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Abstract. The state of modern computer systems has evolved to allow easy access to multiprocessor systems by supporting

multiple processors on a single physical package. As the multiprocessor hardware evolves, new ways of programming it are also

developed. Some inventions may merely be adopting and standardizing the older paradigms. One such evolving standard for

programming shared-memory parallel computers is the OpenMP API. The Standard Performance Evaluation Corporation (SPEC)

has created a suite of parallel programs called SPEC OMP to compare and evaluate modern shared-memory multiprocessor

systems using the OpenMP standard. We have studied these benchmarks in detail to understand their performance on a modern

architecture. In this paper, we present detailed measurements of the benchmarks. We organize, summarize, and display our

measurements using a Quantitative Model. We present a detailed discussion and derivation of the model. Also, we discuss the

important loops in the SPEC OMPM2001 benchmarks and the reasons for less than ideal speedup on our platform.

1. Introduction

With the breakthroughs in standard off-the-shelf mi-

croprocessor and memory technologies and their use in

building cost effective Shared-memory Multiprocessor

(SMP) systems, SMP systems have gained prominence

in the market place. As their popularity grows, more

sophisticated, yet flexible development and runtime en-

vironments are called for to facilitate rapid and efficient

development of parallel applications. Over the years,

a variety of parallel programming paradigms such as

custom compiler directives to mark parallel regions,

MPI, POSIX thread programming, and data-parallel

paradigms have emerged. While each one has its bene-

fits, for small to medium range SMPs, directive-based

programming and POSIX thread programming have

gained prominence. Since most compilers implement

parallelization directives as threads, these two ways of

programming parallel machines are related.

While a large number of vendor-specific paralleliza-
tion directives have served the SMP user community,

there was a dire need for standardization. The OpenMP

API [6] (Application Programming Interface) has ful-
filled the need by providing a flexible, scalable, and

fairly comprehensive set of compiler directives, library
routines, and environment variables to incrementally

write parallel programs. OpenMP is still evolving to

better accommodate the needs of parallel programmers.
As SMPs become more commonplace, it is impor-

tant to be able to evaluate their performance with a

standard set of benchmarks. Several parallel bench-
mark suites over the past 20 years have attempted to

fill the void, including SPLASH 2 [10], Parkbench [9],

and the Perfect Benchmarks [5]. More recently, the
Standard Performance Evaluation Corporation (SPEC)

has released a new set of benchmarks targeted towards
modern SMP systems, called SPEC OMP. The suite

contains SPEC OMPM2001 (a medium, 2 GB data set)

and SPEC OMPL2001 (a large,7 GB dataset). The data
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set sizes define the maximum memory requirements for

a single-processor run. In this paper we analyze SPEC

OMPM2001. It contains eleven programs written in

Fortran or C, which have been made parallel using the

OpenMP API. More information about the benchmarks

and the parallelization effort can be found in [15].

The SPEC OMPM2001 suite has been released in

June 2001. This paper aims at characterizing the bench-

marks on a modern, commercial multiprocessor sys-

tem. To this end, we present detailed measurements

using timers and hardware counters on our platform.

We summarize the data using a Quantitative Model and

derive this model in detail. We discuss the individ-

ual loops in the benchmarks. Finally, we analyze the

reasons for the difference between measured and ideal

speedups.

The remainder of the paper is organized as follows.

We give a brief overview of the important OpenMP

constructs in Section 2. Section 3 briefly presents the

runtime environment in which we carried out our ex-

periments. We describe the key concepts behind our

Quantitative Model and derive it in detail in Section 4.

Section 5 presents overall measurements for the bench-

marks. In Section 6, we discuss the important loops of

several benchmarks and reasons for their speedup loss.

Section 7 summarizes the discussions in Sections 5 and

6. Finally, Section 8 concludes the paper.

2. Overview of OpenMP

The OpenMP standard is a set of directives, library

functions, and environment variables to write shared-

address-space (SAS) parallel programs in Fortran and

C languages. The OpenMP API resulted from stan-

dardizing vendor-specific directives for writing parallel

programs. OpenMP encompasses some of the key con-

cepts behind writing shared-address-space programs

with a few simple directives and library functions. We

briefly introduce the OpenMP constructs referred to in

this paper. See [6,7] for details on the OpenMP stan-

dard.

In OpenMP, a parallel region is declared by plac-

ing an OMP PARALLEL/OMP END PARALLEL di-

rective around it. Such a region will be executed by

every participating processor. A group of participat-

ing processors is called a team of threads. Usually,

OpenMP programs create one thread per processor.

Therefore, the following description refers to processor

where the OpenMP standard would use the more ab-

stract term thread. Variables within the parallel region

are declared private per processor or shared among the

processors with a PRIVATE or a SHARED clause af-

ter OMP PARALLEL, respectively. The private vari-

ables declared in this fashion are undefined at the be-

ginning of the parallel region and are undefined at the

end. Thus, they should be used only within the par-

allel region. On the other hand, THREADPRIVATE

variables are private to each processor, but their values

persist from one parallel region to the next. PRIVATE,

SHARED, and THREADPRIVATE are known as the

data environment clauses.

If a for-loop in C or a DO-loop in Fortran have inde-

pendent iterations, which can be executed by different

processors without generating incorrect results, the iter-

ations can be easily partitioned among the available pro-

cessors using omp for or OMP DO/OMP END DO

construct. The construct is placed immediately before

the loop and is called a worksharing construct. If the

parallel region contains only one worksharing construct

and does not contain any serial code either, it may be

possible to combine OMP PARALLEL and OMP DO

and use OMP PARALLEL DO instead.

In a worksharing construct, it is possible for the pro-

grammer to instruct the compiler to divide the iterations

among the processors in a specific way. One possibility

is to divide the iterations equally so that each processor

executes the same number of iterations. This is called

block or static scheduling. It is a default in the OpenMP

standard with the above worksharing constructs. Block

scheduling assumes that each iteration does roughly

the same amount of work, and hence, all processors

will perform the same amount of computation. When

such is not the case, the programmer can specify either

dynamic or guided scheduling. While these two kinds

of scheduling are different in implementation, the ba-

sic concept is the same: each processor fetches more

iterations once it is finished with its current share of

iterations. Thus, a slower processor may do less work

and a faster one may perform more. However, each

processor works for about the equal amount of time.

This helps avoid load-imbalance. The type of schedul-

ing can be specified using a SCHEDULE clause next to

an OMP DO construct.

Since the OpenMP constructs are inherently mul-

tithreaded, it is necessary to provide some form of

mutual exclusion and global synchronization. In

the OpenMP standard, the mutual exclusion is pro-

vided by enclosing a critical section of code within

either the OMP CRITICAL/OMP END CRITICAL

directives or by using the OpenMP library func-

tions omp set lock/omp unset lock. The code
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within these constructs is executed by each processor.

If part of the code within a parallel region needs to

be serialized among the processors, but only one pro-

cessor must execute it and the others must skip it, an

OMP SINGLE/OMP END SINGLE construct is ap-

propriate. Lastly, when all processors must arrive at

a certain point in the program before continuing on,

an OMP BARRIER directive can be used. No proces-

sor can continue past the barrier until all processors

have finished executing the code before it. Thus, it is

a global synchronization construct. A barrier is im-

plicitly defined in OMP END PARALLEL, OMP END

DO, and OMP END SINGLE among many other con-

structs. Because a barrier introduces overhead, it is

desirable to remove it where possible from OMP END

DO. This can be done by placing a NOWAIT clause next

to it. This is typically done for the last worksharing

construct in a parallel region. In many instances it is

necessary, not only to synchronize all processors, but

also to guarantee that all memory operations before

the synchronization point are complete, and all proces-

sors have a consistent view of memory [16]. An OMP

FLUSH directive updates the global view of memory

for all processors by completing all memory operations.

Finally, reduction operations are common in parallel

programming, where several processors update a sin-

gle scalar or array variable. The reduction operations

can be performed by inserting a REDUCTION clause

following a worksharing construct in OpenMP. The

OpenMP standard supports many most frequently used

reduction operators such as +, −, MIN, and MAX. The

OpenMP standard, revision 2.0 and above also includes

array reduction operations, which are not yet supported

by all compilers.

3. Experimental setup

We ran the benchmarks on a quad processor Sun

Enterprise 450 SMP system from Sun Microsystems

Inc.. The basic configuration of the system is shown in

Table 1.

All measurements were taken in single-user mode.

We executed each benchmark with the full data set.1

from the released version of the SPEC OMPM2001

Toolkit environment. All of the executions vali-

dated within the tolerances specified by the SPEC

OMPM2001 Toolkit.

1The full data set is called Reference set in the SPEC toolkit

Table 1

Basic hardware and software setup

Machine Model Sun Enterprise 450

CPU 480 MHz UltraSPARC II

No. of CPUs 4

Used CPUs 4

Memory per Node 4 GB

Instruction Cache 16 KB
Data Cache 16 KB, 32 byte line,

direct mapped, write through,

write no-allocate

External Cache 8 MB, 64 byte line, unified, write

allocate, inclusion with data L1

Peak Mem. Bandwidth 1.78 GB/sec

Operating System Solaris 5.8

Page Size 8KB
Fortran Compiler Sun Forte 6, update 1

C Compiler Kuck & Associate’s GuideC 4.0

with Sun Backend

In order to account for over 99% of the total exe-

cution time, we instrumented all time-consuming par-

allel and serial sections of the programs with a high-

resolution timer. The overhead introduced by instru-

mentation is 2% or less for all benchmarks, which is

within a tolerable range. In order to gain additional

insight into the performance of the programs, we en-

hanced our instrumentation libraries to measure the

hardware counters on the UltraSPARC II processors.

Each UltraSPARC II processor has two 32-bit hard-

ware counters. There are up to 22 distinct hardware

events that can be measured with these counters. Our

library handles the overflow of the counters correctly.

We measured all hardware events for the sequential and

the 4-processor parallel executions.

Just as in the case of timers, we have measured the

hardware events per program section as well as per

processor. In order to measure the events per pro-

cessor and inside a parallel region, we applied sev-

eral modifications to the region. In order to mea-

sure the parallel execution time, we instrumented each

OMP PARALLEL and OMP END PARALLEL section

but not the worksharing constructs inside each sec-

tion. Because we wanted to instrument at the paral-

lel region level rather than worksharing construct level,

a number of OMP PARALLEL DO worksharing con-

structs had to be converted to OMP PARALLEL/OMP

DO pair, which then allowed instrumentation at the

parallel region level. Also, we measured the fork-

join and the load-imbalance times by instrumenting

around OMP PARALLEL/OMP END PARALLEL di-

rectives. We define the fork-time as the time spent

while entering a parallel region. The time spent in OMP

END PARALLEL construct is a sum of the join-time
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Fig. 1. Measurement of different loop times.

and the load-imbalance time. Since the join-time is typ-

ically very small (several microseconds),we expect that

the time spent in OMP END PARALLEL matches the

load-imbalance time closely. Also, in order to measure

the load-imbalance, we appended a NOWAIT clause

to OMP END DO wherever possible. The NOWAIT

clause removes the implicit barrier in OMP END DO,

permitting each thread to reach the barrier inOMP END

PARALLEL as soon as it finishes useful work. Figure 1

shows how we attribute times.

We compiled each benchmark using the SPEC

Toolkit. We used the -fast flag on all C and For-

tran benchmarks. Also, with the Fortran benchmarks,

we used -O5 and -xprofile. We found more spe-

cific optimization flags to achieve peak performance for

gafort. The C programs used GuideC as the OpenMP

compiler combined with Sun’s C compiler. The only

optimizations for the C programs were -xfast and

-xalias level=strong. We used the same set

of optimization flags to generate the sequential and the

parallel versions of the programs. We did not make any

algorithmic changes to the parallel version that would

enhance or degrade the speedup. We compiled and ran

the exact same code in the sequential and the parallel

versions. We simply used or not used a -openmp flag

with the Fortran programs to generate either a parallel

or a sequential version, respectively. Compiling with

GuideC automatically generates parallel code. To com-

pile a sequential version of a C program, we used Sun’s

C compiler directly.

4. A quantitative model

We introduce a model in order to quantify our per-

formance observations. More specifically, we want to

exhibit quantitatively the reasons that limit scalabil-

ity of parallel programs. The basic idea is to analyze

the difference between measured and ideal speedup of

the parallel program. The model will subdivide this

difference into speedup components, which represent

the overhead factors responsible for suboptimal per-

formance. The issues in doing so are to (1) define a

complete and orthogonal set of overhead factors, (2)

measure the factors or derive them from measured data,

and (3) compute the model values thereof. The follow-

ing subsections present our solutions to these issues.

The presented model refines the Speedup Component

Model introduced in [13]. Another model that attempts

to quantify the performance of loop-dominated scien-

tific applications is presented in [3]. Similar to the

model in [3] that focuses on explaining performance

difference between the upper bound on the best achiev-

able performance and the realized performance, our

model also attempts to explain the difference between

the ideal performance and the measured performance.

4.1. Overhead Factors

The total execution time of a parallel program or pro-

gram section can be divided into the following factors:

1. Time spent performing useful work,

2. stalls due to waiting for data accesses,
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3. stalls due to pipeline bubbles (e.g., branch mis-

prediction stalls),

4. idle time due to serial program sections and load-

imbalance,
5. parallelization overhead, such as fork and join

operations,

6. time spent in extra computation, not present in the
serial code (such as initialization and final sum of

parallel reductions or OpenMP intrinsic function

calls),
7. time attributable to less optimal parallel code gen-

eration (e.g., due to more conservative compila-

tion)

8. time spent at low-level synchronization points,
such as fence instructions (e.g., MEMBAR and

STBAR in the UltraSPARC II processor)

We divide the overhead factors into two categories.
The first category includes overheads also present in the

serial program (factors 2 and 3). The second category

includes overheads only present in the parallel program

execution (factors 4 – 8).
While we believe these overhead factors to be reason-

ably complete, there are second-order effects. For ex-

ample, even in single-user mode, a program may be in-
terrupted by low-level system processes. Our measure-

ments will need to ensure that such effects are negligi-

ble. To account for possible inaccuracies, we will intro-

duce an additional factor that represents not-modeled
effects.

The orthogonality of the overhead factors needs care-

ful consideration. For example, idle time due to load-
imbalance and due to serial program execution must

be distinguished clearly. This will become important

for the measurement of the factors, discussed in the
next subsection. Orthogonality is a further issue in that

overhead factors may hide each other. For example,

a code section may exhibit 40% memory stall cycles

and 10% pipeline stalls. The programmer may be able
to reorder the computation so that the memory stalls

decrease by 20%. However, as a result the pipeline

stalls may increase by 10%. While it is important for
our instruments to attribute each processor cycle to ex-

actly one time factor, this requirement tends to hide

other factors. Note, it would be incorrect to conclude
that removing a certain speedup component via some

improvement would necessarily lead to a speedup in-

crease proportional to the affected speedup component.

Instead, the speedup components quantify the relative
importance of overhead factors in the measured pro-

gram execution. When interpreting our results we will

revisit this fact.

Table 2

Measured parameters

No. Parameter Notation Device

1 Sequential or Serial Time Tser Timer

2 Parallel Time Tpar Timer
3 Loop Body Time Tbody Timer

4 Fork Time Tfork Timer

5 IC Miss Stalls TIC HWC

6 Store Buffer Stalls TSB HWC

7 Load Use Stalls TLD HWC

8 Load Stalls on RAW TRAW HWC

9 Branch Misprediciton

Stalls TBM HWC
10 Floating-Point

Dependence Stalls TFP HWC

11 Amdahl’s Time Tamdahl Timer

4.2. Measuring and Deriving Overheads

We have instrumented our programs with calls to the
Sun UltraSPARC II hardware counter libraries at the
points indicated in Fig. 1. From these measurements

we obtained the following performance factors. All
factors apply to individual processors.

Category 1 (overheads present in both serial and par-
allel code):

1. memory system stalls (Tmemory), further sub-

divided into stalls due to instruction cache
misses (TIC), store buffer full (TSB), depen-
dence on earlier incomplete load (TLD), and

load dependent on an earlier store (TRAW).
2. pipeline stalls (Tpipeline), further subdivided

into stalls due to branch misprediction (TBM),

and floating-point dependence (TFP).

Category 2 (overheads present in parallel code only):

1. load-imbalance (Tload−imb),
2. serial program sections (Tamdahl),
3. fork and join overhead (T fork, Tjoin, Tfj)

Table 2 lists the overheads and times that we ob-

tained through direct measurement. Tser and Tpar rep-
resent the serial and parallel execution time, respec-
tively. Tamdahl represents time spent by all but one

processors during serial program sections. The used
hardware counters ensure that each machine cycle is
attributed to exactly one overhead factor, satisfying the

orthogonality criterion discussed in Section 4.1. Within
our overhead factors, only the memory system and
pipeline stalls can hide each other to a certain extent.

However, load-imbalance and fork-join overheads are
orthogonal to all other categories.

Table 3 lists overheads and parameters that we de-

rived from measured values. T join = Tpar − Tfork −
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Fig. 2. Illustration of load-imbalance.

Table 3

Derived parameters

No. Parameter Notation Unit

1 Speedup Speedup Unitless

2 Useful Computation Tcomp Cycles

3 Memory Stalls Tmemory Cycles

4 Pipeline Stalls Tpipeline Cycles

5 Join Time Tjoin Cycles
6 Fork-Join Stalls Tfj Cycles

7 Load-Imbalance Tload−imb Cycles

8 Not Modeled Tnot−modeled Cycles

max(Tbody) is the barrier time at the end of a par-

allel region. It is computed as the total time taken

by the region excluding the fork time and the region

time on the slowest processor, as illustrated in Fig. 2.
Tfj = Tfork+Tjoin. The load-imbalance is the time each

processor waits for all other processors to reach the final

barrier of the region: Tload−imb = Tpar − Tbody −Tfj.
The fork and join overhead is the same on all proces-

sors, while the load-imbalance can differ.

Table 3 also shows several terms that do not represent

overheads. Speedup is computed as T ser/Tpar. Tcomp,s

and Tcomp,p represent the time taken by useful com-

putation in the serial and parallel code, respectively.

Subscripts s and p stand for serial and parallel, respec-
tively. Tcomp,s = Tser − Tmemory,s − Tpipeline,s. We

cannot measure or compute Tcomp,p precisely and, in-

stead, estimate
∑N

Tcomp,p over all processors (N ) to
equal Tcomp,s. The inaccuracy of this estimate factors

into Tnot−modeled, which represents a time component

that is not accounted for in our model. Tnot−modeled

exhibits the inaccuracy of our model. Additional fac-
tors covered by this term include the items 6–8 listed

in Section 4.1. We will discuss effects believed to be

caused by these overheads in Section 6.

4.3. Computing the model values

The goal of our model is to split the difference be-

tween measured and ideal speedup into a number of

speedup components. These components represent the

overhead factors, each being proportional to the in-

crease in overhead cycles from the serial to the parallel

code. That is,

Speeduploss = Speedupideal − Speedupmeasured,

where Speeduploss is split into its contributing over-

heads.

We first consider a fully parallel region. For this

region, the parallel execution time equals the sum of

the times spent in useful computation plus overheads:

Tpar = Tcomp,p + Tmemory,p + Tpipeline,p + Tfj

+ Tload−imb

=

K
∑

Tfactor,p

Tpar is the same on all processors, while its con-

stituents may differ.
∑K

Tfactor,p is short for the sum

of all K constituent times. Summing up this term

across all N processors results in

N,K
∑

Tfactor,p = N · Tpar

With this relationship and the definition of speedup,

it follows that
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Speeduploss = Speedupideal − Speedupmeasured

= N −

Tser

Tpar

=

∑N,K
Tfactor − Tser

Tpar

(1)

=
1

Tpar

K
∑

i=1

(

N
∑

Tfactori,p − Tfactori,s

)

Hence, each overhead factor contributes a speedup
component proportional to the sum of its cycles con-

sumed on all processors in parallel minus the overhead
time in the corresponding sequential program. For the
factors Tfj and Tload−imb the sequential overhead is

zero. We have defined
∑N

Tcomp,p = Tcomp,s as an
estimate. With this estimate the speedup component of

Tcomp is zero, that is, the combined useful cycles in the
parallel code equal the useful cycles of the sequential

code. In its place we use the Tnot−modeled term, cap-
turing model inaccuracies, as discussed in Section 4.1.
Hence,

Speeduploss = SCmemory + SCpipeline

+ SCload−imb + SCfj (2)

+ SCnot−modeled

where the first four components are computed by

formula 1, and SCnot−modeled fills the gap between
Speedupideal − Speedupmeasured and SCmemory +
SCpipeline + SCfj + SCload−imb.

4.3.0.1. The model for an entire program is a small

extension of the model for a fully parallel region. In
addition to parallel regions, a whole program con-
tains serial sections.2. According to Amdahl’s law,

the maximum speedup of such a program is limited to
Speedupideal − SCamdahl, where

SCamdahl = N −

1

(p/N) + (1 − p)
, 0 � p � 1,

and p is the parallel coverage. Parallel coverage is a
fraction of the serial program that is enclosed by paral-

2The serial sections of code in parallel and sequential executions

may take different amounts of time. We are assuming that they take

a same amount of time. Our assumption is valid only because the

serial sections are very small in all programs and do not contribute

substantially to the overall execution time.

lel regions. Hence, for parallel programs that include

serial sections, the speedup components are,

Speeduploss = SCmemory + SCpipeline (3)

+ SCload−imb + SCfj

+ SCnot−modeled + SCamdahl

Note, that a speedup component can amount to a

negative value if the overheads in the parallel code

are less than the overheads in the serial code. This

can occur when, for example, the compiler has ap-

plied locality-enhancement transformations to the par-

allel code but not to the serial code. In this case the

negative SCmemory exhibits the source of potential su-

perlinear speedup behavior. Negative components can

also result from measurement artifacts, if two over-

heads present in the same cycle are counted differently

in two program executions. For example, a cycle may

include both a memory and a pipeline stall; in one run

the hardware counters record a pipeline stall, in the

second run a memory stall. In this case one can expect

that, while one speedup component becomes negative,

another component grows significantly.

In the following sections we will use the two model

formulas, 2 and 3, to characterize the speedup loss of

the SPEC OMPM2001 benchmarks and their important

loops.

5. Overall performance

We have used the Quantitative Model as presented

in the previous section to organize and summarize the

timer and hardware counter measurements of the SPEC

OMPM2001 benchmarks on our platform. Before pre-

senting the speedup components of the programs, we

will outline their most basic characteristics.

5.1. Basic characteristics

Table 4 shows the parallel coverage based on a se-

quential run, the sequential and 4-processor parallel ex-

ecution times, and the overall speedup of the bench-

marks. With the exception of galgel, all benchmarks

show a parallel coverage of 97% or more in parallel and

sequential runs. Galgel shows a parallel coverage of

about 95%. Thus, the SPEC OMP codes are highly par-

allel. The table also shows that the SPEC OMP codes

run for a long time even with the medium Reference

data sets.
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Fig. 4. Total and memory-related instructions normalized with respect to the 4-processor count of instructions in ammp.

Figures 3 and 4 show the overall cache hit rates,

the number of executed instructions, and the number
of memory access instructions. Figure 3 indicates that

most benchmarks suffer from poor first-level data cache

hit rate. Even the secondary cache hit rates are below

90% in some instances. The secondary cache hit rate
is computed with respect to the total references going

only to the secondary cache. With the exception of apsi,

art, and wupwise, most programs report an increase in

the cache hit rates. The instruction cache hit rates are
almost 100% in all instances except fma3d.

Figure 4 shows the relative proportion of the memory

access instructions to the overall instructions. It is

between 20% and 45% in all benchmarks. Also, the

figure shows that all benchmarks perform more work in
the parallel version compared to the sequential version.

Ammp, equake, fma3d, and galgel show a large increase

in the number of memory access instructions.

Figure 5 shows the fork-join overhead scaling of the
benchmarks. Relative to the execution times, the fork-

join overhead is very small. Consequently, Fig. 6 shows

negligible fork-join speedup components. Galgel is an

exception; it has the largest fork-join overhead, mainly
due to several million invocations of the LAPACK rou-

tines. At the other extreme, art has nearly zero fork-

join overhead, because it has only one loop which is re-
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Fig. 5. Fork-join overhead.

Table 4

Basic runtime characteristics of the SPEC OMPM2001 bench-

marks

Parallel Execution # of

Coverage Time(sec) Speedup Parallel

Code (%) Seq. 4 (4 CPU) Regions

ammp 99.12 16841 5898 2.84 7

applu 99.99 11712 3677 3.14 22

apsi 99.84 8969 3311 2.72 24

art 99.83 28008 7698 3.62 3

equake 99.16 6953 2806 2.54 11

fma3d 99.46 14852 6050 2.50 92/301

gafort 99.94 19651 7613 2.56 6

galgel 95.58 4720 3992 1.19 32/311

mgrid 99.98 22725 8050 2.84 12

swim 99.44 12920 7613 1.70 8

wupwise 99.83 19250 5788 3.31 10

1Programmed regions / regions called at runtime.

sponsible for about 99% of the execution time and is in-

voked only once. Finally, even if all loops in apsi have

a relatively small number of invocations (few tens to

few hundred), the fork-join overhead is high compared

to loops in some other benchmarks with a similar invo-

cation count. The higher fork-join time in apsi comes

from the malloc and free calls by the Fortran com-

piler to allocate a privatized array inside a parallel re-

gion. In fact, the local arrays in a subroutine are always

allocated dynamically by our Fortran compiler. Since

the Fortran compiler extracts each parallel region into a

subroutine [8,11] and declares all PRIVATE variables

as local variables in that subroutine, the PRIVATE ar-

rays end up getting allocated and freed dynamically.

The high overhead of the malloc/free calls comes

from the fact that each thread gets a copy of the array

from the same process heap. Therefore, these calls are

serialized by the operating system. Also, allocating

memory dynamically is usually costly. Such overhead

is experienced every time an OMP PARALLEL con-

struct is executed in apsi. There is a multithreaded mal-

loc library (libmtmalloc) available on Solaris, which

might alleviate serialization. However this library was

not used with our compilers.

5.2. Overall Speedup Components

Figure 6 shows the overall speedup components of

the SPEC OMPM2001 benchmarks. It breaks down the

lost speedup into the responsible components. We have

used Speedupideal = 4 to compute the overall speedup

components. We can make several observations from

Fig. 6:

– The key reason for speedup loss is the memory

stalls, which increase in the parallel versions.

– Fork-join and load-imbalance overheads are rela-

tively minor reasons for the lost speedup.

– Pipeline stalls are important in art and equake.

– Swim has a negative speedup loss component, en-

abling potential superlinear performance. How-

ever, of all the benchmarks it also has the largest

speedup loss due to memory stalls.

– Our model is the most accurate for apsi, mgrid,

and wupwise, where it explain almost the entire

speedup loss. It is fairly accurate for gafort. On

the other hand, it is the least accurate for galgel, be-

cause it has a “Not Modeled” component of about
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Fig. 6. Overall speedup components.

2.0. Nevertheless, a part of galgel’s speedup loss

can be explained by the memory stalls component.

– All benchmarks, except galgel, have nearly zero

“Amdahl” speedup component. In galgel, the

“Amdahl” speedup component is about 0.5 due to

only 95% parallel coverage.

Figure 7 further categorizes the speedup components

related to memory and pipeline stalls. All benchmarks

suffer from “Load Use” stalls. These stalls delay all

instructions in the execute and the grouping stages of

the UltraSPARC II pipeline [12]. “Store Buf.” related

stalls are important in apsi, fma3d, galgel, mgrid, swim,

and wupwise. Swim has a very large speedup loss com-

ponent due to the “Store Buf.” stalls. The “Store Buf.”

stalls result from a full store buffer. Fma3d shows a

speedup component because of the instruction cache

miss stalls (“IC Miss”), and gafort loses speedup be-

cause of the read-after-write (RAW) dependence. Fi-

nally, equake experiences reduced scalability due to the

stalls related to floating-point dependences. The “FP

Dependence” stalls occurs when the first instruction in

the group depends on the result from an earlier floating-

point instruction. These stall cycles are counted only

if the earlier floating-point instruction is not waiting on

a load. Thus, “Load Use” and “FP Dependence” are

mutually exclusive.

6. Loop-by-loop performance

In this section we discuss the performance of the

individual benchmarks and their major loops. Table 5

shows the speedup components for these loops. We

have computed speedup components for the loops using

formula 2 for the fully parallel region (see Section 4.3

and Speedupideal = 4.

6.1. Ammp

Ammp is about 13,500 lines of C code in the area of

chemistry/biology. Mmfvupdate 5 is the most impor-

tant loop in ammp. It has an average execution time

of 80 seconds on a single processor. Table 5 shows

the speedup components of mmfvupdate 5, which are

identical to the overall program. All loops show negli-

gible load-imbalance, which is in part due to the chosen

guided scheduling option.

From the hardware counter measurements, we found

that the first-level data cache hit rate for mmfvupdate 5

increases from 79% to 85% for loads and from 92%

to 93% for stores while running in parallel. How-

ever, there are 1.5 times more loads in the parallel ver-

sion than in the sequential one. The number of stores

remains nearly unchanged between the two versions.

From Fig. 7, we can see that “Load Use” is the biggest

reason for the speedup loss. Despite the increase in the

cache hit rate, mmfvupdate 5 experiences more mem-

ory stalls on 4 processors. We attribute this effect to

the increase in loads. Even though the cache hit rate

improves, absolute number of cache misses goes up by

35% for loads and 8% for stores. It is the increase in

cache misses that contributes to the increased memory

stalls.

We discovered that one reason for the increase

in loads is the threadprivate array naybor.
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Fig. 7. Breakdown of the memory and pipeline components.

naybor is an array of 27 integers. It is respon-

sible for about 18% increase in the memory refer-

ences suggesting that accessing threadprivate

variables involves more memory references than ac-

cessing private variables. As an experiment, we

declared naybor as a private array. We found that

the number of memory references went down, and the

speedup increased to 2.92.

Since mmfvupdate-5 uses omp set lock/omp u

nset lock in 3 places, there are two overheads in the

parallel version, that are not present in the sequential

program: an overhead of executing extra instructions

while spin waiting and delays due to lock contention.

In order to quantify the overall contribution of the locks

to the speedup, we removed them temporarily. In this

loop, removing the locks is a programming error. How-

ever, we found that the program had executed correctly

most of the time without the locks suggesting that the

race conditions exist, but they are infrequent. After

removing the locks, the speedup increased to 2.99 on 4

processors. Our model does not capture this speedup

component explicitly. It shows up as a part of “Not

Modeled” component.

Also, we discovered that the sharing of the lock

variable leads to increased invalidations and copybacks

boosting the secondary cache misses. See [14] for

the detailed data on invalidations, copybacks, and sec-

ondary cache misses. Such sharing of the lock vari-

able is an example of true-sharing in the SPEC OMP

benchmarks.

6.2. Applu

Applu is about 4,000 lines of Fortran code in the area

of fluid dynamics. From Table 5, we see that ssor do#3

is the most important loop in applu. It has 177 seconds

of average execution time on a single processor and is

responsible for about 81% of the overall execution time.

Rhs-do#1 to rhs-do#4 are also important collectively.

Ssor do#3 has a speedup of 3.5, which is among the

best in the benchmark suite. The remaining speedup

component of 0.5 is due to “Load Use” stalls (0.3) and

not-modeled effects (0.2), as shown in Figures 6 and 7.

We attribute the increased memory stalls in the paral-

lel code in part to code patterns that lead to increased

demands on the memory bus. Code examination of

ssor-do#3 shows that it contains two DO-loops. Each

loop makes two subroutine calls. Each subroutine con-

sists of a doubly nested loop that performs some matrix

computations. In these doubly nested loops, we find

references to several shared arrays. At runtime, the

loop exhibits low computation-to-memory-access ra-

tio. In general, the code that accesses large arrays with

little or no computation leads to increased demands

on the memory bus or interconnect resulting in longer

memory access latencies. With little or no computation

to perform, a processor issues loads and stores more

frequently and waits for them to complete. This situa-

tion is worsened in parallel by frequent bus locking and

queuing delays in the interconnect, leading to longer

memory access latencies and, in turn, more memory

stalls. While we cannot measure bus and memory bank

contentions, we include such effects in the increased
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Table 5

Loop-by-loop speedup components of the SPEC OMPM2001 benchmarks

Loop % Exec. Not

Code Name (Seq) Load-Imb Pipeline Memory Fork-Join Modeled Measured

ammp mmfvupdate 5 97.12 0.01 0.00 0.75 0.00 0.43 2.81

mmfvupdate 2 2.10 0.02 0.02 0.20 0.01 0.97 2.78

applu ssor do#3 81.25 0.02 0.01 0.31 0.00 0.18 3.49

rhs do#3 4.54 0.17 −0.02 −0.17 0.03 0.32 3.68

rhs do#4 3.91 0.03 −0.04 −0.05 0.00 0.25 3.80

rhs do#2 3.54 0.03 0.01 0.90 0.01 0.12 2.93

rhs do#1 2.07 0.00 −0.01 0.43 0.01 1.80 1.76

apsi RUN DO#60 10.85 0.08 0.01 0.69 0.02 −0.04 3.24
RUN DO#40 10.83 0.06 0.01 0.69 0.02 −0.03 3.25

RUN DO#30 10.82 0.06 0.01 0.67 0.03 −0.02 3.25

RUN DO#20 10.82 0.08 0.01 0.67 0.03 −0.05 3.26

RUN DO#100 7.51 0.09 0.02 0.89 0.02 −0.03 3.01

DVDTZ DO#40 6.94 0.04 0.18 −0.14 0.03 −0.07 3.96

DTDTZ DO#40 5.21 0.15 0.07 0.43 0.02 −0.15 3.49

DUDTZ DO#40 5.06 0.15 0.37 0.34 0.09 −0.34 3.38

DKZMH DO#30 5.00 0.03 −0.67 −1.26 0.04 0.23 5.64
DCDTZ DO#40 4.26 0.04 0.02 0.07 0.04 0.03 3.81

RUN DO#50 4.17 0.09 0.01 0.83 0.04 −0.09 3.11

RUN DO#70 3.84 0.07 0.02 0.83 0.07 −0.07 3.08

WCONT DO#30 3.67 0.03 0.00 −0.41 0.19 0.32 3.87

art scanreco 0 99.92 0.01 0.26 0.18 0.00 0.25 3.31

equake smvp-#0 65.57 0.05 0.11 0.76 0.01 0.47 2.61

main-#3 31.61 0.01 0.13 0.34 0.00 0.55 2.97
fma3d platq do#2 76.62 0.01 0.00 0.78 0.00 0.27 2.94

solve do#6 11.83 0.01 0.00 1.44 0.03 0.26 2.27

solve do#4 5.23 0.01 0.07 2.44 0.00 0.42 1.06

solve do#2 2.85 0.07 0.00 2.50 0.02 0.08 1.34

gafort shuffle-do#10 34.89 0.06 0.00 1.70 0.01 −0.04 2.26

gafortran-do#45 26.35 0.05 0.03 0.41 0.00 0.04 3.48

mutate-jump 18.03 0.13 −0.01 0.88 0.00 0.40 2.61

evalout-do#30 13.30 0.01 −0.01 0.16 0.00 0.05 3.79
newgen-do#94 7.39 0.02 0.01 1.02 0.00 0.21 2.75

galgel syshtN do#1234 24.64 0.01 0.01 0.04 0.00 2.81 1.13

sysnsn do#123 23.74 0.01 0.03 0.20 0.00 3.16 0.61

lapak do#7 13.65 0.07 0.00 0.09 0.03 −0.10 3.91

lapak do#1 9.88 0.02 0.00 0.00 0.00 −0.02 4.00

lapak do#3 7.12 0.02 0.00 2.53 0.00 0.04 1.40

lapak do#5 5.69 0.10 0.01 1.36 0.00 0.02 2.50

lapak do#4 3.73 0.03 0.00 −1.33 0.00 −5.28 10.58
lapak do#10 3.23 0.03 0.00 0.15 0.00 −0.02 3.84

mgrid RESID do600 50.40 0.00 0.00 1.08 0.04 −0.07 2.94

PSINV do600 23.53 0.01 0.00 0.55 0.04 0.03 3.37

RPRJ3 do100 10.24 0.02 0.00 0.67 0.05 −0.06 3.32

INTERP do400 5.30 0.05 0.00 1.24 0.05 0.11 2.55

INTERP do800 5.22 0.03 0.00 1.77 0.05 0.12 2.02

swim CALC3 DO#300 35.03 0.00 0.00 2.47 0.01 −0.22 1.74
CALC2 DO#200 30.68 0.00 0.00 2.36 0.01 −0.19 1.81

CALC1 DO#100 28.59 0.01 0.00 2.75 0.01 −0.60 1.82

SWIM DO#400 5.61 0.01 0.12 2.50 0.00 0.09 1.29

wupwise MULDOE DO#1 43.01 0.00 0.00 0.13 0.01 0.07 3.79

MULDEO DO#1 42.83 0.00 0.00 0.08 0.01 0.06 3.85

ZAXPY DO#1 5.49 0.01 0.00 2.26 0.04 −0.13 1.82

ZDOTC DO#1 4.19 0.01 −0.01 1.84 0.01 0.00 2.15

ZCOPY DO#1 2.68 0.01 0.00 2.51 0.03 −0.36 1.81

1Naming Scheme: Either Subroutine/FileName-do#LoopLabel or Subroutine/FileName-do#LoopNumber from the top of

the subroutine

demands on the memory bus. Therefore, we attribute

the increase in memory stalls to such effects.

We found that ssor do#3 had been hand optimized

for this benchmark. In particular, loop scheduling
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was applied explicitly, rather than by making use of

OMP DO directive. In other benchmarks we will dis-

cuss experiments showing that replacing OMP DO con-

structs by explicitly scheduled code leads to improve-

ments. Hence, the optimization applied to ssor do#3

contributes to the good performance relative to other

benchmarks.

Table 5 shows that rhs do#3 and rhs do#4 have nega-

tive “Load Use” components. Rhs do#3 loses speedup

due to load-imbalance and “Not Modeled” effects.

Similarly rhs do#4 also loses speedup because of “Not

Modeled” component. Yet both loops speedup quite

well on 4 processors.

We did not find any evidence of false-sharing in ap-

plu.

6.3. Apsi

Apsi is a 7,500 lines of air pollution analysis code

written in Fortran. The execution time in apsi is

distributed over several important loops as shown

in Table 5. The most important loops from Ta-

ble 5 are RUN DO#60, RUN DO#40, RUN DO#30,

RUN DO#20, RUN DO#100. We will refer to these

loops as the RUN-loops.

The RUN-loops in apsi lose speedup due to the in-

crease in memory stalls, and they are responsible for the

majority of memory stalls in apsi. Figure 7 shows that

“Load Use” and “Store Buf.” are the key reasons for

increase in the memory stalls. From the timer and hard-

ware counter measurements, we found that all RUN-

loops show an increase in the “Load Use” stalls along

with several other important loops. The RUN-loops

also show a large and almost a linear increase in the

“Store Buf.” stalls. We discovered that in each RUN-

loop, the first-level data cache hit rate decreases from

94% to 91% for the loads, and from 90% to 85% for

the stores. However, the numbers of loads and stores

remain about the same between the serial and parallel

versions of the program. In addition to the RUN-loops,

several other loops in apsi also show lower cache hit

rates in the parallel version. The increase in cache

misses explains the increase in memory stalls.

All RUN-loops have almost 99% secondary cache

hit rate. Yet there is a slight degradation of the cache hit

rate in the parallel version leading to nearly 4% more

secondary cache misses. The decline in the secondary

cache hit rate is partly an artifact of increased invalida-

tions and copybacks suggesting some false-sharing in

these loops.

Dkzmh-do#30 is the only loop that shows superlin-

ear speedup over 5.0. The main reasons, as found by

the detailed hardware counter measurements [14], are

decreases in “Load Use” stalls and “FP Dependence”

stalls. We found that the first-level cache hit rate of

loads decreases in the parallel version, the overall sec-

ondary cache hit rate also decreases in the parallel ver-

sion, but the first-level store hit rate goes up. Overall,

there is almost 12% less secondary cache misses in the

parallel version. We attribute decreased “Load Use”

stalls to the decline in the number of secondary cache

misses.

6.4. Art

Art is the longest running code among all bench-

marks on a 1-processor sequential execution, as shown

in Table 4. It contains 1,300 lines of C code in the

area of image recognition and neural networks. Scan-

reo 0 is the most important loop. It is invoked once

and consumes 99% of the execution time. Art scales

fairly well among all benchmarks. The cache hit rates,

the number of instructions, and the number of memory

access instructions remain nearly the same between the

parallel and serial versions of the program as shown by

Figs 3 and 4. However, art still shows some increase in

the memory stalls. Figure 7 indicates that the memory

stalls component is due to “Load Use” stalls. It also

has a large pipeline stalls component due to the branch

misprediction and the floating-point dependences.

6.5. Equake

Equake is about 1,500 lines of C code that simulates

an earthquake. Smvp-#0 and main-#3 are the most

important loops as shown in Table 5. The average

execution time of smvp-#0 is about 1.4 seconds and

of main-#3 is about 0.6 seconds on a single processor

sequential execution.

Table 5 shows the speedup components of smvp-

#0 and main-#3. It is evident from the table that

the speedup loss in equake comes from memory and

pipeline stalls. From Figure 4, we see that the program

also has about 2.3-fold increase in the memory refer-

ences, most of which comes from the loads in smvp-

do#0. Main-#3 shows 1.7 times more loads in parallel.

The first-level data cache hit rate in both loops goes up,

but because the number of loads goes up, the absolute

number of first-level cache misses increases by 56%

in smvp-do#0 and 41% in main-do#3. The number of

stores remains nearly unchanged between the parallel
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and sequential versions. Figure 7 shows that floating-

point dependences are the main reason for pipeline

stalls. Finally, smvp-#0 shows slight load-imbalance.

We discovered that the increase in memory ref-

erences is partly a result of using extra temporaries

for address calculations by our OpenMP C compiler

(GuideC). We have found that the OpenMP C com-

piler declares several local automatic pointer variables

to hold the addresses of the multidimensional array el-

ements. It then assigns values to the elements of the

array by dereferencing the pointers. Also, because the

pointers are declared per block of C code, they are not

reused. Thus, there are more loads from the stack in

parallel than there are in the sequential version. As an

experiment we declared an explicit pointer to the w1 ar-

ray and reused it throughout the loop to access the array

elements in the sequential and parallel codes. We found

that the number of loads went down by nearly 47%

in the parallel version. An explicit pointer eliminated

many of the temporaries generated by the OpenMP C

compiler.

We have observed that a code with long floating-

point expressions typically has more floating-point de-

pendence stalls in the parallel version than a code with

many simpler expressions, suggesting potential im-

provements for compiler optimizations. As an experi-

ment we simplified the math expressions in smvp-#0.

After simplifying the math expressions, the floating-

point dependence stalls declined by almost 70%. As a

combined effect of removing the extra memory refer-

ences and reducing the floating-point dependence stalls,

the 4-processor execution time decreased by 3.5%.

Finally, smvp-#0 shows a 0.045 speedup loss be-

cause of load-imbalance. We determined that the load-

imbalance is a result of uneven iteration space of the

inner while-loop in smvp-#0. The while loop has

0 to 12 iterations every time it is invoked by the outer

for-loop. Since the iterations of the outer loop are

divided among multiple processors, each processor ex-

ecutes a different number of overall inner-loop itera-

tions. Use of guided scheduling instead of simple

block scheduling decreased the load-imbalance com-

ponent to 0.004.

We did not find any evidence of significant false-

sharing in equake.

6.6. Fma3d

Fma3d is a finite element method computer program

designed to simulate the inelastic, transient dynamic re-

sponse of three-dimensional solids and structures sub-

jected to impulsively or suddenly applied loads. It con-

tains over 60,000 lines of Fortran code. Platq do#2,

solve-do#6, solve-do#4, and solve-do#2 are the top four

loops in fma3d. It is evident from Table 5 that all loops

lose speedup due to memory stalls. We can see from

Fig. 7 that the speedup loss due to “Load Use” is about

0.9 and due to “IC Miss” is about 0.3. Figures 3 and 4

reveal that the first-level data cache hit rate improves in

the parallel version of the code, but the memory refer-

ences and the number of instructions almost double on

4 processors. A closer examination of the loops reveals

that all important loops in fma3d show an increase in

the number of loads and stores, but platq do#2 has by

far the highest increase. The first-level data cache hit

rate improves in all loops except in solve-do#4. In

solve-do#4 the cache hit rate of stores drops from 99%

to 91%. Due to the increased number of loads and

stores, there is a 48% increase in the absolute number

of load misses and a 9% increase in the absolute num-

ber of store misses in platq do#2. Lastly, platq do#2

experiences a reduction in the instruction cache hit rate

from 90% to 84%.

A study of platq do#2 shows that it contains 9 con-

ditional subroutine calls. These calls inside the loop

perform the majority of work. All subroutines in-

side the loop use a set of 70 variables that are de-

clared in a THREADPRIVATE common block. We

discovered that the Fortran compiler makes stores to

the THREADPRIVATE variables “volatile.” Since the

volatile variables must be loaded from the memory each

time they are needed, they cannot be allocated in reg-

isters. After we declared the THREADPRIVATE vari-

ables as PRIVATE variables, the number of memory

references dropped by 18% and the overall speedup

rose to 2.83. Also, in order to avoid the cost of OMP

DO, we manually scheduled the loop along with the

privatized common block variables. We found that the

overall speedup climbed to 3.09 suggesting that the

OMP DO construct is implemented rather inefficiently.

As mentioned in Section 6.2, the main cost of OMP DO

construct comes from the additional loop body subrou-

tine call and the related stack activity. Finally, we at-

tribute “IC Miss.” stalls to the decrease in the instruc-

tion cache hit rate in platq do#2.

We found evidence of significant data sharing in

platq do#2 and solve-do#4 by measuring the invalida-

tions and copybacks. We measured that the invalida-

tions and the copybacks follow each other closely and

scale with the number of processors. Also, they are

responsible for most of the misses in the secondary

cache. We attribute this effect to the “+” REDUCTION
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of ENG1 and ENG2 variables in solve-do#4 and

MIN/MAX REDUCTION of TIME STEP MIN and

TIME STEP MAX in plaq do#2.

6.7. Gafort

Unlike other SPEC OMPM2001 applications, gafort

is an integer application. It is written in Fortran and

contains about 1,500 lines of code in the area of ge-

netic algorithms. Shuffle-do#10,gafort-do#45,mutate-

jump, evalout-do#30, and newgen-do#94 are the most

important loops in gafort. From the overall speedup

components in Figs 6 and 7 we see that the increase

in memory stalls is the key reason for speedup loss in

gafort. Specifically, the “Load Use” and “Load RAW”

stalls contribute to the memory stalls. Figures 3 and 4

show that the data cache hit rates do not increase signif-

icantly in the parallel version, and there is about 17%

increase in the total memory references, of which about

13% comes from mutate-jump and 3% from newgen-

do#94. From Table 5, we also find that evalout-do#30

and gafort-do#45 speedup quite well, and the top three

loops have slight load-imbalance.

We discovered that the primary reason for increase in

memory references in mutate-jump and newgen-do#4

is the OMP DO construct, just as it was in fma3d. As an

experiment, we removedOMP DO and manually sched-

uled the loop iterations in mutate-jump3 and newgen-

do#4. We found that the number of loads dropped

by 20% in mutate-jump and by 40% in newgen-do#45

bringing them closer to the sequential count of loads.

The number of instructions also went down proportion-

ally, and the overall speedup rose from 2.56 to 2.88.

Shuffle-do#10 is the most time consuming loop in

gafort. It is responsible for about 36% of the overall

execution time. It is also responsible for the largest

increase in the “Load Use” and “Store Buf.” related

memory stalls. From the hardware counter measure-

ments, we determined that even though Shuffle-do#10

shows about 8% more memory references in the se-

quential version than the parallel one, the secondary

cache misses decrease from 94% in sequential to 91.8%

in parallel, leading to about 9% increase in the abso-

lute number of secondary cache misses in the paral-

lel version. Thus, even if the first-level data cache

hit rate does not change significantly in shuffle-do#10,

the more expensive secondary cache misses lead to the

3We used the simple guided scheduling algorithm described

in [6].

memory stalls. Also, shuffle-do#10 is memory bound,

because it performs 3 array copies (shuffles), which

result in about 1GB of loads and stores during ev-

ery invocation of the loop. On the other hand, there

are no computational steps. Thus, shuffle-do#10 has

nearly zero computation-to-memory-access ratio. We

find that the memory bandwidth requirement increases

from 140 MB/s to 300 MB/s on our machine. As ex-

plained in Section 6.1, a loop with low computation-to-

memory-access ratio puts more demands on the mem-

ory bus. Therefore, we attribute the limited scalability

of shuffle-do#10 in part to the increased demands on

the memory bus.

Shuffle-do#10 uses OpenMP locks inside the loop.

We measured that about 5% of the overall execution

time, is spent in the locks on our platform. Unlike

the sharing of lock variables in ammp, we did not see

excessive sharing of lock variables in gafort, mainly

because there is one lock per row of the iparent

array. The chance of two processors grabbing the same

lock before swapping the rows is 1 in 400,000.

Load-imbalance in gafort is inherent in the algorithm

because of the random number generator. In mutate-

jump and gafort-do#45, for example, there are several

conditional paths, which are either taken or not taken

depending on a random number. Both of these loops

use guided scheduling to mitigate the effects of load-

imbalance. As a result, the load-imbalance speedup

component is minor, as shown in Fig. 6.

We did not find any evidence of noteworthy false-

sharing in gafort.

6.8. Galgel

Galgel is a fluid dynamics code written in For-

tran. It contains about 15,300 lines. The most im-

portant parallel regions in galgel are syshtN do#1234,

sysnsn do#123, and lapak do#7. In addition to la-

pak do#7, several other loops in the LAPACK routines

are also important. However, given their small average

execution times, their importance comes from the large

invocation counts. Many of them scale quite well with

respect to the number of processors. Table 5 shows that

lapak do#4 has a superlinear speedup, and the top two

loops have large “Not Modeled” components.

SyshtN do#1234 and sysnsn do#123 are very sim-

ilar in structure. There are 4 parallel loops in

syshtN do#1234 and 3 parallel loops in sysnsn do#123,

where the first loops are the most time-consuming ones.

The real workhorses in both regions are the matrix

multiply, transpose, and dot product intrinsics. We
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measured that both regions have an average execution

time of 10 seconds in a sequential run. However, in

a 1-processor parallel execution the average execution

time degrades to 32 seconds for syshtN do#1234 and

55 seconds for sysnsn do#123. Therefore, both loops

demonstrate very poor scalability on our platform as

shown in Table 5. We also discovered that the average

execution time scales almost perfectly on 2 and 4 pro-

cessors with respect to the 1-processor parallel execu-

tion time, suggesting a high parallelization overhead.

The parallelization overhead here refers to the fork-join

overhead. However, Fig. 5 shows that the fork-join

time is not a significant part of the overall execution

time. Instead we found that the matrix manipulation

functions are the culprits for the increase in the execu-

tion time in parallel. The assembly code inspection of

these functions revealed that the matrix manipulation

routines (e.g. MATMUL or dgemm) are never called di-

rectly but are rather inlined in both the sequential and

parallel versions. The difference in the parallel version

is that we also found calls to malloc and free inside

the loop body subroutines. These calls seem to allo-

cate temporary arrays before the matrix manipulation

occurs. As explained in Section 5.1, the dynamically

allocated arrays introduce a significant overhead in the

parallel version. Therefore, we attribute the increase

in the average execution time to the dynamic alloca-

tion of arrays in the parallel version in syshtN do#1234

and sysnsn do#123. Since we do not have an explicit

category for such an overhead, galgel has a large “Not

Modeled” component.

Figures 6 and 7 show that the memory stalls due

to “Load Use” and “Store Buf.” are important rea-

sons for the speedup loss in galgel. We found that

lapak do#3 and lapak do#5 are responsible for the in-

crease in “Load Use” stalls. Lapak do#3 also shows

a large increase in “Store Buf.” stalls. Lapak do#5

shows only 1% reduction in the secondary cache miss

rate in parallel, almost all of which comes from the

false-sharing of array C. Similarly, lapak do#3 also

shows about 3% reduction in the secondary cache miss

rate. We attribute the increase in memory stalls in these

loops to the reduction in secondary cache hit rate.

6.9. Mgrid

Mgrid is a 500 line multigrid solver code writ-

ten in Fortran. RESID do600, PSINV do600, and

RPRJ3 do100 are the three most important loops as

shown by Table 5. We can see from Figs 6 and 7 that

the memory stalls is the key reason for speedup loss

in mgrid. Also, the increase in memory stalls comes

from the increase in “Load Use,” “Store Buf.,” and

“Load RAW” related stalls. From the hardware counter

measurements, we discovered that RESID do600 is re-

sponsible for the largest increase in all three areas,

specifically in “Store Buf.” stalls. PSINV do600 and

RPRJ3 do100 also show a substantial increase in “Load

Use” stalls.

The first-level data cache hit rate of the loads in

RESID do600 and PSINV do600 is 67% and is un-

changed in the parallel version. For RPRJ3 do100,

the hit rate is 77% and also remains constant be-

tween the sequential and parallel versions. While the

hit rate of stores is over 80% for PSINV do600 and

RPRJ3 do100, it is only 58% for RESID do600. These

hit rates also remain constant between the serial and

parallel versions. The number of loads and stores re-

main nearly the same from the sequential to the parallel

versions for all three loops.

From the code inspection,we find that RESID do600

and PSINV do600 both perform stencil computations

on an entire 3 dimensional array during each invocation.

The array sizes range from 4×4×4 to 256×256×256
in the increments of powers of two. The array access

patterns in the loops lead to good spatial and temporal

locality in the sequential and parallel versions. Also,

there is no data sharing among processors, because the

arrays are an exact multiple of the number of proces-

sors (4) on our system. We found that the bandwidth

requirement grows from 33 MB/sec in a sequential run

to 95 MB/sec in a parallel run on 4 processors. Al-

though the maximum bandwidth of the interconnect is

significantly higher, this increase may contribute to the

higher memory stalls in the parallel execution.

Finally, we did not find any evidence of false-sharing

in mgrid.

6.10. Swim

Swim is a shallow water modeling program. It con-

tains about 400 lines of Fortran code. CALC3 DO#300,

CALC2 DO#200, and CALC1 DO#100 are the three

most important loops in swim. We will refer to them

as the CALC-loops from here on. The average execu-

tion time of each loop is about 3 seconds. From the

performance point of view SWIM DO#400 is also an

important loop.

From Figs 6 and 7 we can see that almost all of

the speedup loss in swim is due to the increase in

memory stalls. “Store Buf.” is the largest mem-

ory stalls component followed by the “Load Use” and
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the “Load RAW” components. CALC3 DO#300 and

SWIM DO#400 show an increase in memory refer-

ences. CALC3 DO#300 has 1.33 times more loads in

the parallel version, but the number of stores is un-

changed. In SWIM DO#400, there are 2 times more

loads and several hundred times more stores. While

all four loops show substantial increase in the “Store

Buf.” and “Load RAW” stalls, only the CALC-loops

are responsible for the majority of increase in “Load

Use” stalls.

In general, swim suffers from poor cache perfor-

mance. The first-level data cache hit rate is about

50% for the loads in all loops. The hit rate for the

stores is almost 99% in CALC3 DO#300, about 50%

for SWIM DO#400, and below 1% in the remaining

two CALC-loops. We found that the reason for the

poor cache performance is lack of temporal locality in

the CU, CV, Z, H, PNEW, UNEW, VNEW, P, U, V, POLD,

UOLD, and VOLD arrays with respect to the outermost

time-step loop. CU, CV, and Z act as intermediate ar-

rays in swim. Every time-step the new arrays (e.g.

PNEW) are written in two steps: first the intermediate

arrays are updated, and then the new arrays are writ-

ten. The size of each array is approximately 110 MB.

An examination of the code reveals that these arrays

display good spatial locality, but the use of intermedi-

ate arrays causes the final arrays to get replaced in the

cache, before the final arrays could be reused. In the

same way, the final arrays replace the intermediate ones

before the next iteration of the time-step loop. Thus,

swim experiences thrashing in the caches.

In order to prevent thrashing we conducted an exper-

iment where we completely removed any references to

the intermediate arrays by performing aggressive ex-

pression propagation on the CALC-loops. Also, we

coalesced the CALC-loops in a single loop for a larger

granularity of parallelism. We found that the overall

data cache hit rate improved from 49% to 75% for the

first-level cache and from 87% to 91% for the secondary

cache when comparing the parallel versions with and

without the transformation. The sequential code with

the transformation, however, showed a 10% increase

in execution time when compared with the sequential

version without it. Also, we found more floating-point

dependence related stalls with the parallel transformed

version. The increase in the floating-point dependences

is linked to the increased complexity of math expres-

sions in the transformed loop. Nonetheless, the 4-

processor execution time with the expression propaga-

tion improved by almost 25% and the overall speedup

also rose to 2.45.

In addition to thrashing, swim also has a low

computation-to-memory-access ratio in parallel. There-

fore, it exerts more demands on the memory bus than

other benchmarks. One indication of the increased de-

mands is the increased bandwidth requirements in par-

allel. For example, in CALC1 DO#100 the bandwidth

requirement increases from about 250 MB/sec to 447

MB/sec. The increased demand on the memory bus

combined with poor temporal locality leads to more

memory stall in parallel, which severely limit swim’s

scalability on our platform.

6.11. Wupwise

Wupwise is a Fortran code of about 2,200 lines

in the area of quantum chromodynamics. Even

though MULDOE DO#1 and MULDEO DO#1 are the

most important loops in wupwise, the speedup loss

is mainly due to ZAXPY DO#1, ZDOTC DO#1, and

ZCOPY DO#1. These loops are similar to BLAS [2]

routines. They operate on vectors and matrices of

complex numbers. As shown in Table 5, MUL-

DOE DO#1 and MULDEO DO#1 scale quite well on

4 processors but not ZAXPY DO#1, ZDOTC DO#1,

and ZCOPY DO#1.

Figures 6 and 7 show that the speedup loss

in wupwise is a result of memory stalls, mainly

“Load Use” and “Store Buf.” stalls. MUL-

DOE DO#1 and MULDEO DO#1 are responsible for

only a small percentage of the memory stalls. A

vast majority of the memory stalls result from ZA-

XPY DO#1, ZDOTC DO#1, and ZCOPY DO#1. Al-

though these loops demonstrate poor cache perfor-

mance, ZDOTC DO#1 is the only loop where the first-

level data cache hit rate of stores decreases to 33%

from 50%, and the number of loads increases by 23%.

In the remaining two loops, the cache hit rates and

the number of loads and stores remain unchanged.

Hence, we attribute the increase in the memory stalls

in ZDOTC DO#1 to the combined effect of the low-

ered cache hit rate and the increased loads. We dis-

covered that in ZCOPY DO#1, the secondary cache

hit rate drops from 79.7% to 76.3% and the number

of references to the secondary cache rise up by almost

16%. Similarly, ZAXPY DO#1 also reports a drop in

the secondary cache hit rate from 85% to 81% and a

rise in the number of references to the secondary cache

by 7%. Therefore, we attribute the increased memory

stalls in these two loops to the poorer performance of

the secondary cache in the parallel version.

We did not see significant false-sharing in wupwise.
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7. Summary

Most benchmarks in the SPEC OMP suite adhere to
the golden rule that over 90% of program execution
time is spent in less than 10% of code. Majority of the
programs spend most of the execution time in 5 loops
or less. Also, these programs are highly parallel, and
they run for a long time, even in parallel.

We have presented a Quantitative Model that ex-
plains gap between ideal speedup and realized speedup
into the speedup components. We also showed ways of
measuring, deriving, and computing the speedup com-
ponents. We derived two basic formulas that quantify
the speedup loss: a formula for a fully parallel region
and a formula for a partially parallel region that con-
tains serial sections. Using the Quantitative Model, we
explained the performance of SPEC OMP benchmarks.
We presented the overall characteristics of benchmarks
followed by loop-by-loop analysis. We focused our ex-
planations on the most important loops in each bench-
mark and explained the reasons for their speedup loss.

Overall we discovered that memory system related
stalls are the biggest reason for speedup loss. The
memory stalls increase in parallel. The stalls due to
loads are dominant compared to stores. However, stalls
due to a full store buffer are also important in several
codes. We found that there are three primary reasons
for the memory stalls in the SPEC OMP benchmarks:

– Increased memory reference instructions: In-
crease in memory references results mainly due
to an increase in the number of loads. In all
benchmarks there are considerably more loads
than stores. We found that even if the cache hit rate
increases in many benchmarks, more memory ref-
erences lead to a higher absolute number of cache
misses. The benchmarks that exhibit such behav-
iors are ammp, equake, fma3d, and gafort. We
found more memory references in parallel with-
out counting references at the implicit barriers.
We could not find any specific code patterns that
lead to increased memory references in parallel.
The reasons are mostly inefficient compilation and
run-time management of some OpenMP directives
such as OMP DO and THREADPRIVATE.

– Decreased data cache hit rate: Apsi reported a
lower cache hit rate in parallel. False-sharing was
partly responsible for the reduction in the cache hit
rate. However, in general false-sharing is really a
minor reason for the cache misses. Wupwise also
reported slightly lower cache hit rates in the BLAS
loops. The memory stalls due to a full store buffer
is a secondary effect of increased cache misses.

– Increased demands on the memory bus: Increased

demands on the memory bus in parallel is an ar-

tifact of lower computation-to-memory-access ra-

tios in the benchmarks, such as applu, gafort,

mgrid, and swim.

True-sharing is important in ammp and fma3d. In ammp

the source of true-sharing is the locks, and in fma3d it

is the REDUCTION clause.

Floating-point dependences is the most important

reason for pipeline stalls in parallel in the SPEC OMP

benchmarks. The higher complexity of floating-point

math operations seems to lead to higher floating-point

dependence stalls in parallel. Loops in equake and

swim4 exemplify such a pattern. Nevertheless, con-

sidering the fact that the SPEC OMP codes represent

scientific applications’ domain, whose execution times

are dominated by the floating-point and memory ac-

cess operations, we found that the efficiency of mem-

ory access operations is far more important than the

efficiency of floating-point operations. The diminished

importance of floating-point operations is a result of

on-chip, efficiently pipelined floating-point unit. Art is

the only benchmark whose scalability is limited by the

pipeline stalls related to branch misprediction.

Because the SPEC OMP codes are highly parallel,

serial sections of the codes do not impact the parallel

performance on our 4-processor system. Finally, the

performance of SPEC OMP benchmarks is not signif-

icantly limited by fork-join and load-imbalance over-

heads. The fork-join overhead, however, can become

significant if entering a parallel region involves expen-

sive operations such as memory allocation as illustrated

by apsi. The overhead can be worsened by a large invo-

cation count of the parallel region. Also, we expect the

fork-join overhead to scale much more rapidly as the

number of processors increases. While we found slight

load-imbalance in some instances, in general it does

not hamper the performance of SPEC OMP programs

on our system.

8. Conclusions

We have presented detailed analysis of the SPEC

OMP benchmarks in Section 6. Our goal was to study

a set of modern scientific shared-address-space (SAS)

parallel programs. The SPEC OMP benchmarks pre-

4In Swim, the math expressions become more complex after ap-

plying aggressive expression propagation optimization.
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sented that opportunity to us. There are three distin-

guishing aspects to our study: We have chosen a mod-

ern multiprocessor platform on which to study the pro-

grams, the programs are parallelized with the OpenMP

directives, which is a new standardized way of writing

SAS programs, and the large size of data sets, which

results in long execution times even on 4 processors.

We have learned several lessons about the performance

of such programs.

The parallelization overhead in terms of fork-join

time is only a minor factor in determining the speedup

of long running codes, because the cost of fork-join gets

amortized over a long period of time. That is, the ef-

ficiency of OMP PARALLEL/OMP END PARALLEL

directives without the data environment clauses is of

little concern in terms of performance. However, we

found that an efficient implementation of the OMP DO

construct (worksharing construct) is important to the

performance of loop-based programs. For example, we

found differences between our Fortran and OpenMP C

compilers in how each implements OMP DO directive:

the Fortran compiler generates a subroutine from the

OMP DO loop body, whereas the C compiler does not.

Therefore, the Fortran compiler incurs more overhead

at runtime. Also, our OpenMP C compiler automati-

cally coalesces adjacent parallel regions into a single

subroutine, thereby reducing subroutine calls.

The importance of OMP PARALLEL and OMP DO

in terms of performance is linked to the efficiency

of data environment clauses. Efficient code genera-

tion of PRIVATE, SHARED, and THREADPRIVATE

is critical to the performance of OpenMP programs,

since they are the most frequently used data environ-

ment clauses. In particular, efficient ways of allo-

cating, accessing, and deallocating THREADPRIVATE

and SHARED variables and PRIVATE arrays is impor-

tant. Individual heaps for the threads can help improve

the efficiency of dynamic memory allocation in parallel

for the PRIVATE arrays, which is a part of the fork-

join overhead. As the number of processors increases,

serialization to allocate from the same process heap can

drastically increase the fork-join overhead. Similarly,

repeated address calculations to access SHARED and

THREADPRIVATE variables can be avoided by using

more registers and more efficient register allocation al-

gorithms.

The OpenMP locks and OMP CRITICAL introduce

two overheads in a parallel program, which are absent

in a sequential one: an overhead of executing extra in-

structions while spin waiting and an overhead of acquir-

ing the lock. The overhead of executing extra instruc-

tions is paid in a parallel program if the processors end

up spin waiting for the lock. However, the overhead of

acquiring a lock depends on the amount of lock con-

tention and the implementation of locks. Therefore, an

implementation that reduces contention for the locks is

important [1,4]. The lock variables are also a source

of true-sharing. True-sharing can lead to increased in-

validations and copybacks, which in turn may lead to

increased cache misses. For example, the lock variable

in ammp experiences true-sharing. The REDUCTION

clause is much more likely to be a source of false and

true-sharing than any other OpenMP clause for three

reasons: (1) all processors update the reduction vari-

able, (2) some implementations of the REDUCTION

clause use implicit locks, and (3) reduction operations

are popular in parallel programming.

The presented study is one step towards understand-

ing realistic, OpenMP shared-address-space parallel

programs on modern SMP systems. While the used

programs are highly parallel, their efficiency, even on

four processors, is below expectation. In addition to

a few intrinsic reasons, we have found room for im-

provements of compilers and libraries. In order to find

and evaluate remedies, more such studies are neces-

sary, quantifying application performance on other ar-

chitectures, larger numbers of processors, and future

generations of software systems.
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