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Summary. This chapter focuses on quantitative photoacoustic tomography to
recover optical maps from the deposited optical energy. After a brief overview
of models, theories and algorithms, we provide an algorithm for large-scale
3D reconstructions, so-called gradient-based bound-constrained split Bregman
method (GBSB).

1 Introduction

Photoacoustic tomography (PAT), a synergistic combination of ultrasound
and optical imaging, has recently emerged as a potential imaging method
to resolve optical contrasts with accurate quantification and high resolution
[XW06, LW09, W09].

The first inverse problem in PAT concerns about the reconstruction of the
deposited optical energy from the time-dependent boundary measurement of
the acoustic pressure. Explicit inversion formulas exist for a large class of
geometries of interest, when the problem is in free space, with constant sound
speed, and without accounting of acoustic attenuation. The major efforts for
this first step have been focused on the situations when any of aforementioned
conditions is violated so that no explicit formulas exist. We refer the reader
to other chapters in this volume and their references for the discussions of
different topics in the first inverse problem in PAT.

The second inverse problem in PAT, so-called quantitative PAT (QPAT)
consists of reconstructing optical maps, particularly the absorption coefficient
or the chromophores, from the deposited optical energy that is recovered from
the first step. In this chapter, we assume that the deposited optical energy
is known and will focus on the simultaneous reconstruction of absorption
coefficient and scattering coefficient. Please note that although the absorption
map is usually of the major clinic interest, it is necessary to consider the
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scattering map in reconstruction as well in order to accurately reconstruct
the absorption map when the scattering coefficient is unknown.

There are mainly three methodologies for QPAT. First, using single optical
illumination and assuming the scattering map is known, we can recover the ab-
sorption map [CAKB05, YWZJ07, BBVR08]; second, using multi-wavelength
illuminations and assuming the spectral model of optical coefficients, both ab-
sorption and scattering maps can be obtained [CAB09]; third, using multiple
optical illumination, so-called multiple-source QPAT (MS-QPAT), both ab-
sorption and scattering maps can be recovered [GZO10, BR10], for which the
reconstruction uniqueness and stability estimates can be rigorously established
[BU10]. MS-QPAT was also considered in [RN05, Z10] for the reconstruction
of the absorption map. We will mainly focus on MS-QPAT in this chapter.

The major contribution of this chapter is to provide an algorithm for re-
constructing optical maps in large-scale 3D QPAT, so-called GBSB, i.e., the
gradient-based bound-constrained split Bregman method, based on the pro-
posed method in [GZO10]. For the enhanced stability with respect to the
initial guess or the noise, the simple bounds are imposed, and the solution is
regularized with total variation (TV) norm [ROF92]. These two strategies are
particularly important for scattering reconstruction, and thus for accurate ab-
sorption reconstruction. To be suitable for the large-scale computation, GBSB
utilizes Quasi-Newton method as the inner loop with the computation of gra-
dients rather than Jacobians, and split Bregman method as the outer loop
that is particularly efficient for L1-type optimization including TV-regularized
problem.

The chapter is organized as follow. We first briefly overview existing mod-
els, theories, and algorithms of QPAT in Section 2; then discuss the ingredi-
ents of GBSB for the large-scale 3D QPAT, and present simulation results in
Section 3; last end with a discussion section.

2 Overview of QPAT

2.1 Forward Models

The light migration in the photoacoustic imaging can be modeled by diffusion
approximation (DA), a first-order phase approximation of radiative transport
equation (RTE) in spherical harmonic bases [CZ67, A99]. DA so far is the
most popular since its solutions can be solved practically and the solution
methods are relatively simple [A99]. In contrast, although RTE is more accu-
rate than DA, particularly in non-diffusive region, it hasn’t been widely used
mainly because it is challenging to solve RTE practically. However, the prac-
tical solvers of RTE on a daily laptop can be potentially available, advanced
by state-of-art numerical algorithms [LM93, AL02, GZ09] and novel computer
architectures [NVIDIA].
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Diffusion Approximation (DA)

In DA, the photon density is simplified to be dependent only on the spatial
variable x. On a bounded domain Ω with smooth boundary Γ , the DA with
Robin boundary condition is

−∇ · (D(x)∇φ(x)) + µa(x)φ(x) = q(x), x ∈ Ω,
2κD(x)(n · ∇φ(x)) + φ(x) = qb(x), x ∈ Γ,

(1)

where µa is the absorption coefficient, µs the scattering coefficient , µ′s =
(1 − g)µs the reduced scattering coefficient with the anisotropic scattering
factor g (see (8)), D so-called diffusion coefficient that can be defined by
D = 1/(3µ′s), and κ the constant for coupling the refraction index mismatch
at the boundary, that can be usually determined through data fitting [A99].
Please note that DA is valid only in the diffusive regime, e.g., µa << µ′s
and x is at least a few mean free paths away from the source. We refer the
readers to [CZ67] for further discussions of DA and [A99] for DA based optical
tomographic problems.

After discretization, DA (1) can be formulated as the linear system

AΦ = Q. (2)

The system matrix A, the source term Q and the discretized density Φ in
(2) are specific to discretization methods. For example, using finite element
method (FEM) [J87] that is popular for DA solutions on Ω with irregular
shapes, the photon density in piecewise-linear bases {ϕi, i ≤ Np} with Np

nodes is
φ(x) =

∑

i

φiϕi(x) and [Φ]i = φi. (3)

On the other hand, we discretize the optical coefficients in piecewise constants,
i.e., {(µa,i, µ

′
s,i), i ≤ Nt} with Nt elements in the mesh.

With this discretization, we have

[A]ij =
∫

Ω
D(∇ϕi · ∇ϕj)dx +

∫
Ω

µaϕiϕjdx + 1
2κ

∫
Γ

ϕiϕjdx (4)

and
[Q]j =

∫

Ω

qϕjdx +
1
2κ

∫

Γ

qbϕjdx. (5)

The available data in DA based QPAT have the form as the product of
the absorption coefficient and the photon density, i.e., µa(x)φ(x), which is
assumed to be given here for all x ∈ Ω or can be reconstructed through
acoustic inversion. In order to utilize the data in the discretized settings, we
assume there are Nd numerical detectors that are uniformly distributed across
the domain Ω. Although Nd can be arbitrarily large, we will let it be equal
to the number of freedom of the discretized µa to avoid redundancy, i.e.,
Nd = Nt. Let us also assume that there are Ns optical illuminations in the
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setting of MS-QPAT, each of which has a flux distribution Φi by solving (2)
with the formula (4) and (5). Then the discrete mapping of the data can be
thought of as the following linear functional with respect to µa and Φ

Fj(µa, Φi) = µa,j

D∑

j′=1

αjj′ [Φi]j′ , i ≤ Ns, j ≤ Nt, (6)

where αjj′ ’s are the interpolation weights for the jth detector with
∑

j′ αjj′ =
1 and D, the degree of freedom of the used element (e.g., D = 3 for the
triangular element).

Radiative Transfer Equation (RTE)

On a bounded domain Ω with angular space Ŝ (e.g., unit sphere in three
dimensions (3D)), the steady-state RTE is

ŝ·∇φ(x, ŝ)+µt(x)φ(x, ŝ) = µa(x)
∮

Ŝ

f(ŝ, ŝ′)φ(x, ŝ′)dŝ′+q(x, ŝ), (x, ŝ) ∈ Ω×Ŝ.

(7)
Now, the photon flux φ(x, ŝ) has not only spatial component, but also an-
gular component, i.e., at position x in direction ŝ. The parameters in (7)
are absorption coefficient µa, scattering coefficient µs, transport coefficient
µt := µa + µs and the scattering kernel f . Very often f is rotationally in-
variant, i.e., f(ŝ, ŝ′) = f(ŝ · ŝ′), and is normalized with

∮
f(ŝ · ŝ′)dŝ′ = 1. For

example, a popular f for modeling photon transport in tissues is

f(ŝ · ŝ′) =
1− g2

4π(1 + g2 − 2gŝ · ŝ′)3/2
, (8)

so-called Henyey-Greenstein (H-G) function (3D version), where the anisotropy
parameter 0 ≤ g ≤ 1 measures the forward peaking of the scattering.

Given the normal n̂ at the boundary Γ , let Γ+(Γ−) represent (x, ŝ) ∈
∂Ω× Ŝ with ŝ · n̂ > 0(≤ 0). Let ni(no) be the refraction index of the medium
(environment). The reflection boundary condition is

φ(x, ŝ) = R(x, ŝ, ŝ′)φ(x, ŝ′) + qb(x, ŝ), (x, ŝ) ∈ Γ−, (x, ŝ′) ∈ Γ+, (9)

where qb is the boundary source, R is the reflection energy ratio that can be
computed through Fresnel formula [J99] and ŝ′ is the angle that reflects into
ŝ at the boundary x. For the vacuum boundary condition that there is no
refraction index mismatch, i.e., ni = no, R = 0 in (9). Please note that the
boundary condition for RTE is prescribed only for the incoming flux φ on Γ−.
We refer the readers to [CZ67] for the thorough treatment of RTE and [LM93]
for its introductory numerical methods.

Similarly, RTE (7) along with the boundary condition (9) can be formally
set up as the linear system (2), although (2) is rarely explicitly formulated
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for RTE due to its memory requirement. For example, following [GZ09], we
can discretize the angular variable ŝ with FEM in piecewisely linear bases
{ϕa

m,m ≤ M} with M angular directions and the spatial variable x with
Discontinuous Galerkin method (DG) [CKS00] in piecewisely linear bases
{ϕs

ij , i ≤ Nt, j ≤ D} (e.g., D = 4 on tetrahedral meshes) with Nt spatial
elements. That is,

φ(x, ŝ) =
∑

i,j,m

φijmϕs
ij(x)ϕa

m(ŝ) and [Φ]ijm = φijm. (10)

With this discretization, we have

[A]ijm,i′j′m′ = −δmm′δii′
∫

∆i′
ϕs

ij(ŝm′ · ∇ϕs
i′j′)dx

+δmm′δii′
∫

Γ+
i′

ϕs
ijϕ

s
i′j′ |ŝm′ · n̂|dx

−δmm′δT (i)i′
∫

Γ−
i′

ϕs
ijϕ

s
ij′ |ŝm′ · n̂|dx− δR(m)m′δii′

∫
Γ− rmm′ϕs

ijϕ
s
i′j′ |ŝm′ · n̂|dx

+δmm′δii′µt,i

∫
∆i′

ϕs
ijϕ

s
i′j′dx + δii′µs,i

∫
∆i′

wmm′ϕs
ijϕ

s
i′j′dx

(11)
and

[Q]i′j′m′ =
∫

∆i′
qϕs

i′j′dx +
∫

Γ−
qbϕ

s
i′j′ |ŝm′ · n̂|dx. (12)

In (11), ∆i denotes the spatial element, Γ+
i (resp. Γ−i ) the internal edge or

surface (excluding the domain boundary Γ ) with the normal direction n satis-
fying ŝm ·n > 0 (resp. ŝm ·n < 0), T (i) the upwind flux function that localizes
the element that provides upwind fluxes to the element i, R(m) the reflection
function that localizes the direction from which the direction m is reflected,
rmm′ the reflection weight into m from the direction m′ that is discretized from
R in (9), the optical coefficients are assumed to be piecewisely constant, i.e.,
µa,i and µt,i, the piecewisely linear scattering function f̃ , i.e.,f̃ =

∑
m fmϕa

m,
and the angularly scattering weights wmm′ , i.e.,wmm′ =

∫
Ŝ

f̃ϕa
m′dŝ. We refer

the readers to [GZ09] for details of solution algorithms and [GZ10] for error
estimates.

Now, the available data in RTE based QPAT have the form as the
product of the absorption coefficient and angularly-averaged fluxes, i.e.,
µa(x)

∫
Ŝ

φ(x, ŝ)dŝ. Same as before, let us also assume that there are Ns optical
illuminations in the setting of MS-QPAT, each of which has a flux distribution
Φi by solving (2) with the formula (11) and (12). Then the discrete data for
RTE can be formulated as follow

Fj(µa, Φi) = µa,j

D∑

j′=1

αjj′(
M∑

m′=1

wm′ [Φi]jj′m′), i ≤ Ns, j ≤ Nt, (13)

where αjj′ ’s again are the interpolation weights from the jth detector with∑
j′ αjj′ = 1, and the angular weight wm =

∫
Ŝ

ϕa
mdŝ.
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2.2 Theory

In this section, we will discuss some established uniqueness and stability esti-
mates mainly for MS-QPAT under single optical spectrum.

For QPAT based on DA, the reconstruction uniqueness and stability esti-
mates were established for cases with at least two optical illuminations [BU10].
A non-uniqueness result was obtained in [BR10-2] for the case with single op-
tical illumination, in which the available data are assumed to have the form
µaφ2 rather than µaφ that comes from a different acousto-optic model [BS10].
Assuming the available data have the form γµaφ (γ: the Grüneisen coefficient),
it was shown in [BR10] that only two out of the three coefficients (µa, D, γ)
can be uniquely recovered even for an arbitrary number of illuminations.

The QPAT based on RTE was analyzed in [BJJ10]. The analysis assumes
that the measurement operator can be decomposed into singular components,
i.e., the ballistic component, the single scattering component and the multi-
ple scattering component. With the ballistic component (the most singular
component), µa and µs in (7) can be reconstructed; with the single scattering
component, the anisotropy coefficient g in H-G function (8) can be uniquely
reconstructed. All the above parameters are obtained with Hölder-type sta-
bility. We refer the interested readers to [BJJ10] for further details. Please
note that the multi-source setting was not considered in [BJJ10], since it is
sufficient to recover (µa, µs, g) assuming that each component can be well
separated from the data. This assumption is appropriate when RTE is in the
transport regime, which may limit its practical interest since in rare cases the
regions of practical interest can be fully characterized by transport regime.
That is RTE based QPAT with single optical illumination may not reconstruct
(µa, µs, g) due to the potential failure of extracting singular components in
many practical cases. However, in this case, we should still be able to recon-
struct at least (µa, µs) in the setting of MS-QPAT assuming g is known, since
(µa, µ′s) can be reconstructed for DA based MS-QPAT while the behavior of
RTE is close to DA when the regime transits from being transport-like to
diffusive-like. On the other hand, it is unclear whether g can be recovered as
well even in MS-QPAT in the hybrid regime of transport and diffusion.

DA Based QPAT

The discussions here follow the results in [BU10]. Slightly different from the
aforementioned DA model (1), the considered model is the following DA with
Dirichlet boundary condition on a bounded domain X with the boundary Γ

−∇ · (D(x)∇φi(x)) + µa(x)φi(x) = 0, x ∈ Ω,
φi(x) = qi(x), x ∈ Γ,

(14)

and the available data with Ns optical illuminations are

F := {Fi = µa(x)φi(x), i ≤ Ns}. (15)
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The object here is to reconstruct (µa, D) from F , that is equivalent to
reconstruct (µa, µ′s) . Suppose that the optical coefficients (µa, D) ∈ V are
sufficiently smooth, i.e.,

V = {(µa, D) such that (µa,
√

D) ∈ Ck+1 × Y, ||µa||Ck+1 + ||
√

D||Y ≤ M},
(16)

where k ≥ 1 and Y is some subspace of Ck+2, the following uniqueness the-
orem (Theorem 1) with Ns = 2 and the stability estimate (Theorem 2) with
Ns = 2n (n: the dimension of the spatial domain X) can be obtained.

Theorem 1. Let Ns = 2 and Ω be an open, bounded domain with C2 bound-
ary Γ . Assume (µa, D), (µ̃a, D̃) ∈ V and D = D̃ on Γ . Let F and F̃ be the
data for coefficients (µa, D) and (µ̃a, D̃) respectively. Then there is an open
set of illuminations (q1, q2) ∈ (C1,α(Γ ))2 for some α > 1

2 such that if F = F̃ ,
then (µa, D) = (µ̃a, D̃).

Theorem 2. Let Ns = 2n, k ≥ 2 and Ω be an arbitrary bounded domain with
Ck+1 boundary Γ . Assume (µa, D), (µ̃a, D̃) ∈ V and D = D̃ on Γ . Let F
and F̃ be the data for coefficients (µa, D) and (µ̃a, D̃) respectively. Then there
is an open set of illuminations (q1, · · · , q2n) ∈ (Ck,α(Γ ))2n and a constant C
such that

||µ− µ̃a||Ck + ||D − D̃||Ck ≤ C||F − F̃ ||(Ck+1)2n . (17)

Both theorems can be proved by first using the Liouville transform u =√
Dφ to transform the DA (14) into the Schrödinger equation

4ui + νui = 0, x ∈ Ω,

ui =
√

Dqi, x ∈ Γ,
(18)

with

ν = −4
√

D√
D

− µa

D
, (19)

and then proving the equivalent theorems by complex geometric optics (CGO)
solutions for the Schrödinger equation (18) with the internal data {µui, i ≤
Ns}, where µ is defined as

µ =
µa√
D

. (20)

Once it is shown for the Schrödinger equation (18) that (µ, ν) can be uniquely
(resp. stably) reconstructed from {µui, i ≤ Ns}, both theorems follow auto-
matically for DA.

The assumption Ns = 2n in Theorem 2 can be relaxed to Ns = 2 with ad-
ditional geometric hypothesis on X. We refer the interested readers to [BU10]
for this alternative stability estimate and the details of the proofs. Further-
more, the changes of variables (19) and (20) provide a constructive method
for recovering (µa, D) as will further discussed next.
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2.3 Algorithm

Given the data Y = {Yij , i ≤ Ns, j ≤ Nt}, the objective of QPAT is to
obtain the optical maps X by minimizing the difference between the model
prediction F and the actual data Y

f(X) =
1
2
||F (X)− Y ||22 =

1
2

Ns∑

i=1

Nt∑

j=1

(Fij(X)− Yij)2. (21)

For example, X = µa or X = (µa, µ′s) in DA based QPAT; X = µa or
X = (µa, µs) in RTE based QPAT assuming g is known. Please note that
the simultaneous reconstruction of both optical maps based on DA is not
unique in the conventional setting with single optical illumination under single
wavelength. Similarly, in the RTE based QPAT, since it seems very unlikely
to extract singular components in the practical cases that are not fully in
the transport regime, it should be more appropriate to consider RTE based
MS-QPAT as well in order to reconstruct both optical maps. Therefore, in the
following we consider the setting of MS-QPAT with Ns > 1.

Here the model prediction F is consistent with the previous definitions (6)
or (13), i.e.,

F = {Fij := PT
j Φi, i ≤ Ns, j ≤ Nt}, (22)

where Pj is the detection functional defined by (6) for DA or (13) for RTE that
consists of µa and interpolation weights, and Φi is the photon density solution
from the ith illumination that can be obtained from solving linear systems
AΦi = Qi with the formulas (4) and (5) for DA model, and the formulas (11)
and (12) for RTE model.

Fixed-point Iteration

Assuming the knowledge of the scattering map, fixed-point iteration can be
used to reconstruct µa, in which µa and Φ are sequentially updated in itera-
tions. That is formally the following with the initial guess µ0

a

µn+1
a =

Y

Φ(µn
a)

, (23)

where we implicitly assume Ns = 1, and the interpolation may be necessary for
mapping Φ to the same discretized location of µa, i.e., with the interpolation
weights in (6) or (13). In this simple fixed-point iteration scheme (23), the
next solution µn+1

a is directly updated each time accompanied by solving a
linear system for Φ with respect to the last solution µn

a .
Here the initial guess µ0

a has to be considerably close to the true distribu-
tion in order for µa to converge. Overall, it is sensitive to the initial guess µ0

a,
the insufficient knowledge of the scattering property, and the data noise.
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DA Based Non-iterative Methods

With DA as forward model, QPAT can be solved in a non-iterative fash-
ion. Before starting the discussion of non-iterative methods, it is important
to notice that these methods can be non-iterative in the ideal setting, e.g.,
noise-free cases. In the practical setting, the non-iterative reconstruction can
be problematic, for which the iterative regularization or optimization of the
solution is usually required.

When the diffusion coefficient D or the reduced scattering coefficient µ′s
is assumed to be known, one can simplify the DA (1) by inserting the data
F = µaφ directly, i.e.,

−∇ · (D∇φ) = −F, ∈ Ω,
2AD(n · ∇φ) + φ = q, x ∈ Γ.

(24)

After solving (24) for φ, µa can be simply computed by

µa =
F

φ
. (25)

In the second case that D is not known in Ω, (µa, D) can still be recov-
ered non-iteratively [BR10] assuming at least two optical illuminations i.e.,
{Fi = µaφi, i = 1, 2}, the exact D in Γ and the following DA with Dirichlet
boundary condition

−∇ · (D∇φi) + µaφi = 0, x ∈ Ω,
φi = qi, x ∈ Γ.

(26)

From Dirichlet boundary condition and the data F , µa is also exactly known
in Γ , i.e., µa = Fi/qi. The algorithm goes as follow.

By multiplying DA (14) for φ1 by φ2, DA (26) for φ2 by φ1, subtracting
two equations, we have

−∇ · (Dφ2
1∇

φ2

φ1
) = 0. (27)

Using Liouville variable u =
√

Dφ1, we obtain the first-order transport
equation with the variable u2

−∇ · (u2∇F2
F1

) = 0, x ∈ Ω,

u2 = Dq2
1 , x ∈ Γ.

(28)

After solving (28) for u, we can obtain ν (19) and µ (20) by formulas

µ = µa√
D

=
√

(µaφ1)2

Dφ2
1

= F1
u ,

ν = −4
√

D√
D
− µa

D = −4(
√

Dφ1)√
Dφ1

= −4u
u ,

(29)

where DA (26) is used in deriving the second formula of (29).
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Next observing that

4√D + ν
√

D = −µ, (30)

from (19) or the second formula of (29), we can compute
√

D from ν and µ by
solving the elliptic equation (30) with Dirichlet boundary condition, i.e., the
exact values of

√
D on Γ . Consequently, we can compute D, and µa = µ

√
D.

In summary, one can reconstruct (µa, D) from two measurements by solv-
ing a first-order transport equation (28) and an elliptic equation (30). Now
we state one more assumption on F in order for the solution to make sense.
That is

β := F 2
1∇

F2

F1
(31)

is a vector in W 1,∞ and |β| ≥ α0 > 0.
In implementation, since β usually varies significantly over the domain,

the transport equation (28) is solved in the normalized vector field |β|/µ2

instead. In the practical case with noise, the derivative of F2/F1 can become
problematic. One way to deal with the noise is to formulate (28) as a linear
system and iteratively solve it using some proper regularization.

This non-iterative reconstruction method can be potentially appealing for
its non-iterative nature. However, we will not adopt this approach here in
designing our solver for 3D large-scale QPAT, mainly because (µa, D) is as-
sumed to be known on Γ . Another reason is that it seems that the practical
performance is data-dependent, such as β and its lower bound α0.

Jacobian Based Method

In the Jacobian based method [GZO10], the QPAT is formulated as a least-
square problem (21) with the forward model F that is nonlinearly dependent
on optical parameters X, and then the Jacobians of F are iteratively computed
so that the consequent subproblems are linear least square problems that can
be solved by various least-square or convex optimization techniques [BV04,
NW06, GZ10].

Jacobian based method is a natural way for solving (21) as an typical
iterative linearization approach for nonlinear problems. That is the following
with some initial guess X0,

Bn+1 = Y + J(Xn)Xn − F (Xn),
Xn+1 = argminX ||J(Xn)X −Bn+1||22 + R(X), (32)

where J(Xn) is the Jacobian computed at Xn, and R(X) the regularization
term to regularize the solution that can be based on some priors of X, such as
smoothness and sparsity. Another consequence for the image regularization is
that the minimization problems of (32) are usually less illposed. This can be
interpreted as a result of finding solutions in a more restrictive space with the
global minimum.
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The main advantages of Jacobian based method (32) are its simplicity and
flexibility. For example, many state-of-art image processing techniques can be
potentially applied here. But, for large-scale QPAT in 3D, the computation
of Jacobian J can be prohibitively slow, as will be explained next.

J can be computed as follow. First we differentiate both sides of (2) with
respect to xk, each component of X,

A
∂Φi

∂xk
= − ∂A

∂xk
Φi (33)

and use it to compute the Jacobian in the following way

[J ]ij,k = ∂Fij

∂xk

= ∂P T
j

∂xk
Φi + PT

j
∂Φi

∂xk

= ∂P T
j

∂xk
Φi − PT

j [A−1( ∂A
∂xk

Φi)]

= ∂P T
j

∂xk
Φi − (PT

j A−1)( ∂A
∂xk

Φi)

= ∂P T
j

∂xk
Φi − (ΨT

j )( ∂A
∂xk

Φi),

(34)

where Ψj is so-called adjoint solution defined by

Ψj = (AT )−1Pj or AT Ψj = Pj . (35)

As a result, this method for computing Jacobian is so-called the adjoint
method, which is usually much more efficient than the direct method [A99].
But, it still requires the computation of linear systems (2) for Ns + Nt times,
that can be extremely time-consuming for 3D large-scale QPAT since Nt can
easily be around a million or more in 3D.

Gradient Based Method

An alternative way without computing Jacobians is to consider (21) as a fully
nonlinear function instead of the least-square problem [GZO10]. That is

X = argminXf(X) + R(X), (36)

where R(X) again is the regularization on the solution X.
Now we only need to compute the gradient of f(X). The adjoint method

for gradient computation goes as follow

[∂f ]k =
∑

i,j(Fij − Yij)
∂Fij

∂xk

=
∑

i,j(Fij − Yij)
∂P T

j

∂xk
Φi +

∑
i,j(Fij − Yij)PT

j
∂Φi

∂xk

=
∑

i,j(Fij − Yij)
∂P T

j

∂xk
Φi −

∑
i ST

i [A−1( ∂A
∂xk

Φi)]

=
∑

i,j(Fij − Yij)
∂P T

j

∂xk
Φi −

∑
i ΨT

i ( ∂A
∂xk

Φi)

(37)
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with the adjoint source

Si =
∑

j

(Fij − Yij)Pj (38)

and the adjoint solution

Ψi = (AT )−1Si or AT Ψi = Si. (39)

Please note that the first term in (34) and (37) is the singular absorption term
that is nonzero only for the absorption coefficient µa, which reflects the fact
that the sensitivity with respect to µa is stronger than with respect to the
other variable. Consequently the reconstruction of µa should have a better
resolution. On the other hand, the aforementioned fixed-point iteration actu-
ally corresponds to the truncated Jacobian involving only the first term for
the absorption coefficient. Therefore, fixed-point iteration usually fails when
the first term is no longer dominating or with considerable errors.

Now, for each gradient we only need to compute linear systems (2) for 2Ns

times that are only a few. In contrast with the method based on Jacobians
(34), the method based on gradients (37) requires much fewer computations of
linear systems, and thus is feasible for 3D QPAT. The gradient based method
has been developed for QPAT by [CAB09, GZO10]. It is also the base of GBSB
algorithm for large-scale 3D QPAT that will be introduced next.

3 GBSB: an Algorithm for Large-scale 3D QPAT

In this section, we will aim at solving large-scale 3D QPAT, e.g., to recover
both absorption map and scattering map in the setting of MS-QPAT. In
the following, QPAT will be formulated as a bound-constrained nonlinear
minimization problem with the solution regularized by TV norm, and then
the development of the solution algorithm is based on the Split Bregman
method [OBGXY05, GO09, COS09], namely, GBSB, gradient-based bound-
constrained split Bregman method, which is an extension of our prior work
[GZO10].

3.1 Formulation

For model simplicity, we adopt the following setting that is commonly assumed
for QPAT: with DA as the forward model, the objective is to reconstruct the
absorption coefficient µa and the reduced scattering coefficient µ′s from the
absorbed energy µaφ, which is assumed to be known (e.g., through acoustic
inversion).

In the setting of MS-QPAT with Ns optical illuminations, the available
data Y are
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Y = {Yij := Fj(µa, φi) + εij , i ≤ Ns, j ≤ Nd}, (40)

where φi is the DA solution with the ith source, F the measuring functional
defined by (6) that is linearly dependent on µa and φi, Nd the number of the
detectors, and εij the data noise.

The parameters to be recovered are

X = (µa, µ′s). (41)

Assuming that the data noise ε obeys the Gaussian distribution, we for-
mulate the data fidelity of QPAT as the nonlinear least-square summation

f(X) =
1
2
||F (X)− Y ||22 =

1
2

∑

i,j

[Fj(µa, φi(µa, µ′s))− Yij ]2. (42)

In this study, we specifically choose piecewise-constant discretization of X

X = {(µa,i, µ
′
s,i), i ≤ Nt}, (43)

and regularize it by TV norm

||MX||1 =
∑

i

|Mi1µa,i1 −Mi2µa,i2|+ |Mi1µ
′
s,i1 −Mi2µ

′
s,i2|, i ≤ Ne. (44)

Here Ne is the total number of element edges in 2D or element surfaces in
3D that are inside the domain (excluding the domain boundary). It can be
shown by TV coarea formula that Mi1 and Mi2 correspond to the edge length
or the surface area [GZ10-2]. Please note that the triangulation is assumed to
be conformal so that each internal edge or surface i is shared by exactly two
elements i1 and i2.

Consequently QPAT can be formulated as the following bound-constrained
nonlinear optimization problem

X = argminXf(X) + λ||MX||1, subject to L ≤ X ≤ U. (45)

Here λ is the regularizing parameter, and L (resp. U) is the lower (resp. upper)
bound of X. Please note that (i) the use of TV regularization or simple bounds
is for regularizing the illposed solution, particularly for µ′s; (ii) the enforced
simple bounds are loose constraints for excluding some apparently undesired
solutions (e.g., lower bound by zero and upper bound by a order of magnitude
of the maximum), rather than tight a priori constraints targeting directly at
the desired solutions.

3.2 Split Bregman Method

Since the simple bounds will be handled explicitly, now let us consider the
unconstrained version of (45),
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X = argminXf(X) + λ||MX||1. (46)

The simple version of a typical approach for solving (46) is to iteratively
solve

Xn+1 = argminXf(X) + λn||MX||1,
λn+1 = µλn, 0 < µ < 1.

(47)

That is, the iteration begins with the regularized solution, that is from a less
ill-conditioned system due to the regularization, and converges to the true
solution as the regularization diminishes. A major difficulty of (47) is that
the system can be too ill-conditioned to be solvable for small regularization
parameters after some iterations.

To resolve this difficulty, we begin with the Bregman distance of TV norm

D(X, Y ) = λ||MX||1 − λ||MY ||1− < V (Y ), X − Y >, (48)

where V is a subgradient of the TV norm at Y .
Now instead of varying λn as in the continuation strategy (47), we fix

the regularizing parameter λ, replace the TV norm λ||MX||1 by its Bregman
distance D(X, Y ), and iteratively solve

Xn+1 = argminXf(X) + D(X, Xn). (49)

That is
Xn+1 = argminXf(X) + λ||MX||1 − V nX,
V n+1 = V n − ∂f(Xn+1). (50)

(50) is the precedent of Split Bregman Method that was proposed in [OBGXY05].
Please note that (50) avoids to solve ill-conditioned systems by fixing λ while
updating the Bregman distance. We refer the readers to [OBGXY05, COS09]
for the well-definedness, convergence and several nice properties of the Breg-
man method when f(X) is convex, and [BB09] for the analysis of more general
f(X) commonly occurring in inverse problems.

The similar Bregman method can be used to solve the non-differentiable
L1-type subproblems of (50)

X = argminXgn(X) + λ||MX||1 (51)

with gn(X) = f(X)− V nX.
The motivation comes from (i) the fact that the L1 scalar minimization

min
1
2
(x− y)2 + λ|x| (52)

has the explicit solution, so-called the shrinkage formula

x = Tλ(y) = sgn(y) ·max(|y| − λ, 0), (53)

where sgn(y) denotes the sign of the scalar y;(ii) the split treatment of the
differentiable data fidelity and the non-differentiable TV norm. Please note
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that (53) also extends to the vector computation since the objective function
of (51) is separable into the summation of (52).

The method is so-called Split Bregman Method [GO09, COS09] and it
goes as follow. First we let the dummy variable Z = MX so that TV becomes
||Z||1, for which the Shrinkage formula (53) can be applied later. Consequently,
(51) is reformulated as an equality-constrained optimization problem

(X, Z) = argmin(X,Z)g
n(X) + λ||Z||1, subject to MX = Z. (54)

Now we enforce the equality constraints by quadratic penalties, however pe-
nalize the Bregman distance of gn(X)+λ||Z||1 iteratively rather than update
the penalizing parameter µ, i.e.,

(Xm+1, Zm+1) = argmin(X,Z)g
n(X) + λ||Z||1 − V m

x X − V m
z Z + 1

2µ||MX − Z||22,
V m+1

x = V m
x + µMT (Zm+1 −MXm+1),

V m+1
z = V m

z + µ(MXm+1 − Zm+1),
(55)

which can be simplified to

(Xm+1, Zm+1) = argmin(X,Z)g
n(X) + λ||Z||1 + 1

2µ||MX − Z + Wm||22,
Wm+1 = Wm + MXm+1 − Zm+1.

(56)
Regarding the handling of equality constraints, Split Bregman Method (56)
is similar to the augmented Lagrangian Method [H69, P69, B82, NW06], in
which the Lagrangian multipliers are added to the object function and are
iteratively estimated with the fixed quadratic penalty parameter µ.

Then the first step of (56) can be solved by the iterative alternating opti-
mization of X and Z

Xk+1 = argminXgn(X) + 1
2µ||MX − Zk + Wm||22,

Zk+1 = argminZλ||Z||1 + 1
2µ||MXk+1 − Z + Wm||22, (57)

where the second equation has the explicit solution by shrinkage formula (53)

Zk+1 = Tλ
µ
(MXk+1 + Wm). (58)

Combining (50), (56), (57) and (58), Split Bregman Method is now summa-
rized as

For n = 1 to N
For m = 1 to M

For k = 1 to K
Xk+1 = argminXf(X)− V nX + 1

2µ||MX − Zk + Wm||22;
Zk+1 = Tλ

µ
(MXk+1 + Wm);

End
Wm+1 = Wm + MXm+1 − Zm+1;

End



16 Hao Gao, Hongkai Zhao, and Stanley Osher

V n+1 = V n − ∂f(Xn+1).
End

In particular, this Split Bregman loop with M = K = 1 has been proven
to converge with certain numerical advantages [COS09] and will be adopted
as the base of the GBSB algorithm. That is

Xn+1 = argminXf(X) + 1
2µ||MX − Zn + Wn||22 − V nX,

Zn+1 = Tλ
µ
(MXn+1 + Wn),

Wn+1 = Wn + MXn+1 − Zn+1,
V n+1 = V n − ∂f(Xn+1).

(59)

All steps in (59) except the first one are computationally cheap. Next we
will turn to the discussion for solving this differentiable subproblem to update
X.

3.3 L-BFGS: Quasi-Newton Approximation of the Hessian

Since the computation of Jacobians is extremely time-consuming, we will not
formulate Jacobians from (21) according to the least-square form of f(X), and
solve the consequent optimization problems using least-square techniques. In-
stead, we rather treat (21) as a nonlinear objective function, and only compute
its gradients (please see Section 2.3 for the details of gradient computation).

Specifically, we will adopt the Quasi-Newton method with adaptive up-
dating of the Hessian by gradients (Section 3.3), compute the search direction
while explicitly enforcing simple bounds (Section 3.4), and perform the line
search satisfying Wolfe conditions and simple bounds (Section 3.5).

we are going to focus on solving the first subproblem of the Split Bregman
loop (59). To simplify the notation, we let

g(X) = f(X) +
1
2
µ||MX − Zn + Wn||22 − V nX (60)

and consider
X = argminXg(X). (61)

Suppose that the current iterate is Xk, a quadratic approximation of (61)
with p = X −Xk is

Qk(p) = gk + ∂gT
k p +

1
2
pT Hkp, (62)

where gk, ∂gk and Hk are the function value, the gradient and the Hessian at
Xk respectively. Consequently, from the optimal condition of (62),

pk = −H−1
k ∂gk, (63)

which can be used as the search direction at the kth iteration for (61).
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For computational efficiency, instead of formulating Hk explicitly and tak-
ing its inverse H−1

k , we shall use a well-known Quasi-Newton method, namely,
BFGS method [DS83, F87, NW06], to iteratively update H−1

k , for which only
∂gk is required. The methodology goes as follow.

Let pk and αk be the search direction and the step length at the current
iterate Xk, i.e.,

Xk+1 = Xk + αkpk. (64)

At the next iterate Xk+1, the new quadratic approximation Qk+1(p) should
be consistent in the sense that

∂Qk+1(−αkpk) = ∂gk,
∂gk+1 + Hk+1(−αkpk) = ∂gk.

(65)

That is
sk = H−1

k+1yk (66)

with
sk = xk+1 − xk and yk = ∂gk+1 − ∂gk. (67)

To uniquely update H−1
k+1 from H−1

k , besides the symmetric requirement and
the secant condition (66), we impose the additional condition that H−1

k+1 is
the closest to H−1

k in the weighted Frobenius norm || · || [NW06], i.e.,

H−1
k+1 = argminH−1 ||H−1 −H−1

k ||
subject to H−1 = H−1T and H−1yk = sk.

(68)

The unique solution of (68) is the well-known BFGS formula

H−1
k+1 = V T

k H−1
k Vk + ρksksT

k (69)

with
ρk =

1
yT

k sk
and Vk = I − ρkyksT

k . (70)

However, BFGS formula (69) is still not suitable for large-scale computa-
tion since H−1

k is usually dense and consequently can be prohibitive in terms
of memory and speed. Therefore, we adopt the limited-memory version of
BFGS, so-called L-BFGS [BNS94, NW06].

The motivation of L-BFGS comes from a recursive reformulation of (69)

H−1
k = (V T

k−1 . . . V T
0 )H−1

0 (V0 . . . Vk−1)
+ρ1(V T

k−1 . . . V T
1 )s1s

T
1 (V1 . . . Vk−1)

+ · · ·+ ρk−1sk−1s
T
k−1.

(71)

Now, for L-BFGS, we only save and use the most recent m pairs of (s, y)
for updating H−1

k , i.e.,
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H−1
k = (V T

k−1 . . . V T
k−m)H−1

k,0(Vk−m . . . Vk−1)
+ρk−m(V T

k−1 . . . V T
k−m+1)sk−msT

k−m(Vk−m+1 . . . Vk−1)
+ · · ·+ ρk−1sk−1s

T
k−1,

(72)

where H−1
k,0 is the initial guess of H−1 at the kth iteration. An empirical

effective choice is

H−1
k,0 = γkI with γk =

sT
k−1yk−1

yT
k−1yk−1

. (73)

This L-BFGS recursive formula (72) allows an efficient computation of the
search direction pk at the current iterate Xk, i.e.,

L-BFGS Update: pk=LBFGS(∂gk,{si, yi, k −m ≤ i ≤ k − 1}).
q = ∂gk;
For i = k − 1 to k −m

q = q − αiyi;
End
r = H−1

k,0q;
For i = k −m to k − 1

r = r + si(αi − ρiy
T
i r);

End
pk = −r.

We find that the L-BFGS (72) with around five truncated terms (m = 5) is
generally sufficient in Q-PAT. We refer the readers to [DS83, F87, NW06] and
the references therein for the general framework of Quasi-Newton methods,
convergence analysis of BFGS (69) and L-BFGS (72), and other useful updates
of Hessian.

3.4 Bound-constrained Search Direction

Now let us come back to the original constrained QPAT problem (45) and
explicitly deal with its simple bounds. In this case, the Split Bregman loop
(59) still works and instead we consider its first step as

X = argminXg(X) subject to L ≤ X ≤ U (74)

with g(X) defined by (60).
In GBSB, we explicitly enforce bound constraints in the computation of

search directions of (74) from the first-order necessary conditions (KKT condi-
tions) [NW06]. The similar explicit formula for simple bounds was also imple-
mented in the nonlinear optimization software LANCELOT [CGT92]. That
is, assuming p(X) is the exact decent direction of (61), it is not difficult to
verify that the projected gradient p̂(X) onto the feasible region is exactly
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Projection of p onto the Feasible Region: p̂k = Proj(pk).

p̂(x) =




−L(x), if x + p(x) ≤ L(x)
p(x), if L(x) < x + p(x) < U(x), x ∈ X
−U(x), if x + p(x) ≥ U(x)

. (75)

(75) is the updating formula of search directions in the Quasi-Newton method.
That is, the search direction p(X) is first computed by L-BFGS (72), and
then projected to p̂(X) via (75). It is p̂(X) that will be used in line search
for the constrained QPAT (45). Please note that p̂(X) is not exact in our
Quasi-Newton method since p(X) is from L-BFGS in iterative quadratic ap-
proximations of f . Therefore, we will also enforce the bound constraints in
the line search.

3.5 Line Search

Now we are going to complete the solution method for minimizing the nonlin-
ear functional (74) as subproblems during Split Bregman iterations (59) for
the QPAT model problem (45). The discussion concerns the choice of the step
length αk along the current search direction p̂k so that new iterate Xk+1 can
be updated by

Xk+1 = Xk + αkp̂k. (76)

In GBSB, we enforce the Wolfe Conditions [NW06] for selecting αk, i.e.,

g(Xk + αkp̂k) ≤ g(X) + c1αk∂gT (Xk)p̂k

∂gT (Xk + αkp̂k)p̂k ≥ c2∂gT (Xk)p̂k,
(77)

where the first inequality guarantees the sufficient decrease of the objective
function value, and the second inequality, so-called curvature condition, rules
out unacceptably short steps. Please note that the curvature condition is
necessary to guarantee the positive curvature, (i.e., sT

k yk > 0), which is implied
by the secant equation (66). Otherwise,the performance of L-BFGS method
may degrade due to the violation of the curvature condition.

Besides, we also enforce the bound constraints, i.e.,

L ≤ Xk + αkp̂k ≤ U. (78)

As mentioned earlier, our projected gradient p̂ is only an approximation, and
it may not fulfill the simple bounds. As a result, (78) is necessary for Xk+1 to
stay feasible.

Last, we implement the following Backtracking line search algorithm in
GBSB, which is simple, yet empirically sufficient.

Backtracking line search: αk = Backtrack(p̂k).
Choose c1 = 0.0001, c2 = 0.9, ρ = 0.5, αk = 1;
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Do αk = ραk

Until αk satisfies (77) and (78).

One observation from using this backtracking ling search algorithm is that
αk = 1 is usually accepted after one or a few Quasi-Newton iterations (76).

3.6 GBSB Algorithm

Now, we can summarize our discussions so far on the GBSB algorithm for
QPAT (45) as follow.

For n = 1 to N (Bregman outer loop)

gn = f(X)− V nX + 1
2µ||MX − Zn + Wn||22;

Xn
0 = Xn−1;

For k = 1 to K (Quasi-Newton inner loop)
pk = LBFGS(∂gn

k , {sn
i , yn

i , k −m ≤ i ≤ k − 1});
p̂k = Proj(pk);
αk = Backtrack(p̂k);
Xn

k+1 = Xn
k + αkp̂k;

Break, if ||gn
k || ≤ ε;

End
Xn = Xn

K ;

Zn+1 = Tλ
µ
(MXn+1 + Wn);

Wn+1 = Wn + MXn+1 − Zn+1;
V n+1 = V n − ∂f(Xn+1).

End

As discussed earlier, we fix the value of the regularizing parameter λ to be a
constant. Regarding the choice of this constant, any value of λ other than a
particularly small number is sufficient although the considerably large value
of λ may require extra iteration steps. Besides, µ = λ is recommended from
our numerical experiences.

The stopping criterion for the Quasi-Newton inner loop of the GBSB al-
gorithm is based on ε = εig

n
0 with a small constant ε0, e.g., εi = 0.0001. This

gn
0 -dependent stopping criterion is motivated by the scale variation of gn in

the the inner loop. On the other hand, the stopping criterion of Bregman
outer loop is based on the difference between two consecutive iterative solu-
tions, i.e., ||Xn+1 − Xn|| < εo||Xn||,e.g., εi = 0.01. Please note that in the
case with considerably noisy data (40), the small εi is not recommended since
Xn may otherwise converge to the solution corresponding to the noisy data,
which is not desirable.

We refer the readers to the previous sections for the details of individual
steps of the GBSB algorithm, such as the algorithm parameters. Next we are
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going to discuss on some practical factors that can be of great importance for
the performance of GBSB algorithm in QPAT.

3.7 Data Scaling

The first scaling is with respect to the data fidelity term (21), which has
considerably scale variation among different spatial elements. To balance the
minimization of the inhomogeneous discrepancy between the model and the
data, we can either consider the weighted data fidelity term with weights Y −1

ij

f1(X) =
1
2

∑

i,j

[Y −1
ij Fj(µa, φi(µa, µ′s))− 1]2, (79)

or the data fidelity term in logarithms

f2(X) =
1
2

∑

i,j

[log Fj(µa, φi(µa, µ′s))− log Yij ]2. (80)

3.8 Parameter Scaling

The second scaling is with respect to the reconstruction variables (41), since
µa and µ′s usually differ from each other by 1 or 2 orders of magnitude.
That is, now we consider the minimization problem with respect to the scaled
parameters

X ′ = (µa, rµ′s), (81)

with r as a scaling constant that can be set to the ratio of the mean of the
initial absorption coefficient µ0

a over the mean of the initial reduced scattering
coefficient µ′0s.

Consequently, the gradient of f with respect to X ′ is

∂X′f = (∂µa
f, r−1∂µ′sf). (82)

3.9 Initial Guess

Due to the nonlinear nature of QPAT and its ill-posedness besides the fact
that the problem may have many local minimizers, in order to reconstruct the
desired optical parameters, almost exclusively, any iterative algorithm requires
an educational initial guess X0. The extensive numerical tests on the stability
of GBSB with respect to X0 indicate that GBSB is quite stable even if the
difference between X0 and the underground truth is considerably large, which
is ideal for the large-scale QPAT. Nonetheless, a reasonable X0 is still required
for GBSB to converge to the meaningful solution. An empirical strategy for
X0 is the model based fitting of the homogeneous optical background from
the data, e.g.,
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X0 = argminXf(X). (83)

Please note that here X0 = (µ0
a, µ′0s) and is spatially independent so that

(83) can be solved much more efficiently in comparison with the QPAT model
problem (45).

3.10 Simulation Settings

We performed the GBSB algorithm for MS-QPAT with DA as forward model
in both 2D and 3D.

In the 2D simulation, the phantom was based on the embedding of a
2D Shepp-Logan phantom into a circular domain of a 50mm diameter and
the center (0,0). In addition, the absorption coefficient map (Fig. 1a) had
another four 1.25mm-diameter circular inclusions centered at (-5,0), (-10,0), (-
15,0) and (-20,0); the reduced scattering coefficient map (Fig. 1a) had another
four 1.25mm-diameter circular inclusions centered at (5,0), (10,0), (15,0) and
(20,0). To mimic the MS-QPAT, the phantom was illuminated respectively
with the optical sources at the boundary located in each quadrant of the
circular domain, and the total number of optical illuminations was four in
2D.

To alleviate the inverse crime in simulations, the data Y (40) was generated
based on a mesh with 17489 nodes and 34592 elements, and the reconstruc-
tion was performed on another independent mesh with 17137 nodes and 33888
elements. Then 1% Gaussian noise that is proportional to Y was added to the
data before the reconstruction. Please note that the phantom was first gener-
ated on a 128× 128 grid, and then interpolated to the 1st triangular mesh for
generating Y . Therefore, the reconstruction phantom was the latter one after
the interpolation. In this case, the resolution of the reconstruction phantom
can be regarded as 128× 128 since the number of variables in the piecewise-
constant discretization was sufficiently large. On the other hand, the optical
parameters were first reconstructed on the 2nd triangular mesh, and then in-
terpolated to the 128× 128 cartesian grid for display, which corresponded to
the < 0.5mm resolution in the reconstruction phantom. On the other hand,
as discussed earlier, the GBSB algorithm is stable with respect to the initial
guess. The displayed reconstructed maps (Fig. 1b and 2b) were from a typical
initial guess with µ0

a = 0.008 and µ′0s = 0.8, which did not overlap with any
pixel value in the phantom (Fig. 1a and 2a).

Similarly, in the 3D simulation, the phantom was based on the embed-
ding of a 3D Shepp-Logan phantom into a cylindrical domain of a 50mm
diameter and a 50mm height and the center (0,0,0). In addition, the absorp-
tion coefficient map (Fig. 3a-c) had another four 2.5mm-diameter spherical
inclusions centered at (-5,0,0), (-10,0,0), (-15,0,0) and (-20,0,0); the reduced
scattering coefficient map (Fig. 4a-c) had another four 2.5mm-diameter spher-
ical inclusions centered at (5,0,0), (10,0,0), (15,0,0) and (20,0,0). To mimic the
MS-QPAT, the phantom was illuminated with the optical sources respectively
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from the top flat surface, the bottom flat surface, and then at the boundary
located in each quadrant of the side, and the total number of optical illumi-
nations was six in 3D.

To alleviate the inverse crime in simulations, the data Y was generated
based on a mesh with 64356 nodes and 446823 elements, and the recon-
struction was performed on another independent mesh with 56635 nodes and
348687 elements. Then 1% Gaussian noise that is proportional to Y was added
to the data before the reconstruction. Again the phantom was first gener-
ated on a 100 × 100 × 100 grid, and then interpolated to the 1st tetrahedral
mesh for generating Y . Please note that the resolution of the reconstruction
phantom was actually less than 100 × 100 × 100 due to the 1st tetrahedral
mesh,i.e., 446823 < 1003. On the other hand, the optical parameters were
first reconstructed on the 2nd tetrahedral mesh, and then interpolated to the
100×100×100 cartesian grid for display, which corresponded to 0.5mm resolu-
tion in the reconstruction phantom. Again, the actual reconstructed resolution
did not reach 100× 100× 100 since the number of variables in the 2nd tetra-
hedral mesh was smaller than 1003 besides the fact that the reconstruction
phantom did not even have the 100× 100× 100 resolution. It was estimated
that the reconstruction solution was approximately 70×70×70. On the other
hand, as discussed earlier, the GBSB algorithm is stable with respect to the
initial guess. The displayed reconstructed maps (Fig. 3d-f and 4d-f) were from
a typical initial guess with µ0

a = 0.008 and µ′0s = 0.8, which did not overlap
with any pixel value in the phantom (Fig. 3a-c and 4a-c).

3.11 Simulation Results

In this section, we present the simultaneously reconstructed absorption co-
efficient map µa and reduced scattering coefficient map µ′s from the GBSB
algorithm for MS-QPAT with DA as forward model.
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Fig. 1. 2D simultaneous reconstruction of absorption coefficient µa and reduced
scattering coefficient µ′s by the GBSB algorithm for MS-QPAT. (a) the true µa and
(b) the reconstructed µa. The displays are 128× 128 with the display window [0.01
0.02]. The reconstruction data has 1% Gaussian noise.
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Fig. 2. 2D simultaneous reconstruction of absorption coefficient µa and reduced
scattering coefficient µ′s by the GBSB algorithm for MS-QPAT. (a) the true µ′s and
(b) the reconstructed µ′s. The displays are 128 × 128 with the display window [1
2].The reconstruction data has 1% Gaussian noise.

The 2D results are displayed with the 128 × 128 resolution in Fig. 1 and
2: Fig. 1 shows the true and the reconstructed µa; Fig. 2 shows the true
and the reconstructed µ′s. The phantom is 50mm in diameter, and therefore
the image has < 0.5mm resolution. In Fig. 1b, all Shepp-Logan inclusions
and all four 1.25mm inclusions of the µa phantom (Fig. 1a) are successfully
reconstructed. In Fig. 2b, major Shepp-Logan inclusions and all four 1.25mm
inclusions of the µ′s phantom (Fig. 1a) are successfully reconstructed while
the small Shepp-Logan features are blurred and the background is relatively
noisy. This reconstruction difference is due to the fact that the data are more
sensitive to µa or the reconstruction is more ill-posed in µ′s.

The 3D results are displayed with the 100× 100× 100 resolution in Fig. 3
and 4: Fig. 3 shows the true and the reconstructed µa; Fig. 4 shows the true
and the reconstructed µ′s. The phantom is 50mm in diameter and height, and
therefore the image has < 0.5mm resolution. However, as discussed earlier,
the actual resolution is around 70× 70× 70 due to the resolution of the used
mesh. A better resolution should be achieved with finer meshes. In Fig. 3d-f, all
Shepp-Logan inclusions and all four 2.5mm inclusions of the µa phantom (Fig.
3a-c) are successfully reconstructed. Again, in Fig. 4d-f, major Shepp-Logan
inclusions and all four 2.5mm inclusions of the µ′s phantom (Fig. 4a-c) are
successfully reconstructed while the small Shepp-Logan features are blurred
and the background is relatively noisy.

4 Discussion

The proposed GBSB algorithm can be easily extended for multi-wavelength
QPAT [CAB09] and RTE based QPAT. In the latter case, it is interesting to
investigate whether it is possible to reconstruct (µa, µs, g) in the hybrid regime
of transport and diffusion. Another interesting question is to study the direct
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Fig. 3. 3D simultaneous reconstruction of absorption coefficient µa and reduced
scattering coefficient µ′s by the GBSB algorithm for MS-QPAT. (a)-(c) the sagittal,
coronal, and transverse plane of the true µa and (d)-(f) the sagittal, coronal, and
transverse plane of the reconstructed µa. The displays are 100× 100× 100 with the
display window [0.01 0.02]. The reconstruction data has 1% Gaussian noise.
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Fig. 4. 3D simultaneous reconstruction of absorption coefficient µa and reduced
scattering coefficient µ′s by the GBSB algorithm for MS-QPAT. (a)-(c) the sagittal,
coronal, and transverse plane of the true µ′s and (d)-(f) the sagittal, coronal, and
transverse plane of the reconstructed µ′s. The displays are 100× 100× 100 with the
display window [1 2]. The reconstruction data has 1% Gaussian noise.
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reconstruction of optical maps from boundary acoustic measurement, since
GBSB can also be extended to this case and the forward/adjoint problem can
be defined similarly once a practical acoustic model is available.
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