubacterium rectale [26, 27].

All qPCR assays were performed in triplicate. Precautions were taken to ensure that the

data from each triplicate fell within 0.5 threshold cycle (Ct), and clear outliers (>2 standard

deviations) were removed before calculating average Ct of each sample. Melting curves and

non-template controls were used to assess run reliability. There was no detectable amplifica-

tion arising from non-template controls in any of the assays. The amplification efficiencies of

all qPCR assays ranged from 91% to 98%.

Calculation of absolute abundance and copy-number correction

The sequencing reads assigned to different taxa in each sample were divided by the total num-

ber of reads for the sample to obtain relative abundances of the taxa in each sample. The relative

abundances obtained based on the sequencing reads were translated into total abundances by

multiplying the relative abundance of each taxon by the total bacterial abundance in the sample.

These figures were further corrected for 16S rRNA gene copy-number variation by dividing the

abundance of a taxon by the number of 16S copies in its genome. For the copy-number correc-

tion, we used the 16S copy number database rrnDB [28]. The process is depicted in Fig 2.

Results and discussion

We quantified total bacteria using universal bacterial primers [29] by qPCR in 114 adult fecal

DNA samples that have been analyzed for microbiota composition using Illumina MiSeq for

16S rRNA gene amplicon sequencing [14]. The qPCR threshold cycle (Ct) values were con-

verted to the estimates of bacterial genomes present in 1 g of feces as a proxy of total bacterial

counts. Absolute abundances of individual taxa can be estimated via multiplying the relative

abundances of the NGS-detected taxa by total bacterial counts (Fig 3A). We validated the esti-

mated absolute abundances of four representative taxa by qPCR using taxon-specific primers

qPCR for quantitative NGS
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(S1 Table) for the phylum Bacteroidetes, Clostridium cluster XIVa (family Lachnospiraceae),

genus Bifidobacterium and Escherichia coli species using standard curve-based absolute quanti-

fication. These four taxa were chosen for their representation of different taxonomic ranks and

availability of primers and standards. We found near-perfect correlations between the esti-

mated absolute abundances and qPCR abundances in all tested taxa (Fig 3B). By correlating

the cumulative absolute abundance of butyrate-producing bacteria to the abundance of the

butyryl-CoA:acetate CoA-transferase gene determined by qPCR [24], we show that qPCR-

based quantitative microbiome profiling can also be used to more precisely estimate the abun-

dances of specific microbiota functions (Fig 3C and 3D). The estimated absolute abundance of

butyrate producers accounted for 47% of the variation in the qPCR-determined butyryl-CoA:

acetate CoA-transferase gene abundance (p = 1.15e-11), while the relative abundance

explained only 23% (p = 9.92e-06).

Fig 2. Workflow for implementation of qPCR-based quantitative microbiome profiling. All of these steps are included in R package mare [18].

https://doi.org/10.1371/journal.pone.0227285.g002

qPCR for quantitative NGS

PLOSONE | https://doi.org/10.1371/journal.pone.0227285 January 15, 2020 5 / 10

https://doi.org/10.1371/journal.pone.0227285.g002
https://doi.org/10.1371/journal.pone.0227285


Importantly, qPCR-based quantitative microbiome profiling enjoys the following concep-

tual and practical benefits over other approaches:

1. Cost-effectiveness and feasibility

qPCR is cost-effective and accessible as the laboratory settings, machinery and reagents are

similar to those needed for preparing the NGS libraries. The same DNA extract serves as

the starting material both for qPCR and NGS, making qPCR done in 96- or 384-format

easy to implement in the workflow for high-throughput analysis of up to thousands of

microbiome samples.

Fig 3. Relative microbiome profiles translated into quantitative microbiome profiles using qPCR. (a) Comparison of relative abundances and estimated absolute
abundances of dominant bacterial families in 114 fecal samples. The top panel shows relative abundances based on 16S amplicon sequencing and the lower panels shows
the estimated absolute abundances calculated by multiplying the relative abundances with total bacterial load, i.e. qPCR-based estimate of copies of 16S gene per 1 g of
feces. (b) Correlation between the qPCR abundances (16S rRNA gene copies per g feces) and the estimated absolute abundances of four taxa representing species, genus,
family and phylum levels. The dashed line shows the expected 1:1 correspondence. The correspondence decreases at the very low end of the abundance range, likely due
to the relatively lower PCR amplification efficiency and increased stochasticity of the results for low abundance taxa in NGS [30]. The applied library preparation
method (dual index TruSeq-tailed 1-step amplification [17]) causes a slight underestimation of Bacteroidetes abundance (unpublished data), explaining the
underestimation observed for this phylum compared to qPCR. (c) and (d) show the associations between the qPCR-determined abundance of the butyryl-CoA:acetate
CoA-transferase gene and the (c) estimated absolute abundance and (d) relative abundance of butyrate producers detected in the NGS data.

https://doi.org/10.1371/journal.pone.0227285.g003
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2. Simplicity

qPCR is relatively simple to perform compared to flow cytometry that requires considerable

expertise for reproducible results. In fact, flow cytometric enumeration of microbial cells

was initially restricted to pure cultures [31] and still remains challenging when performed

in complex matrices [32]. Also, no spikes, other exogenous controls, or complicated trans-

formation/computation are needed in qPCR-based quantitative microbiome profiling.

3. Comparability to NGS

Unlike flow cytometry that counts cells, qPCR and NGS both target bacterial DNA, includ-

ing extracellular DNA derived from lysed bacteria. Extracellular DNA can be intrinsic or

result from the differential lysis of Gram-positive and negative bacteria during the common

freeze-thawing prior to fecal DNA extraction. As the 16S profiles from the gut appear very

different for intracellular and extracellular DNA [33], qPCR is expected to reflect the NGS-

targeted community structure both quantitatively and qualitatively more closely than flow

cytometry.

4. Applicability

qPCR-based quantitative microbiome profiling is applicable also for samples containing a

substantial amount of host or non-bacterial DNA, in which bacterial density cannot be reli-

ably estimated by total DNA yield [5]. Moreover, the qPCR-based method can be employed

to study also non-bacterial communities where a universal marker gene is available, such as

in fungi [12].

It should be noted that relative and absolute abundances based on 16S rRNA gene copies

are a proxy for microbial density rather than exact numeration of cells, since 16S rRNA gene

copy numbers vary among bacteria. It is, however, possible to computationally correct for 16S

rRNA gene copy numbers post hoc as we did for this dataset (Fig 2), if the 16S rRNA gene copy

numbers of the taxa present in the samples are known. Other potential biases related to PCR-

based methods include e.g. inadequate DNA extraction, presence of PCR inhibitors and

primer coverage. Nevertheless, these factors play a similar role in the NGS itself [34]. The fact

that the qPCR-based approach does not introduce additional biases to those already present in

NGS workflows can be thus considered an advantage.

Since several universal bacterial primers have been designed and optimized specifically for

qPCR or NGS, it is advisable to consider potential biases resulting from primer-specific ampli-

fication efficiency for particular taxa [35] as well as differential primer coverage, when using

different primer sets for qPCR and NGS. In this study, we chose a widely-used universal bacte-

rial primer set optimized for qPCR [29] that similarly targets the V3-V4 hypervariable regions

as the primer set used for Illumina MiSeq (S1A Table). The qPCR primers have slightly lower

but sufficiently comparable coverage for the domain Bacteria compared to the primers for

NGS. The coverage of both qPCR and NGS primer sets is highly comparable for the four taxa

selected for taxon-specific qPCR (S1B Table), which provides reliable validation of the

described method in this study. For future improvement of the herein presented approach, a

qPCR assay utilizing exactly the same primer pair as for NGS could be optimized and

validated.

One challenge in the cross-study comparability of qPCR-based quantitative microbiome

profiling is the reliance on an external qPCR standard from a reference organism required to

construct a standard curve. In theory, any typical taxon present in a microbial community of

interest can be used as the reference organism for standard curve construction. However, the

choice of reference organisms may induce differences in quantification results, as the qPCR

amplification efficiencies of different reference organisms may differ [34].

qPCR for quantitative NGS
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For the statistical analysis of bacterial abundances, relative or absolute, the distribution of

the data should be considered. Absolute abundances tend to be greatly right-skewed in distri-

bution, so log-transformation will be useful if statistical methods that assume normal distribu-

tion are used. As the abundances are essentially bacterial counts, it is advisable to use statistical

tests appropriate for count data, such as generalized linear models with Poisson or negative

binomial distribution. For rare taxa with a lot of zeros, zero-inflated models should be consid-

ered. Importantly, the right model depends on the distribution of the abundances of a particu-

lar taxon, and thus the same model may be not appropriate for all taxa. Notably, this is true

also for the analysis of relative abundances. The R packagemare [18] can handle both types of

data, automatically selecting the suitable statistical model for each taxon.

Conclusions

In conclusion, we caution against the analysis of microbiome NGS data solely relying on rela-

tive abundance, since compositionality may skew biological inferences from microbiome stud-

ies per our simulation data as well as the previously published studies. Although relative taxon

abundance can be indicative, absolute quantification is necessary for obtaining a comprehen-

sive understanding of the dynamics and interactions of the microbiome. To this end, we sug-

gest qPCR-based quantitative microbiome profiling be integrated in standard NGS-based

microbiome analysis.

Supporting information

S1 Fig. Selected results of a simulated intervention in a complex community (91 taxa).

(DOCX)

S2 Fig. Results of a simulated intervention in a simple community (10 taxa).

(DOCX)

S1 Table. List of primers used in this study.

(PDF)

S1 File. Raw data in spreadsheet format. This file contains the following data: simulated

intervention used in S1 and S2 Figs, total bacterial and taxon-specific qPCR, and qPCR of

butyryl-CoA:acetate CoA-transferase gene.

(XLSX)

Acknowledgments

We thank Professor Willem de Vos for comments on the manuscript.

Author Contributions

Conceptualization: Katri Korpela.

Formal analysis: Ching Jian, Katri Korpela.

Funding acquisition: Anne Salonen.

Resources: Panu Luukkonen, Hannele Yki-Järvinen.

Supervision: Anne Salonen.

Writing – original draft: Ching Jian.

Writing – review & editing: Ching Jian, Anne Salonen, Katri Korpela.

qPCR for quantitative NGS

PLOSONE | https://doi.org/10.1371/journal.pone.0227285 January 15, 2020 8 / 10

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0227285.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0227285.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0227285.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0227285.s004
https://doi.org/10.1371/journal.pone.0227285


References
1. Knight R, Vrbanac A, Taylor BC, Aksenov A, Callewaert C, Debelius J, et al. Best practices for analysing

microbiomes. Nature reviews Microbiology. 2018; 16(7):410–22. Epub 2018/05/26. https://doi.org/10.
1038/s41579-018-0029-9 PMID: 29795328.

2. Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome Datasets Are Compositional:
And This Is Not Optional. Frontiers in microbiology. 2017; 8:2224. Epub 2017/12/01. https://doi.org/10.
3389/fmicb.2017.02224 PMID: 29187837; PubMed Central PMCID: PMC5695134.

3. Tsilimigras MC, Fodor AA. Compositional data analysis of the microbiome: fundamentals, tools, and
challenges. Annals of epidemiology. 2016; 26(5):330–5. Epub 2016/06/04. https://doi.org/10.1016/j.
annepidem.2016.03.002 PMID: 27255738.

4. Morton JT, Marotz C, Washburne A, Silverman J, Zaramela LS, Edlund A, et al. Establishing microbial
composition measurement standards with reference frames. Nat Commun. 2019; 10(1):2719. Epub
2019/06/22. https://doi.org/10.1038/s41467-019-10656-5 PMID: 31222023; PubMed Central PMCID:
PMC6586903.

5. Contijoch EJ, Britton GJ, Yang C, Mogno I, Li Z, Ng R, et al. Gut microbiota density influences host
physiology and is shaped by host and microbial factors. eLife. 2019;8. Epub 2019/01/23. https://doi.org/
10.7554/eLife.40553 PMID: 30666957; PubMed Central PMCID: PMC6342524.

6. Vandeputte D, Kathagen G, D’Hoe K, Vieira-Silva S, Valles-Colomer M, Sabino J, et al. Quantitative
microbiome profiling links gut community variation to microbial load. Nature. 2017; 551(7681):507–11.
Epub 2017/11/17. https://doi.org/10.1038/nature24460 PMID: 29143816.

7. Liu CM, Hungate BA, Tobian AA, Ravel J, Prodger JL, Serwadda D, et al. Penile Microbiota and Female
Partner Bacterial Vaginosis in Rakai, Uganda. mBio. 2015; 6(3):e00589. Epub 2015/06/18. https://doi.
org/10.1128/mBio.00589-15 PMID: 26081632; PubMed Central PMCID: PMC4471566.

8. Lewis ZT, Totten SM, Smilowitz JT, Popovic M, Parker E, Lemay DG, et al. Maternal fucosyltransferase
2 status affects the gut bifidobacterial communities of breastfed infants. Microbiome. 2015; 3:13. Epub
2015/04/30. https://doi.org/10.1186/s40168-015-0071-z PMID: 25922665; PubMed Central PMCID:
PMC4412032.

9. Props R, Kerckhof FM, Rubbens P, De Vrieze J, Hernandez Sanabria E, WaegemanW, et al. Absolute
quantification of microbial taxon abundances. The ISME journal. 2017; 11(2):584–7. Epub 2016/09/10.
https://doi.org/10.1038/ismej.2016.117 PMID: 27612291; PubMed Central PMCID: PMC5270559.

10. Stammler F, Glasner J, Hiergeist A, Holler E, Weber D, Oefner PJ, et al. Adjusting microbiome profiles
for differences in microbial load by spike-in bacteria. Microbiome. 2016; 4(1):28. Epub 2016/06/23.
https://doi.org/10.1186/s40168-016-0175-0 PMID: 27329048; PubMed Central PMCID: PMC4915049.

11. Tkacz A, Hortala M, Poole PS. Absolute quantitation of microbiota abundance in environmental sam-
ples. Microbiome. 2018; 6(1):110. Epub 2018/06/21. https://doi.org/10.1186/s40168-018-0491-7 PMID:
29921326; PubMed Central PMCID: PMC6009823.

12. Dannemiller KC, Lang-Yona N, Yamamoto N, Rudich Y, Peccia J. Combining real-time PCR and next-
generation DNA sequencing to provide quantitative comparisons of fungal aerosol populations. Atmo-
spheric Environment. 2014; 84:113–21. https://doi.org/https://doi.org/10.1016/j.atmosenv.2013.11.036.

13. Korpela K, Blakstad EW, Moltu SJ, Strommen K, Nakstad B, Ronnestad AE, et al. Intestinal microbiota
development and gestational age in preterm neonates. Sci Rep. 2018; 8(1):2453. Epub 2018/02/08.
https://doi.org/10.1038/s41598-018-20827-x PMID: 29410448; PubMed Central PMCID:
PMC5802739.

14. Luukkonen PK, Sadevirta S, Zhou Y, Kayser B, Ali A, Ahonen L, et al. Saturated Fat Is More Metaboli-
cally Harmful for the Human Liver Than Unsaturated Fat or Simple Sugars. Diabetes care. 2018; 41
(8):1732–9. Epub 2018/05/31. https://doi.org/10.2337/dc18-0071 PMID: 29844096.

15. Salonen A, Nikkila J, Jalanka-Tuovinen J, Immonen O, Rajilic-Stojanovic M, Kekkonen RA, et al. Com-
parative analysis of fecal DNA extraction methods with phylogenetic microarray: effective recovery of
bacterial and archaeal DNA using mechanical cell lysis. Journal of microbiological methods. 2010; 81
(2):127–34. Epub 2010/02/23. https://doi.org/10.1016/j.mimet.2010.02.007 PMID: 20171997.

16. Costea PI, Zeller G, Sunagawa S, Pelletier E, Alberti A, Levenez F, et al. Towards standards for human
fecal sample processing in metagenomic studies. Nature biotechnology. 2017; 35(11):1069–76. Epub
2017/10/03. https://doi.org/10.1038/nbt.3960 PMID: 28967887.

17. Raju SC, Lagstrom S, Ellonen P, de VosWM, Eriksson JG,Weiderpass E, et al. Reproducibility and
repeatability of six high-throughput 16S rDNA sequencing protocols for microbiota profiling. Journal of
microbiological methods. 2018; 147:76–86. Epub 2018/03/23. https://doi.org/10.1016/j.mimet.2018.03.
003 PMID: 29563060.

18. Korpela K. mare: Microbiota Analysis in R Easily2016. Available from: https://github.com/katrikorpela/
mare.

qPCR for quantitative NGS

PLOSONE | https://doi.org/10.1371/journal.pone.0227285 January 15, 2020 9 / 10

https://doi.org/10.1038/s41579-018-0029-9
https://doi.org/10.1038/s41579-018-0029-9
http://www.ncbi.nlm.nih.gov/pubmed/29795328
https://doi.org/10.3389/fmicb.2017.02224
https://doi.org/10.3389/fmicb.2017.02224
http://www.ncbi.nlm.nih.gov/pubmed/29187837
https://doi.org/10.1016/j.annepidem.2016.03.002
https://doi.org/10.1016/j.annepidem.2016.03.002
http://www.ncbi.nlm.nih.gov/pubmed/27255738
https://doi.org/10.1038/s41467-019-10656-5
http://www.ncbi.nlm.nih.gov/pubmed/31222023
https://doi.org/10.7554/eLife.40553
https://doi.org/10.7554/eLife.40553
http://www.ncbi.nlm.nih.gov/pubmed/30666957
https://doi.org/10.1038/nature24460
http://www.ncbi.nlm.nih.gov/pubmed/29143816
https://doi.org/10.1128/mBio.00589-15
https://doi.org/10.1128/mBio.00589-15
http://www.ncbi.nlm.nih.gov/pubmed/26081632
https://doi.org/10.1186/s40168-015-0071-z
http://www.ncbi.nlm.nih.gov/pubmed/25922665
https://doi.org/10.1038/ismej.2016.117
http://www.ncbi.nlm.nih.gov/pubmed/27612291
https://doi.org/10.1186/s40168-016-0175-0
http://www.ncbi.nlm.nih.gov/pubmed/27329048
https://doi.org/10.1186/s40168-018-0491-7
http://www.ncbi.nlm.nih.gov/pubmed/29921326
https://doi.org/https://doi.org/10.1016/j.atmosenv.2013.11.036.
https://doi.org/10.1038/s41598-018-20827-x
http://www.ncbi.nlm.nih.gov/pubmed/29410448
https://doi.org/10.2337/dc18-0071
http://www.ncbi.nlm.nih.gov/pubmed/29844096
https://doi.org/10.1016/j.mimet.2010.02.007
http://www.ncbi.nlm.nih.gov/pubmed/20171997
https://doi.org/10.1038/nbt.3960
http://www.ncbi.nlm.nih.gov/pubmed/28967887
https://doi.org/10.1016/j.mimet.2018.03.003
https://doi.org/10.1016/j.mimet.2018.03.003
http://www.ncbi.nlm.nih.gov/pubmed/29563060
https://github.com/katrikorpela/mare
https://github.com/katrikorpela/mare
https://doi.org/10.1371/journal.pone.0227285


19. Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics (Oxford,
England). 2010; 26(19):2460–1. Epub 2010/08/17. https://doi.org/10.1093/bioinformatics/btq461 PMID:
20709691.

20. Tikhonov M, Leach RW,Wingreen NS. Interpreting 16Smetagenomic data without clustering to
achieve sub-OTU resolution. The ISME journal. 2015; 9(1):68–80. Epub 2014/07/12. https://doi.org/10.
1038/ismej.2014.117 PMID: 25012900; PubMed Central PMCID: PMC4274427.

21. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene
database project: improved data processing and web-based tools. Nucleic acids research. 2013; 41
(Database issue):D590–6. Epub 2012/11/30. https://doi.org/10.1093/nar/gks1219 PMID: 23193283;
PubMed Central PMCID: PMC3531112.

22. Korpela K, Salonen A, Vepsalainen O, Suomalainen M, Kolmeder C, Varjosalo M, et al. Probiotic sup-
plementation restores normal microbiota composition and function in antibiotic-treated and in caesar-
ean-born infants. Microbiome. 2018; 6(1):182. Epub 2018/10/18. https://doi.org/10.1186/s40168-018-
0567-4 PMID: 30326954; PubMed Central PMCID: PMC6192119.

23. Rinttila T, Kassinen A, Malinen E, Krogius L, Palva A. Development of an extensive set of 16S rDNA-tar-
geted primers for quantification of pathogenic and indigenous bacteria in faecal samples by real-time
PCR. Journal of applied microbiology. 2004; 97(6):1166–77. Epub 2004/11/18. https://doi.org/10.1111/
j.1365-2672.2004.02409.x PMID: 15546407.

24. Louis P, Flint HJ. Development of a semiquantitative degenerate real-time pcr-based assay for estima-
tion of numbers of butyryl-coenzyme A (CoA) CoA transferase genes in complex bacterial samples.
Applied and environmental microbiology. 2007; 73(6):2009–12. Epub 2007/01/30. https://doi.org/10.
1128/AEM.02561-06 PMID: 17259367; PubMed Central PMCID: PMC1828812.

25. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nature proto-
cols. 2008; 3(6):1101–8. Epub 2008/06/13. https://doi.org/10.1038/nprot.2008.73 PMID: 18546601.

26. Louis P, Flint HJ. Formation of propionate and butyrate by the human colonic microbiota. Environ Micro-
biol. 2017; 19(1):29–41. Epub 2016/12/09. https://doi.org/10.1111/1462-2920.13589 PMID: 27928878.

27. Reichardt N, Vollmer M, Holtrop G, Farquharson FM,Wefers D, Bunzel M, et al. Specific substrate-
driven changes in human faecal microbiota composition contrast with functional redundancy in short-
chain fatty acid production. The ISME journal. 2018; 12(2):610–22. Epub 2017/12/02. https://doi.org/10.
1038/ismej.2017.196 PMID: 29192904; PubMed Central PMCID: PMC5776475.

28. Stoddard SF, Smith BJ, Hein R, Roller BR, Schmidt TM. rrnDB: improved tools for interpreting rRNA
gene abundance in bacteria and archaea and a new foundation for future development. Nucleic acids
research. 2015; 43(Database issue):D593–8. Epub 2014/11/22. https://doi.org/10.1093/nar/gku1201
PMID: 25414355; PubMed Central PMCID: PMC4383981.

29. Nadkarni MA, Martin FE, Jacques NA, Hunter N. Determination of bacterial load by real-time PCR using
a broad-range (universal) probe and primers set. Microbiology (Reading, England). 2002; 148(Pt
1):257–66. Epub 2002/01/10. https://doi.org/10.1099/00221287-148-1-257 PMID: 11782518.

30. Gonzalez JM, Portillo MC, Belda-Ferre P, Mira A. Amplification by PCR artificially reduces the propor-
tion of the rare biosphere in microbial communities. PLoS ONE. 2012; 7(1):e29973. Epub 2012/01/19.
https://doi.org/10.1371/journal.pone.0029973 PMID: 22253843; PubMed Central PMCID:
PMC3256211.

31. Czechowska K, Johnson DR, van der Meer JR. Use of flow cytometric methods for single-cell analysis
in environmental microbiology. Current opinion in microbiology. 2008; 11(3):205–12. Epub 2008/06/20.
https://doi.org/10.1016/j.mib.2008.04.006 PMID: 18562243.

32. Frossard A, Hammes F, Gessner MO. Flow Cytometric Assessment of Bacterial Abundance in Soils,
Sediments and Sludge. Frontiers in microbiology. 2016; 7:903. Epub 2016/07/06. https://doi.org/10.
3389/fmicb.2016.00903 PMID: 27379043; PubMed Central PMCID: PMC4905975.

33. Qi C, Li Y, Yu RQ, Zhou SL, Wang XG, Le GW, et al. Composition and immuno-stimulatory properties
of extracellular DNA frommouse gut flora. World Journal of Gastroenterology. 2017; 23(44):7830–9.
https://doi.org/10.3748/wjg.v23.i44.7830 PMID: 29209124; PubMed Central PMCID: PMC5703912.

34. Bonk F, Popp D, Harms H, Centler F. PCR-based quantification of taxa-specific abundances in micro-
bial communities: Quantifying and avoiding common pitfalls. Journal of microbiological methods. 2018;
153:139–47. Epub 2018/09/30. https://doi.org/10.1016/j.mimet.2018.09.015 PMID: 30267718.

35. vonWintzingerode F, Gobel UB, Stackebrandt E. Determination of microbial diversity in environmental
samples: pitfalls of PCR-based rRNA analysis. FEMSmicrobiology reviews. 1997; 21(3):213–29. Epub
1998/02/06. https://doi.org/10.1111/j.1574-6976.1997.tb00351.x PMID: 9451814.

qPCR for quantitative NGS

PLOSONE | https://doi.org/10.1371/journal.pone.0227285 January 15, 2020 10 / 10

https://doi.org/10.1093/bioinformatics/btq461
http://www.ncbi.nlm.nih.gov/pubmed/20709691
https://doi.org/10.1038/ismej.2014.117
https://doi.org/10.1038/ismej.2014.117
http://www.ncbi.nlm.nih.gov/pubmed/25012900
https://doi.org/10.1093/nar/gks1219
http://www.ncbi.nlm.nih.gov/pubmed/23193283
https://doi.org/10.1186/s40168-018-0567-4
https://doi.org/10.1186/s40168-018-0567-4
http://www.ncbi.nlm.nih.gov/pubmed/30326954
https://doi.org/10.1111/j.1365-2672.2004.02409.x
https://doi.org/10.1111/j.1365-2672.2004.02409.x
http://www.ncbi.nlm.nih.gov/pubmed/15546407
https://doi.org/10.1128/AEM.02561-06
https://doi.org/10.1128/AEM.02561-06
http://www.ncbi.nlm.nih.gov/pubmed/17259367
https://doi.org/10.1038/nprot.2008.73
http://www.ncbi.nlm.nih.gov/pubmed/18546601
https://doi.org/10.1111/1462-2920.13589
http://www.ncbi.nlm.nih.gov/pubmed/27928878
https://doi.org/10.1038/ismej.2017.196
https://doi.org/10.1038/ismej.2017.196
http://www.ncbi.nlm.nih.gov/pubmed/29192904
https://doi.org/10.1093/nar/gku1201
http://www.ncbi.nlm.nih.gov/pubmed/25414355
https://doi.org/10.1099/00221287-148-1-257
http://www.ncbi.nlm.nih.gov/pubmed/11782518
https://doi.org/10.1371/journal.pone.0029973
http://www.ncbi.nlm.nih.gov/pubmed/22253843
https://doi.org/10.1016/j.mib.2008.04.006
http://www.ncbi.nlm.nih.gov/pubmed/18562243
https://doi.org/10.3389/fmicb.2016.00903
https://doi.org/10.3389/fmicb.2016.00903
http://www.ncbi.nlm.nih.gov/pubmed/27379043
https://doi.org/10.3748/wjg.v23.i44.7830
http://www.ncbi.nlm.nih.gov/pubmed/29209124
https://doi.org/10.1016/j.mimet.2018.09.015
http://www.ncbi.nlm.nih.gov/pubmed/30267718
https://doi.org/10.1111/j.1574-6976.1997.tb00351.x
http://www.ncbi.nlm.nih.gov/pubmed/9451814
https://doi.org/10.1371/journal.pone.0227285



