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Abstract: A cellular-level study of the pathophysiology is crucial for understanding the 

mechanisms behind human diseases. Recent advances in quantitative phase imaging (QPI) 

techniques show promises for the cellular-level understanding of the pathophysiology of 

diseases. To provide important insight on how the QPI techniques potentially improve the 

study of cell pathophysiology, here we present the principles of QPI and highlight some  

of the recent applications of QPI ranging from cell homeostasis to infectious diseases  

and cancer. 
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1. Introduction 

Cellular metabolism and activities play crucial roles in the pathophysiology of human diseases. 

Hence, the cellular-level understanding of the mechanisms of the diseases holds the key to unlocking 

the secrets of a number of diseases. Unfortunately, our understanding of cellular pathophysiology 

remains incomplete and has been stymied by limitations of traditional imaging techniques. 

The past few decades witnessed the emergence of several novel optical imaging techniques 

developed in physics laboratories and their translation into the fields of biology and medicine. Among 

them, quantitative phase imaging (QPI) is one of the optical microscopic techniques which has been 

actively and widely investigated by many researchers, not only from scientific interest but also from its 

unique advantages over conventional techniques. Although more focus has been placed on technical 

development in the beginning, the fields of QPI have since grown to include various interesting 

biological studies, largely owing to the following capabilities: 

• Quantitative imaging: optical phase delay information can be related to the physical and 

chemical properties of the sample quantitatively [1]. 

• Non-invasive and label-free imaging: no need to use dye or fluorescent proteins [1]. 

• Easy to be extended with other optical modalities [2–5]. 

• Numerical focusing by the propagation of a reconstructed field image [6,7]. 

This has opened the door for direct analysis of live cells and their pathophysiological alterations. 

Here we summarize the recent advances in QPI techniques focused on the study of cell pathophysiology. 

The research work, highlighted in this article, suggests that various QPI methodologies may  

play a crucial role in answering contemporary questions in the pathophysiology of cells and tissues  

which could, indeed, bring a substantial improvement in the understanding, assessment and  

treatment of diseases. 

2. Principles of QPI 

2.1. Two-Dimensional (2-D) QPI Techniques 

QPI techniques employ the principle of interferometry to measure the optical field, consisting of 

amplitude and phase information, whereas conventional bright-field imaging only measures the 

amplitude (Figure 1). Since most biological samples, including biomolecules, cells, and tissues, are 

optically transparent in visible light, information of amplitude does not provide good contrast for 

imaging. However, even these transparent samples provide significant optical phase delay, which 

serves as imaging contrast for QPI. Full details of the QPI techniques can be found elsewhere [1]. 

Generally, an interferogram or hologram, in which the optical field information of the sample is 

modulated with a reference beam (Figure 2), is digitally recorded by an imaging device such as a 

charge-coupled device (CCD), and the optical field information is then retrieved by appropriate field 

retrieval algorithms. Depending on the modulation method, QPI techniques can be mainly grouped into 

either the temporal modulation or spatial modulation. 
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Figure 1. Principles of QPI (A) Conventional bright-field imaging measures amplitude 

information only; (B) QPI employs the principle of interferometry or holography, and 

measures both amplitude and phase information. 

 

Figure 2. Experimental setups for typical QPI techniques. (A) Michelson interferometric 

microscopy; (B) Digital holographic microscopy, spatial-domain Mach-Zehnder 

interferometry; (C) Diffraction phase microscopy, spatial-domain common-path 

interferometry; (D) Time-domain Mach-Zehnder interferometric microscopy;  

(E) Tomographic phase microscopy, time-domain Mach-Zehnder type. The angle of 

illumination is controlled by a galvano-mirror (GM). AOM: acousto-optics modulator; SF: 

spatial filter; S: sample; OBJ: objective lens; BS: beam splitter; G; grating. (A–E) are 

modified from References [8–11], and [12], respectively, with permissions.  
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Temporal modulation, or phase shifting interferometry (PSI), records sequential interferograms by 

changing the phase of a reference beam with respect to a sample beam. PSI can be achieved by 

translating a mirror in a reference arm with piezoelectric material or using acousto-optic modulation 

(Figure 2(D)) [13,14]. Since PSI requires the measurement of several interferograms in order to obtain 

one optical field image, the speed of QPI using PSI is limited by modulation speed. 

QPI systems based on the Michelson or Mach-Zehnder interferometry (Figure 2(A,B)) have been 

widely used. QPI employing Michelson interferometer is suitable for the reflection geometry [15,16]. 

However, the Michelson or Mach-Zehnder interferometry suffers from time-varying phase noise due to 

vibration, temperature gradient, and air flow, which deteriorate the stability of QPI measurements. To 

minimize this phase noise, active noise control using feed-back loop [8] and common-path QPI 

utilizing spatial light modulator (SLM) such as the Fourier phase microscopy (FPM) [17] or spatial 

light interference microscopy (SLIM) [18] have been introduced. Quadriwave lateral shearing 

interferometry [19], which can be directly applied to conventional microscopy, also employs  

common-path geometry and demonstrates highly sensitive phase measurements. 

In the spatial modulation scheme, a sample beam interferes with a reference beam and forms fringe 

patterns, from which the field information of the sample is retrieved. Depending on the way the fringe 

pattern is generated, spatial modulation can be divided into either the in-line holography or off-axis 

holography. In-line holography employs the interference of weakly scattered beam from a sample and 

an un-scattered incident beam [20] and optical instrumentation can be simplified with in-line holography. 

However, the optical field information is spatially overlapped with unwanted phase-conjugated 

information, or twin-image, and thus the field retrieval process for in-line holography involves 

computationally heavy iterative algorithms. In off-axis holography, the optical axis of a reference 

beam is slightly tilted with respect to the sample beam, which gives a well-defined carrier spatial 

frequency. Due to this carrier frequency, the twin-image information can be easily removed which 

provides a simple phase retrieval process [9]. In off-axis holography, only one hologram measurement 

is required to retrieve field information; the speed of QPI based on off-axis spatial modulation is mainly 

limited by camera speed [21]. Digital holographic microscopy (DHM) is a typical off-axis holographic 

technique for the quantitative phase imaging of cells (Figure 2(B)) [6,9,22]. Hilbert phase microscopy 

(HPM) also employs off-axis holography and uses the Hilbert transformation for phase retrieval [21]. 

Diffraction phase microscopy (DPM) utilizes a diffraction grating to construct common-path 

interferometry with extremely high phase stability (Figure 2(C)) [10], which can be combined with 

fluorescence imaging channel [2]. The use of the SLM enables complex spatial modulation in QPI. In 

Laplace field microscopy [23] and gradient field microscopy [24], the scattered field at the Fourier 

plane is modulated by the SLM patterns of parabolic and sinusoidal shape, respectively. Similar to 

differential interference contrast (DIC) microscopy, they provide image contrast based on phase 

gradient of biological samples. However, the shadow artifact of DIC is eliminated in both Laplace and 

gradient field microscopy, and the enhanced edge profiles of samples are used for the study of dynamic 

membrane fluctuation. Spatial contrast microscopy employs a spatial phase plate at the Fourier plane 

and retrieved field information of biological samples [25]. 

Field retrieval algorithm is a practically important issue in QPI. In the temporal modulation scheme, 

once a set of holograms is obtained, a quantitative phase image can be directly extracted using  

phase-shifting algorithm [26]. In spatial modulation, Fourier transform [27] and Hilbert transform [21] 
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have been used for phase extraction. Recently, spatial phase-shifting algorithm [28] and derivate 

method [29] have been developed to enhance the speed of field retrieval without using computationally 

intensive transformations. 

Non-interferometric QPI can also be used which is based on the transport of intensity equation [30–34]. 

Non-interferometric QPI recorded a series of intensity images measured at different axial positions, 

from which a quantitative phase image is obtained with interactive phase retrieval process. 

2.2. Three-Dimensional (3-D) QPI Techniques 

A series of 3D QPI techniques have been developed to measure the 3D distributions of refractive 

index (RI) in biological cells, which offer a non-invasive means to probe the structural information of 

living cells without using exogenous labeling agents. They include interferometric methods to measure 

multiple transmitted optical fields with various angles of illumination (Figure 2(D)) [35–38],  

sample rotation [39,40], and wavelength scanning [41,42]. In addition, non-interferometric imaging  

technique [43] based on the transport-of-intensity equation [44] can also be used. 

To reconstruct a 3D RI tomogram from multiple 2D images, an appropriate reconstruction 

algorithm is required. In the projection algorithm, analogous to X-ray computerized tomography, a 3D 

RI tomogram is calculated via the filtered back-projection method [12,39]. The projection algorithm 

works best for nearly transparent samples. However, diffraction algorithm should be used to take into 

account the diffraction of light induced by the sample. Diffraction algorithm, based on the first Born 

and Rytov approximation, assumes that the field scattered from the sample is only caused by the 

incident field. Technically, each 2D field map measured at different angles of illumination is mapped 

to the corresponding semicircular arc “Ewald surface” in the 3D Fourier space [36,45–47]. 3D optical 

tomograms obtained with the diffraction algorithm show high image quality with less distortion 

especially at defocused planes [48]. 

2.3. Extension of QPI to Other Areas of Investigation 

QPI techniques can be extended with several optical modalities including spectroscopic and 

polarization-sensitive measurements. With Spectroscopic QPI, measuring field images at different 

wavelengths, molecular-specific phase information which is otherwise undetectable can be obtained 

via optical dispersion. Dispersion optical tomography uses two wavelengths and distinguishes gelatin 

solution from water [49,50]. Spectral-domain phase microscopy measures spectroscopic phase  

delay information employing optical coherence tomography where spectral information is readily 

available [51]. Spectroscopic phase microscopy combines color filters and a white-light source with 

DPM, which enables label-free quantification of hemoglobin (Hb) protein inside individual red blood 

cells (RBCs) [3]. A SLM can be used to select a specific wavelength [52]. Recently, it has been  

shown that one color hologram can provide three spectroscopic phase images, enabling dynamic 

spectroscopic QPI [53]. 

Polarization-sensitive QPI provides unique optical contrast for materials with birefringence such as 

chromosomes, spindle fibers, and collagen fibers. With two orthogonal polarized reference waves, 

birefringence was quantitatively imaged in a DHM setup [13]. The birefringence of a material is 

generally described using the Jones matrix; Jones phase microcopy measures the spatial distribution of 
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Jones matrix of a transparent sample, recording four independent sets of polarization-sensitive 

quantitative phase images [54]. Recently, dynamic measurement of Jones matrix has been made 

possible by alternating the polarization state of incident beams and recording holograms 

simultaneously modulated with different orthogonal analyzer orientations [4]. 

QPI can also measure second harmonic generation (SHG) signals. SHG signals from the sample can 

be holographically recorded with a proper filter and a frequency doubler in a reference arm [55].  

Some materials exhibiting intrinsic SHG signals such as collagen can be a primary target sample of 

SHG QPI [56]; other non-SHG materials can also be tagged with nanoparticles exhibiting SHG. In 

addition, when QPI is obtained in total internal reflection geometry (TIR), only small volume of the 

sample at the vicinity of the bottom surface can be imaged [57]. QPI can also be utilized for tracing 

spherical particles in 3-D space [58]. Furthermore, QPI techniques have also been successfully 

combined with the optical coherence tomography (OCT) [59,60], Raman spectroscopy [61], 

fluorescence [2,62], multi-photon excitation [63], and confocal microscopy [5]; these multimodal QPI 

techniques provide remarkable molecular specificity and thus provide wider window to investigate the 

biological processes. 

2.4. Fourier Transform Light Scattering 

With the optical field image measured by QPI, one can numerically calculate a far-field light 

scattering pattern of the sample by simply applying the 2-D Fourier transformation; this technique is 

called Fourier transform light scattering (FTLS) [64]. FTLS is the spatial equivalence of Fourier 

transform infrared spectroscopy (FTIR) that is related to the temporal frequencies. FTLS has unique 

advantages: (i) the scattering pattern over a broad angular range can be obtained in a single 

measurement; (ii) signal-to-noise ratio is extremely high due to the full utilization of image detectors; 

and (iii) light scattering pattern from individual micrometer-sized objects can be obtained. 

Recently, FTLS has been used for the study of several biological studies [65,66]; light scattering 

from individual RBCs [67,68], microspheres [69], and colloidal clusters [70] have been investigated. 

FTLS was applied for the refractometry of spherical micro-objects in deep ultraviolet region [69]. 

Additionally, FTLS can be performed in conventional microscopy employing in-line holography 

without the relatively complicated holographic set-ups [71]. 

2.5. Light Sources for QPI 

Most set-ups for QPI adopt coherent light sources to produce collimated beams and interference 

patterns easily. However, due to the long coherence length, QPI with coherent light sources suffers 

from unwanted speckle patterns (parasitic fringes), which deteriorate image quality and reduce phase 

sensitivity [1]. To overcome this issue, partially coherent light sources have been used. Temporally 

low-coherent light such as light-emitting device (LED) [6,72], Ti:sapphire pulsed laser [73], or even a 

white light source [74] can be used for QPI to reduce unwanted speckles. Spatially low-coherent light, 

which can be obtained by rotating a ground-glass [75] or illuminating a speckle field, can also 

significantly reduce speckle noise [76]. 
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3. Study of Cell Physiology Using QPI 

3.1. Structures of Cells and Tissues 

Using QPI, researchers have demonstrated the label-free visualization and characterization of 

structures previously unobservable using conventional bright field microscopes. For instance, topography 

of individual red blood cells (RBCs) can be measured from phase images; the phase delay of RBCs can 

be directly translated into height information due to the lack of nucleus or sub-cellular organelles in 

RBCs (Figure 3(A)) [2,10,21]. Topography of RBCs is quantitatively and dynamically addressed 

without using labeling agents, which makes RBCs one of the most widely studied topics using  

QPI [77–80]. Besides the structural information, chemical properties of RBCs can also be obtained. 

The concentration of Hb can be simultaneously calculated by spectroscopic QPI [3,53], the combined 

analysis of the phase map and the bright field absorption measurements [81], and non-interferometric 

QPI [43]. 

Figure 3. The study of cell physiology using QPI (A) Topography of a human red blood 

cell or erythrocyte measured by DPM; (B) A hippocampal neuron measured by SLIM;  

(C) 3D rendering of RI tomogram of a HT28 cell measured by TPM; (D) The growth of  

E. coli as a function of time measured by SLIM. Colored circles: growth curves for each 

cell; inset: single cell dry mass density at the indicated time points (in minutes) (Scale bar: 

2 μm); histogram: the dry mass noise associated with the background (SD σ = 1.9 fg); blue 

line: a fixed cell; (E) Dynamic membrane fluctuations of human RBCs at various osmotic 

pressures. Blue area; physiological range of osmotic pressure. (A–E) are modified from 

Reference [79,18,12,82] and [83] respectively, with permissions. 

 

QPI has also been applied to the imaging of neuron cells in culture: the height of neuron in  

culture [9] and the trans-membrane water fluxes [84] have been quantitatively studied using DHM. 
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Cardiomyocytes have also been investigated using QPI in vitro: the spontaneous contraction of 

cardiomyocytes has been dynamically measured using wide-field interferometric microscopy [85]. The 

sensitivity of the analysis enabled the researchers to study the effects of temperature on the dynamics 

of the cellular contraction. 

Despite advances, imaging general eukaryotic cells using QPI remained a challenge until the 3-D 

QPI techniques were developed since eukaryotic cells have complex morphologies with multiple 

subcellular organelles inside. Using QPI combined with confocal microscopy [5], Lue et al. have 

computed the integral RI of HeLa cells along the axial direction: the confocal microscopy measures the 

physical height distribution of the cell and it helped decouple the RI from the measured phase image. 

3D RI tomograms of HT28 cells, Caenorhabditis elegans, and malaria-infected RBCs have  

been obtained with the tomographic phase microscopy (TPM) using the projection algorithm  

(Figure 3(C)) [12,78,86]. Recently, it has been shown that the TPM with the diffraction algorithm can 

provide high-resolution 3D RI tomograms; internal structures of HeLa cells [48] and the dry mass of 

chromosomes for colon cancer cell lines [87] have been reported. Spatial resolution of 3D QPI can be 

increased with deconvolution [88,89]. 

QPI has also been used to differentiate different types of in situ tissues by the average RIs [90], 

which can be used as diseases markers [91]. From 2-D field images measured with QPI,  

optical scattering parameters such as the scattering mean free path and the anisotropy factors can be 

calculated [92,93], which show promise in the optical diagnosis and prognosis of cancer tissues. 

Particularly, these optical parameters obtained with QPI have been used to identify sites of 

calcifications in breast biopsies, as well as to identify regions of malignancies in prostate biopsies [91]. 

3.2. Optical Measurement of the Dry Mass: Cell Growth and Division 

Dry mass, the non-aqueous contents of cells which are mainly composed of protein, can be 

measured by QPI [94,95]. Optical phase delay is mathematically an integration of RI difference 

between the non-aqueous content of the cells through the cell thickness. Once the relationship between 

RI and dry mass contents (RI increment) is known, the phase image can be converted into dry mass of 

the cell. Because dry mass is independent of the water content inside the cell, it can be a good indicator 

for cell growth [95,82] and cell division [96] (Figure 3(D)). 

Cell growth is a complex but highly controlled process; understanding the cell growth mechanism  

is crucial in cell biology with emphasis on cancer. Conventionally, mass of an individual cell is 

approximately estimated from its volume. Recently, techniques based on micro-channel or  

micro-electro-mechanical systems have been introduced [97], yet they remain technically complicated 

which prevents them from being widely used. The measurement of cell dry mass using QPI provides 

unique advantages for studying cell growth and division; cellular mass can be non-invasively and 

quantitatively measured with minimal perturbation; cellular mass can be monitored for a long period of 

time [95]. The dry mass of E. coli cells and human osteosarcoma U2O2 cells have been measured for 

more than 60 minutes, and the cycle-dependency of U2O2 cell growth has been reported [82]. Using 

the same method, the relationship between the motility and growth of S2 Drosophila cells under the 

influence of poly-L-lysine substrate has also been investigated [98]. 
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3.3. Cell Dynamics 

Dynamics of cellular activities and their alterations reveal the pathophysiological states of cells. For 

example, the RBC membrane cortex, composed of lipid bilayer, cytoskeleton and junctional protein 

complexes, exhibits dynamic fluctuations, also called “flickering.” Dynamic fluctuations in RBCs 

membrane had been an intriguing research topic in soft matter physics and hematology [99] after their 

first observation [100], and they have shown strong correlation with the pathophysiological states of 

the cell [99]. QPI is an ideal tool to probe the dynamic membrane fluctuations in RBCs since the phase 

images of RBCs can be directly and quantitatively translated into height map, measured at high  

speed [77,101,102]. Using QPI techniques, RBC membrane fluctuations have been investigated; 

fluctuation coherency [103], a sub-domain in the fluctuations [104], and its dependency of ATP has 

been analyzed [79,105]. A systematic study using QPI has also revealed that the dynamic membrane 

fluctuations in RBCs result from both thermal energy and metabolic energy variations stemming from 

the ATP phosphorylation process [79], which is also strongly related to the maintenance of the 

biconcave shape and the remarkable deformability RBC [79,106]. 

Biomechanical properties of RBCs can be calculated from the measured dynamic fluctuations in the 

cell membrane [107], and thus membrane tension [108] and effective viscoelasticity [109,110] have 

been studied. Recently, combined with a mathematical model, four important mechanical properties 

(bending modulus, shear modulus, area expansion modulus, and cytoplasmic viscosity) were 

simultaneously measured with QPI [80]. This method has been used to address the effects of osmotic 

pressure [83], malaria infection [78,86], and sickle cell disease [111,112]. 

Besides RBCs, dynamics of other cell types have also been investigated. For instance, QPI analyzed 

the voltage-dependent nanometer scale movements of nerve cells [113] and also measured the 

membrane motions of HEK 293 that is genetically modified to express prestin motor proteins [11]. 

Cell dynamics associated with electromotility have been further studied by QPI with a low-coherence 

light source [73]. Dynamic motion during the migrations of human dendritic cells [114] and 

subcellular contraction of embryonic cardiomyocyte [115] have also been studied using QPI. 

One of the powerful advantages of QPI is that there is no need to use exogenous labels, and  

this allows easier sample preparation and more efficient measurement free of photo-toxicity and  

photo-bleaching. For example, the intracellular transport of ATP-consuming cargo along actin filament 

in the neuron cell has been studied using QPI data [116]; the spatio-temporal aspects of actin-driven 

dynamics in live glial cells have also been measured employing QPI and FTLS [117]. 

3.4. Homeostasis 

Many researchers have used QPI techniques to investigate cell homeostasis. Using DPM, the  

effects of osmotic pressure on RBC morphology and deformability have been studied [83].  

The membrane fluctuations of RBCs mark the maximal value at physiological osmolality, reflecting 

normal blood cells’ high deformability when compared to those surrounded in hypotonic or hypertonic 

medium (Figure 3(E)). Furthermore, retrieved mechanical properties of RBC membrane also 

emphasize this point; shear and area compression modulus decrease until the osmolality reaches the 

physiological level (300 mOsm/kg) [83]. 
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Cell morphology of the mouse cortical neurons, in which dysregulation of the intracellular  

calcium ion homeostasis was induced by excessive glutamate pulses, has also been investigated with 

DHM [84]. This reveals that the transient increase in calcium ion leads to a phase signal drop, which 

corresponds to cell swelling and decrease of the RI [62]. 

Constant gravitational field imposed on cells can also be regarded as a homeostasis condition.  

It is known that the simulated microgravity established by random positioning machine induces 

significant disorganization of cytoskeleton in less than an hour but these glial cells recover within a 

day. The real-time DHM setup enables us to dynamically observe these cytoskeletal modifications of 

mouse C2C12 myoblasts under the influence of microgravity [118]. 

3.5. Other Physiological Effects: Cell Death, Traction Force, Etc. 

QPI could be used to determine cell viability much faster than the conventional trypan blue staining 

test, which takes about several hours. Cell-death, either as apoptosis or necrosis, can be determined by 

measuring the mean phase shift using QPI. Mouse cortical neurons were induced apoptosis by 

applying L-glutamate, and the corresponding mean phase shift values for those cells have shown 

strong correlation with cell viability [119]. QPI can also be used to measure the traction force applied 

by fibroblasts during migration. The degree of wrinkling, introduced to the soft substrate by the 

contractile motion of the cell above it, has been quantitatively measured by QPI, from which the 

corresponding transition force was estimated [120]. 

Femtosecond laser photoporation, creating small holes in the cell membrane due to the radiation 

energy, utilizes the DHM [121]. The dynamics of CHO-K1 cells in response to femtosecond laser 

photoporation show that the radiation energy for photoporation correlates with the degree of temporal 

dynamics of the cell, which was observed from the change in the optical path length in the region of 

interest [121]. QPI has also been combined with laser microsurgery in order to evaluate the damage or 

repair of cells or organelles in real time during laser micro-dissection [122]. As another useful 

application of QPI, high speed cinematic DHM has been used to quantify the fast motility of 

dinoflagellates since the substantial depth of field of QPI allows simultaneous 3-D tracking of the 

swimming of many cells in dense medium [123]. Recently, using an in-line DHM, the Brownian 

diffusion of colloidal aggregation formed by short-range attraction has been studied [124], which 

suggests that the dynamics of complex biological system including cell aggregation or bacterial 

clusters might be systematically addressed using QPI. 

4. Study of Cell Pathology 

4.1. Infectious Disease 

The same properties which made QPI such an attractive candidate for the study of cell physiology 

also enable the thorough study of human dieases. Especially, the label-free imaging capability of QPI 

makes it an effective optical imaging technique to quantitavely analyze the structure and dynamics of 

Plasmodium falciparum invaded-RBCs (Pf-RBCs) [125]. For over a century, optical imaging with 

Giemsa stain has been the “gold standard” for malaria diagnosis. Recently, however, it has been shown 
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that RI information measured by 3D QPI can be used as an effective indicator to quantitavely analyze 

the physical and chemical alterations in Pf-RBCs. 

While healthy RBCs show uniform RI distribution, Pf-RBCs are optically inhomogeneous; they 

have vacuoles of parasites with low RI and the hemozoin crystals, insoluble polymerized forms  

of heme with high RI. These RI information can be used to determine the Hb concentration  

(Figure 4(A)) [78]. Using 3D QPI, the dynamics of the egress process of malaria infection have been 

investigated [86], which demonstrated that the inhibitors E64d and EGTA-AM prevent the merozoites 

from escaping host Pf-RBCs. Utilizing the DPM in combination with genetic knock-out technique, it 

has been shown that  Pf155/Ring-Infected Erythrocyte Surface Antigen (RESA) are responsible for the 

decreased dynamic microcirculatory behavior of ring-stage Pf-RBCs [126]. In addition, analyzing the 

light scattering of the individual Pf-RBCs through the DPM and FTLS techniques, the specific disease 

state of Pf-RBC were identified and the alterations in mechanical properties of the cell membranes 

were determined [68]. Other than malaria infection, QPI has been used for studying the  

morphology and volumes of rat basophilic leukemia RBL-2H3 cells infected with V. vulnificus strains  

(Figure 4(C)) [127], and the cellular damage induced by Shiga toxin in human brain microvascular 

endothelial cells, which results in haemolytic uraemic syndrome caused by enterohaemorrhagic  

E. coli [128]. QPI can also be used for the study of cytotoxicity assessment [129]. 

4.2. Genetic Disease: Sickle Cell Disease 

QPI also proves to be highly useful in studying genetic diseases such as sickle cell disease (SCD). 

SCD is an inherited autosomal recessive genetic blood disorder, characterized by the abnormal 

deformation of RBCs especially under deoxygenation. This reduced deformability is mainly caused by 

polymerization of Hb inside RBCs and its implications. Characterizing mechanical properties at the 

single-cell level is a crucial step in comprehensive understanding of SCD [130]. Conventionally, 

several techniques including micropipette aspiration, optical tweezers, parallel-plate flow chamber 

method, and atomic force microscopy have been used. However, these methods have limitations:  

large probing force inevitably changes intrinsic mechanical properties of the cells and several 

important mechanical properties of the cells can not be retrieved simultaneously. Recently, QPI 

techniques have been employed to study the morphology and dynamic membrane fluctuation of the 

sickle RBCs [112,131]. Dynamic membrane fluctuations of sickle RBCs were significantly lower than 

healthy RBCs, indicating the reduced deformability. In addition, several key mechanical properties of 

sickle RBCs were able to be determined from the measured dynamic membrane fluctuation  

(Figure 4(B)) [112]. Static and dynamic light scattering signal from individual sickle RBCs have also 

been analyzed using DPM and FTLS techniques [111]. 

4.3. Cancer 

QPI has also been used to study cancer cells, and has proven its capability to non-invasively study 

the effects of various chemicals to cancer cells, which could yield insights into the progression of 

cancer. Using a non-interferometric QPI system, the cellular dry mass of circulating tumor cells (CTC) 

and leukocytes have been characterized (Figure 4(D)) [132]; CTCs are more massive and heavier than 

leukocytes. In addition, QPI has also enabled characterization of the morphology and the average RI of 
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pancreatic cancer cell lines PaTu9899 [133]. Furthermore it has also enabled the observation of the 

dynamic changes in the morphology upon the addition of the cell toxin Latrunculin B, which showed 

that cell heights decrease due to a breakdown of actin filaments. In addition, the quantitative phase 

images of in-situ tissue biopsy samples can also be used for identifying the regions for tumors and 

calcifications, since they contain light scattering information which reflects cellular and subcelluar 

structures [91]. 

Figure 4. The study of cell pathology using QPI (A) Cross-sectional images of 3-D RI 

tomograms of Pf-RBCs measured by TPM. Black arrows: parasitophorous vacuole;  

gray arrows: hemozoin; (B) Topograms of RBCs from a SCD patient, measured by DPM. 

II-IV: classification based on morphology; (C) morphology of rat basophilic leukemia 

RBL-2H3 cells infected with V. vulnificus strains; (D) Phase image of high-definition-CTC 

measured by non-interferometric quantitative phase microscopy. (A–D) are modified from 

refs. [78,112,127], and [132], respectively, with permissions. 

 

5. Conclusion and Outlook 

Here, we have summarized recent advances in QPI techniques which offer powerful advantages 

over the traditional optical imaging methods. The recent development of various QPI techniques has 

shown great potential for translation into the fields of cell biology, biophysics, analytical chemistry, 

and medicine. Yet, the usage of QPI techniques has not been fully explored. Many important 
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challenges are still left and are now to be tackled with the advance and the clever usage of novel QPI 

techniques. For example, the implementation of QPI techniques into conventional optical microscope 

systems and enabling the easy usage by non-specialists are necessary. In addition, on-chip  

technique [134] can miniaturize the QPI methodologies, which potentially enables point-of-care 

diagnosis and treatment of various diseases in a portable and disposable platform. Moreover, the 

improvement in spatial resolution of QPI would enable the access to the structures and sub-cellular 

organelles of biological cells with the advantages of QPI. Recently, several techniques for high-resolution 

QPI have been demonstrated including speckle-field illumination [76], synthetic aperture  

microscopy [135], sparse deconvolution [89], and phase nanoscopy using a quasi-2π-holographic 

detection and deconvolution [136]. Furthermore, integrated with existing fluorescence-based  

super-resolution microscopic techniques [137,138], QPI can also be utilized to reveal the molecular-level 

alterations of cell disease states. 

In the near future, QPI techniques would be integrated with wavefront shaping to study biological 

cells and tissues in vivo. Currently, most of the QPI techniques address the biological specimen in vitro 

or ex vivo. This is because multiple light scatterings arise when light passes through a biological tissue 

with inhomogeneous RI distribution. Recently, holographic wavefront shaping techniques have shown 

interesting results which can control and suppress multiple light scattering events so that optical 

imaging can be delivered though highly turbid media [139,140]. Since wavefront shaping in turbid 

media enables the manipulation of light in spatial [141], temporal [142], spectral [143], and 

polarization-dependent domains [144], the combination between QPI and the wavefront shaping 

techniques would be a powerful tool to investigate the structures and dynamics of cells. Furthermore, 

direct in vivo QPI image through turbid tissue layers [145] would provide a means to probe the states 

of cells in their most intact conditions.  
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