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The taxonomic composition of environmental communities is an important indicator of their 

ecology and function. Here, we use a set of protein-coding marker genes, extracted from large-

scale environmental shotgun sequencing data, to provide a more direct, quantitative and 

accurate picture of community composition than traditional rRNA-based approaches using 

polymerase chain reaction (PCR). By mapping marker genes from four diverse environmental 

data sets onto a reference species phylogeny, we show that certain communities evolve faster 

than others, determine preferred habitats for entire microbial clades, and provide evidence that 

such habitat preferences are often remarkably stable over time. 



Microorganisms are estimated to make up more than a third of Earth’s biomass (1). They 
play essential roles in the cycling of nutrients, interact intimately with animals and plants, and 
directly influence the Earth’s climate. Yet, our molecular and physiological knowledge of 
microbes remains surprisingly fragmentary  largely because most naturally occurring 

microbes cannot be cultivated in the laboratory (2). 

For characterizing this ‘unseen majority’ of cellular life, the first step is to provide a 

taxonomic census of microbes in their environments (3-6). This is usually achieved by cloning 

and sequencing their ribosomal RNA genes (most notably the 16S/18S small subunit rRNA). 

This approach has been extremely successful in revealing the overwhelming diversity of 

microbial life (7), but it also has some limitations due to quantitative errors: the PCR step 

introduces amplification bias, and it generates chimeric and otherwise erroneous molecules 

that hamper phylogenetic analysis ((8), see Supplementary Information for details). 

Shotgun sequencing of community DNA (‘metagenomics’) provides a more direct and 

unbiased access to uncultured organisms (9-12): No PCR amplification step is involved, and 

since no specific primers or sequence anchors are needed, even very unusual organisms can 

be captured by this technique. While current metagenomics data are still not entirely free of 

quantitative distortions (mostly due to sample preparation), remaining biases are bound to 

diminish further with the optimization of yield and reproducibility of DNA extraction protocols 

(13-15). 

In order to utilize metagenomics data for taxonomic profiling, we analyze 31 protein-coding 

marker genes that have been shown previously to provide sufficient information for 

phylogenetic analysis (they are universal, occur only once per genome and are rarely 

transferred horizontally (16)). We extract these marker genes from metagenomics sequence 

data (see Supplementary Information), align them to a set of hand-curated reference proteins, 

and use maximum likelihood to map each sequence to an externally provided phylogeny of 

completely sequenced organisms (tree of life; we use the tree from (16), although any 

reference tree can be used as long as the marker genes have been sequenced for all its taxa). 

Our procedure provides branch length information and confidence ranges for each placement 

((17), Figure 1), allowing statements such as “this unknown sequence evolves relatively fast, is 

from a proteobacterium (95% confidence), and more specifically, probably from a novel clade 

related to the Campylobacterales (65% confidence)”. Importantly, the procedure weighs the 

number of informative residues that are found on each sequence fragment, and adjusts the 

spread and confidence of its placement in the tree accordingly (after alignment, concatenation 

and gap removal, the number of remaining informative residues ranges from 80 to more than 

3000, per sequence fragment, see Supplementary Information). We have implemented the 

entire phylogenetic assignment protocol as an automated software pipeline with a web-

interface that allows submission of sequences online (http://MLtreemap.embl.de/). 

Jack-knife validation of our method (i.e. leaving out various parts of the reference tree, and 

measuring the consequences on placement accuracy; see Supplement Methods) showed that 

the performance of our method depends on the completeness and balance of the reference 

tree: the larger the phylogenetic distance to any known relative of an environmental sequence, 

the less precise is its placement. Overall, the mapping precision is remarkably good, as long 

as each sequence has some relative from the same phylum among the reference genomes 



(Figure S2). In contrast, BLAST-based assignments of taxonomy based on ‘best hit’, a 

frequently used method, are more error-prone: for example, more than 10% of the sequences 

change to a different domain of life (e.g. changing assignment from Bacteria to Archaea) upon 

removal of the phylum to which they originally mapped, compared to merely 0.19% using our 

method (Figure S2). Moreover, since the best BLAST match always assigns a single organism 

as the most likely phylogenetic neighbor, it does not specify the level of relatedness (e.g. 

class-, order-, or phylum-level), which is needed to trace organisms in their preferred habitats 

and through time. 

In one of the recent, large-scale metagenomics sequencing projects (11), traditional PCR-

based assessment of 16S rRNA molecules was executed in parallel to the shotgun 

sequencing. This enabled us to compare our approach to this currently most-widely used 

experimental method for phylogenetic profiling of environments. Overall, the relative 

abundances of phyla as reported by both methods were broadly similar, although the 

metagenomics approach appears quantitatively closer to the truth as can be measured by 

comparison to rRNAs that are contained directly in the PCR-independent shotgun reads (see 

Supplementary Information for a detailed analysis). The PCR-based approach presumably 

suffers from amplification biases and from copy-number variations among rRNA genes in 

bacteria (18), but benefits from an exhaustive coverage of phyla among known rRNA 

sequences. In contrast, the approach we present here requires far more resources in terms of 

sequencing and computation, but at least for phyla already represented among fully 

sequenced genomes, it is noticeably more quantitative. Our approach should essentially be 

seen as a by-product of metagenomics sequencing projects, which are usually conducted for 

functional purposes (see Supplementary Information for a detailed discussion of the strengths, 

weaknesses and complementarities of both approaches). 

We applied our procedure to four large, heterogeneous datasets of microbial community 

sequences, derived from distinct and geographically separate environments (10-12). The 

consistent treatment of the data allowed us to quantitatively compare habitat preferences in the 

context of the tree of life (Figure 2, Figure S1, see also Figure S3 for robustness estimates). 

Overall, we observed a remarkably un-even representation of previously sequenced 

genomes in naturally occurring communities. Some parts of the tree of life (such as the 

Streptococci or the Enterobacteriales) are well-covered by published genome sequencing 

projects, but they only represent a small part of naturally occurring microbes. Conversely, 

entire phyla such as the Acidobacteria or the Chloroflexi are poorly represented among the 

sequenced genomes, but widely abundant in natural communities. 

As noted previously (19), we find Proteobacteria to be the most dominant phylum of 

microbial life in both marine and soil environments (Figure 2). However, as is the case with 

other phyla, marked differences within the Proteobacteria become apparent: relatives of the 

Rickettsiales, for example (including the marine genus Pelagibacter (20)), are mostly found in 

the surface water samples , whereas relatives of Rhizobiales or Burkholderiales are mostly 

found in the soil sample. We observed surprisingly few endospore-forming organisms in the 

community sequences: both Bacilli and Clostridia are quite rare, their largest combined 

abundance is a mere 1% (in soil). Similarly, Actinobacteria (many of which have a spore stage) 



range from being virtually absent in the acidic mine drainage biofilm to only 6.2% in the soil 

sample. It is conceivable that spores are underrepresented in the data (they may withstand the 

DNA extraction protocols), but at least among the vegetative, actively growing cells, spore-

formers appear to be a minority. 

Quantitative analyses of relatively rare phyla, as for example in the case of the spore-

formers mentioned above, can potentially suffer from limited sampling. While our approach 

uses 31 marker genes with a total of about 7,500 amino acid residues per genome, low-

abundance organisms might be represented by only a few of these (the total number of 

sufficiently complete marker genes useable for our approach ranges from 247 for the smallest 

dataset, up to 15,741 for the largest dataset). We have quantified the potential under-sampling 

errors, using jackknife and bootstrap analysis (Figure S3). These tests show that, for the worst 

case of a low abundance clade in the smallest dataset, the quantitative error due to under-

sampling is on the order of 50% (Figure S3). However, such errors are bound to decrease with 

the expected rise in sequencing depth, facilitated by technological advances. In addition, even 

for a low estimate such as the 1% abundance mentioned above for Bacilli and Clostridia, the 

current data support a 95% confidence interval of 0.995% - 2.153%, meaning that endospore-

formers are indeed rare in soil, and not just under-sampled. Generally, none of the results 

reported here would change much if all datasets had as many as 15,000 marker genes 

sampled (in particular since we do not comment on diversity, and because we discuss entire 

clades, not individual species). 

Almost all placements of environmental sequences occurred at relatively deep, internal 

nodes in the reference tree; only a few could be placed towards the tips as close relatives of 

the cultured and sequenced genomes. Indeed, the average sequence similarity of the ‘best 

hits’ of environmental sequences to sequenced genomes is usually less than 60% (for soil, the 

median identity is only 47%). This dissimilarity is reflected in the maximum likelihood branch 

lengths: on average, more than 0.3 substitutions per site have occurred since the branching 

from the reference tree. This corresponds roughly to the sequence divergence between beta- 

and gamma-proteobacteria, which has been tentatively dated at more than 500 million years 

ago (21-23), clearly enough time for functional capabilities and lifestyles to have changed. 

Thus, the closest sequenced relative of an environmental microbe should generally not be 

considered as a reliable guide for its phenotypes and functions. 

The environments we analyzed contained a few sequences that were placed unusually 

deep in the tree, i.e. basal to the three known domains of life: Archaea, Bacteria and 

Eukaryota. Upon closer inspection, we determined that most of these deep placements in fact 

originated from lineages not yet represented among sequenced genomes (for example the 

Cenarchaeales, a deeply branching archaeal lineage, data not shown). Therefore, it is likely 

that the remaining deep placements will also find a home as soon as more lineages are 

included in the reference tree, rather than belonging to a hypothetical ‘4th domain’ of life. 

The maximum likelihood branch lengths, as measured by our method, provide detailed 

information on the community-wide distribution of evolutionary rates (that is, the rates at which 

mutations occur and are fixed). We therefore assessed, for each sequence fragment placed 

into the tree, the cumulative branch length from the tip of its branch down to the base of the 



corresponding phylum, and compared these to the branch lengths of all known reference 

organisms in that same phylum, measured for the very gene families found on the fragment 

(Figure 3; very deeply placed fragments are compared to all phyla in their sister clade). 

Although not all 31 of the marker genes are present for each organism in the metagenomics 

data, the measurements of relative rates in each gene family revealed distinct branch length 

distributions for the four environmental communities tested. These indicate that organisms at 

the ocean surface evolve the fastest, whereas organisms in the soil evolve the slowest 

(Figure 3). Large-scale trends like this, involving entire communities, have been observed 

previously mainly for multicellular organisms (e.g. a dependency between latitudinal 

geographic location and mutation rates in plants (24)). In the case of microbes, fast-evolving 

species were previously known in the context of symbiotic or pathogenic settings, or in cases 

of extreme genome ‘streamlining’ (20, 25). The more subtle, global variations in mutation rates 

reported here may be caused by differences in population sizes, generation times, or by the 

abundance of external mutagens (such as the strong fluxes of ultraviolet light in ocean surface 

water). In the case of soil, the apparent evolutionary stability at the sequence level is also 

consistent with intermittent periods of dormancy (for example during winter and/or under 

desiccation). 

Our tree-based mapping (with an implicit molecular clock) also allows us to trace the 

habitat preference of microbial organisms through time, and thus enables us to estimate how 

frequently lineages change their preferred environment. At short to intermediate evolutionary 

timescales, we observe a noticeable stability of habitats: many of the closer relatives in the 

tree show the same environmental preference, indicating that microbial lineages do not very 

often change (or specialize) their life-styles and habitats (Figure 2). Conversely, at longer 

timescales, we do observe significant changes of preferred habitats, for example within diverse 

lineages of at least two phyla, namely Proteobacteria and Cyanobacteria; this is consistent 

with the observed morphological and ecological variability of cultured isolates from most phyla. 

For example, in the case of Cyanobacteria, we identify relatives of the fast-evolving and 

widespread Prochlorococci in the ocean sample, whereas more basal, slower evolving 

Cyanobacteria such as Gloeobacter are mostly found in the soil sample. 

Even though molecular methods tend to find most phyla ubiquitously, Baas-Becking and 

Beyerinck already postulated decades ago that microbial taxa have preferred environments: 

”for microbial taxa, everything is everywhere — but the environment selects” ((26) and 

references therein). The hypothesis posits that microorganisms are frequently dispersed 

globally, and that they are only subsequently selected by the environments based on their 

functional capacities. Existing communities would thus constantly be challenged by intruders 

from non-specialist phyla who may occasionally survive simply by chance, acquiring the 

necessary functionality through horizontal gene transfer (27-29). Our observations provide 

quantitative support for this hypothesis, showing strong environmental preference along 

lineages, but with a time-dependent decay. We confirmed and extended this finding, by also 

analyzing habitat information available for cultivated strains in culture collections, as well as 

the large body of publicly available rRNA sequence data. Both datasets provide information 

about hundreds of habitats, and allow an approximate ranking of lineage separation events in 

time: in the case of rRNA sequence data, branch length information can be analyzed using a 



global phylogeny of small subunit RNA sequences, whereas in the case of cultivated strains, 

taxonomic assignments can be parsed for the last taxonomic rank still shared (for details, see 

Supplementary Information). Indeed, we observe a remarkable time-dependent stability of 

habitats and show that for any two microbial isolates, the similarity of their annotated habitat 

(as measured by automated keyword comparisons) is strongly correlated to their evolutionary 

relatedness (Figure 2, panels B & C). We observe such common habitat preferences 

surprisingly far back in time  even strains related only at the level of taxonomic order are still 

significantly more frequently found in the same environment than a random pair of isolates 

(Figure 2C). Thus, most microbial lineages remain associated with a certain environment for 

extended time periods, and successful competition in a new environment seems to be a rare 

event. The latter might require more than just the acquisition of a few essential functions; 

probably only a limited number of functionalities are self-sufficient enough, and provide 

sufficient advantage, to be pervasively transferred (30)). For most other adaptations, fine-tuned 

regulation and/or subtle changes in the majority of proteins may be needed. As this is difficult 

to achieve, well-adapted specialists might in fact rarely be challenged in their environment. 

This does not rule out the presence of a ‘long tail’ of rare, atypical organisms in each 

environment (31), but most microbial clades do seem to have a preferred habitat. 

Taken together, our alternative approach of taxonomic profiling of complex communities 

has sufficient resolution to uncover differences in evolutionary rates of entire communities, as 

well as long lasting habitat preferences for bacterial clades. The latter raises the question of 

how many distinct environmental habitats there are on earth – a factor that might ultimately 

determine the true extent of microbial biodiversity. 

 

 

 

FIGURE LEGENDS 

 

Figure 1: Assessing community taxonomy from metagenomics sequence data 

Schematic diagram depicting how a restricted set of marker genes can be used for 

phylogenetic characterization of community microbes from poorly assembled sequence data. 

Instances of the marker genes are sought in the sequences, and assessed relative to an 

external tree-of-life phylogeny using maximum likelihood scoring. A central step in the mapping 

procedure is the assignment of a confidence range for each placement, thereby avoiding to 

place sequence fragments too overly confident if they are short, or otherwise uninformative. 

 



Figure 2: Habitat/Phylotype associations and their stability in time 

A) Four microbial communities are mapped onto the same reference tree. Pie-charts represent 

the various environments in which a particular tree clade has been observed. If there is a clear 

preference, lines are colored accordingly, see Supplemental Methods. B) Comparison of rRNA 

sequences from public databases, indicating the similarity of habitats from which they were 

sampled. C) Comparison of cultured microbial strains, plotting habitat similarity against their 

level of relatedness in the NCBI taxonomy. For the taxonomic level of order, and all closer 

relations, the difference over random is highly significant (p < 10-6). 

 

Figure 3: Distinct evolutionary rates of environmental communities 

Organisms found in the surface waters of the Sargasso Sea have accumulated, on average, 

the largest number of mutations (i.e. evolved fastest), those in the agricultural soil the fewest. 

For each dataset, the branch lengths of the placements are plotted as dots. Each branch 

length is expressed relative to the median of branch lengths of known genomes in the same 

phylum, or against all phyla in the sister clade in the case of very deep placements. The 

quantiles 5%, 25%, 50% (median), 75% and 95% are indicated. All datasets differ highly 

significantly (two-sided Kolmogorov-Smirnov tests, p <= 10-5, except for the comparison of 

acidic mine drainage with whale bone: p < 0.05). The number of data points underlying each 

distribution is as follows: ocean surface water – 15,741 genes on 9,286 contigs, acidic mine 

drainage – 275 genes on 148 contigs, deep sea whale bones [three sub-samples pooled] – 

630 genes on 362 contigs, and agricultural soil – 598 genes on 395 contigs. 
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Methods and Procedures 

Phylogenetic markers and their detection 

A set of 31 protein-coding, universally occuring marker genes was used to phylogenetically 

assess environmental sequencing data. This set of genes has been described previously 

(Ciccarelli et al. 2006), and has been chosen based on systematic searches of fully sequenced 

genomes: the genes were required to be universally present in all genomes known to date 

(including Archaea and Eukaryotes), and were selected such that the average number of 

paralogous copies in each genome was as low as possible. The rationale behind this choice is 

that such genes are apparently under strong selection against both gene loss and copy 

number variations. This should make them least likely to tolerate horizontal gene transfer 

(since horizontal transfer presumably entails episodes of either gene-absence or multiple gene 

copies); such genes should therefore be most likely to represent species phylogeny. Some 

remaining cases of horizontal transfer have been detected manually; these have been 

neutralized by artificially pruning marker genes from the affected organisms (such that in these 

organisms, the genes are considered ‘missing data’ in subsequent analyses (Ciccarelli et al. 

2006)). Likewise, paralogs and additional gene copies derived from organelles were removed, 

until each gene family was represented by no more than a single, full-length sequence in each 

reference organism (Ciccarelli et al. 2006). 

The set of marker gene families described above (mainly genes related to protein translation) 

is available here: http://MLtreemap.embl.de/treemap_html/marker_genes.txt. The list refers to 

proteins grouped into ‘COGs’ (clusters of orthologous groups); COGs were originally created 

by Tatusov and Koonin (Tatusov et al. 1997). We used an extended version of the COG 

database, maintained at the STRING website (http://string.embl.de/), which covers more 

organisms (von Mering et al. 2005). The environmental metagenomics data sets used were 

exactly those described in detail previously (Tringe et al. 2005). 

Marker genes were detected among the environmental sequences using BLAST (searching 

predicted genes from the various data sets against the extended COG database maintained at 

the STRING server (Tatusov et al. 2003; von Mering et al. 2005)). COG-matches were called 

for any gene whose first hit was a protein assigned to a COG in STRING, as long as the 

BLAST score was better than 60 bits (multiple COG-mappings were allowed for single 

proteins, unless they were overlapping by more than 50% of their length). Each open reading 

frame found to map to one of the marker gene COGs was then re-aligned to all known 

members of that COG using HMMALIGN (Durbin et al. 1998). In cases where a single DNA 

fragment (read, contig or scaffold) contained more than one marker gene, these alignments 

were concatenated. Finally, gaps in the alignment were removed using GBLOCKS, with the 

following settings: Maximum Number Of Contiguous Nonconserved Positions: 15; Minimum 

Length Of A Block: 3; Allowed Gap Positions: with half; Minimum Number Of Sequences For A 

Flank Position: 55% of the Sequences. Depending on the degree of genome assembly that 

has been performed for a dataset, the number of informative columns contained in the final 

concatenated alignment of each fragment varies (ranging from an average of 180 residues in 
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the case of the Soil data, to 250 residues in the case of the Acid Mine Drainage data). It should 

be noted that this number of residues is not sufficient to build a phylogenetic tree de novo, but 

should contain enough information to place a single sequence into an existing tree (see also 

below). 

We used all relevant marker proteins that were annotated in a read or contig, concatenated as 

a single amino acid sequence, in order to make use of all the available information. In addition, 

we assembled some contigs into larger ‘scaffolds’ prior to maximum likelihood scoring, when 

we found a) contigs to be connected by mate-pair information and b) both contigs to have 

marker genes annotated. This was done in a conservative manner: large contigs were joined 

only when three or more independent mate-pairs suggested a linkage; smaller contigs required 

fewer mate-pairs (two or more mate pairs in cases where maximally seven clones contributed 

sequences to the contigs, and one or more mate pairs in cases where maximally five clones 

contributed sequences). Apart from this joining procedure based on mate-pair information, no 

other grouping of contigs into scaffolds was performed beyond what had already been done in 

the original publications of the data. In the case of eukaryotes, this means that most of the 

sequence fragments contain only a single marker gene (because eukaryotes generally do not 

cluster translation-related genes in their genome). This potentially results in a lower precision 

of the placements of eukaryotes, especially for datasets where assembly of reads into contigs 

was possible and thus several marker genes can be found in prokaryotic contigs, but not in 

eukaryotic contigs. However, eukaryotes make up only a very small fraction of the datasets 

studied here (see Figure 2). In addition, they are often better amenable to alternative forms of 

taxonomic classification, due to their greater phenotypic variability, and are thus less 

dependent on sequence characters in general. 

The actual distribution of detected marker genes among the environmental DNA fragments is 

available for detailed inspection and download, at 

http://MLtreemap.embl.de/treemap_html/marker_gene_overview.html 

Maximum likelihood scoring 

After the above step, each environmental DNA fragment with at least one marker gene is 

represented by a multiple sequence alignment (this alignment contains the concatenated 

sequences of the relevant marker gene family/families, including the novel sequence(s) to be 

tested). For all the known sequences in the alignment, their phylogenetic relations are 

assumed to be that of an externally provided reference phylogeny of complete genomes 

(Ciccarelli et al. 2006). The novel sequence (the ‘query’) could in principle be branching 

anywhere in that tree. The possible branching positions effectively define an ensemble of 

trees, which are all identical except for the position of the query sequence. We analyzed these 

ensembles using TREE-PUZZLE (Schmidt et al. 2002), in the context of the above alignment, 

employing the same maximum likelihood model (and settings) as were used to generate the 

reference phylogeny itself: substitution model: JTT; model of rate heterogeneity: Gamma 

distributed rates (4 categories). Settings specific to TreePuzzle were: parameter estimation: 

approximate (using quartet sampling + neighbor-joining tree). This procedure resulted in a 
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maximum likelihood score for each tree in the ensemble, and the most likely tree then defined 

the most probable placement of the query sequence. 

Often, however, more than one placement in the reference tree is possible, and these can 

be almost equally likely – especially in the case of short (or partial) query sequences, which 

may not contain enough phylogenetic information. We employed two measures to avoid 

unjustified precision when assigning such sequences: firstly, we required a minimum length of 

informative sequence in each query – this cutoff was set at 80 columns of blocked alignment 

(shorter queries were not considered; we balanced here the need for precision, with the 

requirement of having enough query sequences, even in unassembled, single-read 

metagenomics data). Secondly, we assigned queries to more than one position in the 

reference tree if necessary (giving them a fractional weight at each position). To do this, we 

used the ‘expected likelihood weight distribution’ defined by (Strimmer et al. 2002); this 

distribution takes into account any differences in likelihood, as well as possible mis-

specifications of the substitution model or the reference tree (in order to increase 

reproducibility, we set the number of samplings in the expected likelihood weight algorithm to 

100,000). 

The final result of the above step is a likely placement of each query sequence in the 

reference tree (broken down into a weighted distribution of placements if necessary). Note that 

the branching pattern of the reference phylogeny itself is never altered – only the novel 

sequences are assessed, relative to the fixed reference phylogeny. This limits the amount of 

computation that is necessary: each relevant DNA fragment can be assigned within a few 

hours on a 64bit CPU (maximally a few days, for cases when the alignment is very long). 

Aggregation and visualization 

We computed the maximum likelihood mapping for all those DNA fragments of a sample which 

were found to contain one or more of the marker genes. All these fragments were then 

weighted by their assembly depth  such that the final measurement corresponds to the 

distribution of organisms in the sample (deeply assembled fragments represent more 

organisms, and are therefore given more weight; in the case of data sets for which assembly 

information was not available we approximated it by mapping the raw sequence reads against 

the assembly using BLAT). We also normalized fragments by the length of their marker gene 

alignment (each organism should contain roughly one complement of marker genes, so a 

longer alignment corresponds to a larger part of an organism). All placements were then added 

up, divided by the total, and visualized in the context of the reference tree, using in-house tree 

drawing software (see Figures 2 and S1). Note that while TREE-PUZZLE requires rooted trees 

as input, the visualization software shows unrooted trees; however, the root received very little 

placements, and these were omitted for the visualization. For Figure S1, the placements were 

additionally ‘projected’ onto the reference taxa (as bar-charts, merely for illustration): each 

placement was distributed among the reference taxa which were descendents of the 

placements’ branching position, dividing the weight evenly at each bifurcation in the tree while 

proceeding from the actual placement up to the tips of the tree. 
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We always aggregated all relevant sequences of an environmental sample, with one 

exception: in the case of the Sargasso Sea data, a small number of environmental sequences 

were removed from consideration because of a reported contamination (DeLong 2005): we 

removed all contigs which were predominantly derived from Sargasso sample no. 1, and which 

in addition had been placed by our procedure into the clades Burkholderiales or 

Shewanellaceae; these two clades are the presumed contaminants (DeLong 2005). This filter 

removed about 0.9% of the relevant Sargasso Sea sequences. 

In Figure 2, we visualize the taxonomic distributions of four distinct environments onto the 

same tree image. Color codes are used to distinguish the environments. In addition, we use 

the same color codes to visualize which environment is the ‘preferred habitat’ for a particular 

section (i.e. line) in the tree of life. These colors are shown with various intensities, in order to 

visualize the extent of preference. No color is shown when the clade in question is found 

equally frequent in all four environments, or not at all; maximum color is shown when it is found 

exclusively in one single environment. In order to avoid spurious signals in the case of rarely 

detected clades, pseudocounts were added to each of the four environment counts before 

determining line color (1 % of the total placement were added to each count). The line color 

saturation is then proportional to (abs(log((counti/total_count)*n)))), summing over all 

environments i, where n is the total number of environments.  

Validation, Comparison with BLAST 

For validation, we repeated the above mapping procedure with altered reference trees (i.e. 

some clades in the reference tree were intentionally omitted  all the placements they originally 

received were expected to re-appear elsewhere: namely, basal at the next available sister 

clade). We compared the placements for each altered reference tree to the original placements 

in the unaltered reference tree, and recorded the average deviation from the expected, ‘ideal’ 

behavior  this deviation can be expressed quantitatively in units of branch lengths, and 

provides a measure by which to rank the relative performance of various methods or 

parameter choices (see Figure S2). We contrasted the performance of our method to two 

frequently used BLAST-based mapping techniques; these were simple ‘best-hit’ approaches 

wherein each environmental fragment is placed directly at the reference taxon to which it has 

the best BLAST score: An open reading frame is simply declared to be originating from the 

same phylum (or class, order, …) as the taxon in the database to which is has the highest 

BLAST score. For metagenomics contigs, the added complication is that a single DNA 

fragment can have several open reading frames. We chose to consider all predicted proteins 

that were mapped to any known COG (in order to exclude spurious ORFs), and searched 

those against the same set of reference genomes as used in the maximum likelihood 

placement (alternatively, we restricted the analysis to the same set of 31 COGs as used in our 

marker gene set). In the case of multiple valid proteins per contig, we simply added up all the 

scores of a contig, for each species in the database, and chose the species with the highest 

cumulative score as the ‘best hit’. 
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Variations in apparent evolutionary speed 

Each maximum likelihood placement provides not only a most likely branching position for 

the query sequence, but also branch length information  indicating the approximate amount of 

sequence changes that have accumulated since the query sequence branched from the 

reference tree. This enables estimates about the evolutionary rate in an environment. We have 

assessed branch lengths for each query sequence (using the ‘expected likelihood weights’ to 

weigh multiple alternative placements if necessary). Branch lengths were expressed as 

distances to the root of the tree (the root was determined by mid-point rooting), and were found 

to be significantly different between environments (data not shown). However, the exact 

position of the root in the reference tree is uncertain, and can have a large effect on the result 

when one of the samples is dominated, for example, by Archaea, while the other is dominated 

by Bacteria. Therefore, we sought a more objective baseline for branch length measurements. 

We decided to compare branch lengths only within phyla (i.e. branch lengths were measured 

from the tips to the base of the phylum) and to use sequenced relatives from the reference tree 

for comparison: each query sequence was compared to all sequenced relatives of the same 

phylum. For query sequences that were placed basal to existing phyla (presumably from phyla 

not yet sequenced) the comparison was done to all sequenced genomes in the immediate 

sister clade. It should be noted that the above procedure is not influenced by differences in the 

underlying evolutionary rate of the 31 marker gene families: firstly, each environmental 

sequence fragment is tested exclusively in the context of its alignment to other genes of the 

same family (e.g. SecY genes are always compared to other SecY genes), and secondly, the 

overall occurrence of the 31 marker genes is purely stochastic (they all occur once per 

genome, and are sampled randomly by the shotgun procedure) so any differential rates among 

the families should affect each environment in the same way. 

Robustness estimation 

A set of marker genes is advantageous over a single marker, since a larger fraction of the 

sequences will be informative. Nevertheless, because the markers are not enriched, the 

amount of raw sequence data needed is fairly high. We estimated the robustness of our 

placements, with respect to potential under-sampling, using both jackknife and bootstrap 

approaches (Figure S3). Jackknife analysis of the smallest dataset (the whale bone sample) 

revealed that the overall placement pattern remains stable, even when only a random subset 

of 50% of the data is used. Nevertheless, small variations in the lower-abundance placements 

became visible. In order to quantify these, we performed one hundred bootstrap tests for each 

of the datasets. These revealed that in the worst case (low abundance items in the smallest 

dataset) the average quantitative error in the placement is about 50% (Figure S3). Higher 

abundance items (like those discussed in the text) have correspondingly lower errors. The 

bootstrap tests also provide confidence intervals for all quantitative statements in the paper, 

such as for the statement “roughly 1% endospore formers (bacilli and clostridia) in the soil”; the 

95% confidence interval for this statement is “0.995% to 2.153% endospore formers in the 

soil”. Similarly, for the amount of Actinobacteria it is “4.2% to 8.2%”, with a median of 6.3%. 
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Habitat stability 

16S rRNA sequences from the ‘Greengenes’ database (Desantis et al. 2006), as well as 

collective strain information from public microbial culture collections (Dawyndt et al. 2005), 

were parsed for their descriptions of sampling sites (habitats). We compared strains (or rRNA 

isolates) pair wise, and first determined their level of relatedness, as follows. In the case of 

cultivated strains, we parsed their assigned position in the NCBI taxonomy, and assessed the 

taxonomic level at which they were related (this level is defined by the last term they share in 

their lineage descriptions). In the case of rRNA sequences, we measured the node-to-node 

branch length distance in a published global phylogeny of small subunit rRNA sequences 

(Desantis et al. 2006)). This global phylogeny of rRNA sequences has been initially built from a 

core of 500 taxa, and has been subsequently extended by the insertion of thousands of 

additional sequences using the ‘ARB parsimony insertion tool’ (this tool inserts additional 

sequences without changing the topology of the initial tree, and estimates branch lengths so as 

to roughly reflect the degree of sequence divergence). From this tree, we derived a 

‘phylogenetic distance’ for any pair of rRNA isolates by traversing between their two positions 

in the tree, through their last common ancestor, and then summing up all branch lengths 

encountered in between. 

After having determined the relatedness of any two given isolates, we then assessed the 

pair wise similarity of their assigned habitats by automated detection of shared keywords in the 

habitat descriptions (in the case of strains, keywords were generalized using an ontology 

relating terms to higher-level habitat categories, see Table S2). Keywords were weighted 

according to their frequency among habitat annotations (rare keywords gave more signal then 

ubiquitous keywords), thus habitat similarity was expressed in terms of shared keywords as 

follows: s = 1 - (fkeyword), where fkeyword is the fraction of habitats that contain this keyword. If 

not a single keyword was shared, the similarity was set to zero. For rRNA sequences, we only 

compared clones between experiments (not within experiments, so as to avoid researcher 

method/annotation biases within individual experiments). 

Comparison to PCR-based approaches 

Traditionally, environmental microbes are assessed taxonomically by cloning and 

sequencing their ribosomal RNA genes (most notably the 16S/18S rRNA). In early studies, 

reverse transcription or hybridization was used to enrich for rRNA sequences (Ward et al. 

1990; Schmidt et al. 1991), but polymerase chain reaction (PCR) quickly became the method 

of choice. PCR has the advantage of requiring little starting material; it circumvents labor-

intensive clone selection protocols, and it is independent of the expression level of rRNA 

genes (since genomic DNA is the template for amplification). Many PCR-based studies have 

since been undertaken, using samples from natural and man-made environments (Cole et al. 

2005; Giovannoni et al. 2005; Robertson et al. 2005). Collectively, these studies have shown 

that microbial diversity is far greater than previously appreciated, revealing the existence of 
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more than 50 phylum-level bacterial lineages (many of which have no cultivated 

representatives to date) (Hugenholtz et al. 1998). 

However, PCR amplification is also a well-known source of qualitative and quantitative 

error (von Wintzingerode et al. 1997). Firstly, the result of PCR amplifications cannot generally 

be assumed to be a proportional representation of the starting material  especially not in the 

case of a complex mixture of rRNA genes. Primers will bind with various strengths, and the 

processivity and efficiency of polymerization will depend on the primary sequence and its GC-

content. PCR-products may also re-anneal with potential templates in the next cycle, a process 

leading to the progressive inhibition of the more frequent genotypes. This ‘non-linearity’ of PCR 

amplification for rRNA genes has been quantified, and shown to be dependent on the primers 

and protocols used (Suzuki et al. 1996). 

Secondly, a notorious problem of PCR is the unintended priming of reactions by incomplete 

(truncated) products of previous PCR cycles. In the case of mixed templates, this mechanism 

can lead to a substantial fraction of amplified molecules being chimeric, i.e. the N-terminal part 

may have a different origin than the C-terminal part. The fraction of chimeras can exceed 30% 

(Wang et al. 1997); this represents a serious problem when propagated into databases, 

because chimeras may be erroneously annotated as ‘novel’ clades or phyla (Hugenholtz et al. 

2003; Ashelford et al. 2005). 

Lastly, the biology of rRNA genes also holds some problems for quantitative taxonomic 

surveys: rRNA genes are known to occur with widely varying copy numbers in genomes 

(ranging from a single copy to as many as fifteen (Rainey et al. 1996; Klappenbach et al. 

2001)). In the case of uncultivated organisms, the copy number status is often not 

known  making quantitative inferences about the number of individual cells of a particular 

taxon very imprecise (Farrelly et al. 1995). In addition, rRNA genes may even exhibit some 

phylogenetic instability: Some bacterial genomes have been observed to contain divergent 

16S genes with as much as 5% sequence differences; and occasional discrepancies between 

the phylogenies of 16S genes and other genes in the same genome have been reported 

(Dennis et al. 1998; Yap et al. 1999; Badger et al. 2005). 

For one of the datasets studied here (the soil data), the traditional PCR-based assessment 

was executed in parallel to the shotgun sequencing. This enabled us to compare our 

assignments to the 16S/PCR-based results. Overall, the relative abundances of phyla reported 

by the two approaches were correlated, but not very strongly (Table S1, the R2 value is only 

0.40). This is partly due to the fact that both approaches missed some phyla entirely: 15% of 

the PCR derived assignments were to phyla not yet represented among sequenced genomes; 

conversely, 11% of the maximum likelihood placements were absent in the PCR data (for 

example, the primers used in this PCR setup were not applicable to Archaea and Eukaryotes). 

In this comparison, it appears that the metagenomics data are closer to the truth: the rRNA 

sequences that are contained in the shotgun sequences themselves (i.e. were obtained 

without PCR) show a distribution among phyla that agrees much better with our maximum 

likelihood placements (Table S1, R2-value is 0.73, p<0.05), which indicates the extent of the 

PCR bias. 
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However, the method we present here has still some shortcomings, as well. The most 
important of these relates to the limited availability of completely sequenced genomes, 
especially from non-cultivatable free-living organisms. For phyla that are not yet represented at 
all among sequenced genomes, the placement of environmental fragments is naturally rather 
imprecise (although the distinction between Bacteria, Archaea and Eukaryotes is almost 
always made correctly). However, once the phylum of a sequence fragment is represented 
among the reference genomes at least once, the fragment is usually placed correctly (see 
Figure S2). This is even the case for unassembled single reads (such as in the soil data), as 
long as these have been derived using Sanger sequencing, with read lengths approaching 
1000 nucleotides. 

The use of shotgun sequencing followed by maximum likelihood analysis, to assess the 
phylogenetic distribution of organisms in a habitat, is also far more resource-intensive than a 
standard PCR-based analysis. It requires more sequencing, and also a substantial amount of 
computation time (up to several CPU hours per fragment). This is partially offset, however, by 
the fact that the information can be directly extracted from the metagenomics datasets (which 
are usually derived for a different purpose). As not only phylogenetically informative genes are 
being sampled, but all gene classes, functional insights into the community can be coupled to 
the phylogenetic assessment. In the long run, this will allow a quantification of the coupling of 
cellular processes to organisms and lineages. Overall, shotgun sequencing potentially offers 
tremendous advantages over the sequencing of a single phylogenetic marker, especially given 
the projected growth in completely sequenced reference genomes, and given the expected 
maturation of algorithms to assemble, annotate and interpret the data.  

 

 PCR-based analysis  

(16S/18S rRNA genes) 

Metagenomics-based analysis 

(31 protein-coding marker genes) 

Advantages - established procedure 

- many reference sequences 

- cost effective 

- can be performed in small lab 

 

- no amplification biases 

- no primer dependency 

- functional genes sampled in parallel 

- more residues per genome tested 

- very little copy number variation 

Disadvantages - PCR amplification biases 

- chimera formation during PCR 

- non-universality of primers 

- rDNA copy number variations 

- no functional genes sampled 

  in parallel 

- less reference sequences (genomes) 

- requires deeper sequencing 

- computationally intensive 

- better with long reads, and at least 

  some partial assembly 

- high throughput sequencing usually 

  requires a sequencing center 

Comparison: A short summary of advantages and disadvantage of the two methods for 

sequence-based phylogenetic assessment of natural microbial communities. 
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Table S1: 
Correlation between rRNA(16S)-based and metagenomics-based taxonomic classifications, for the soil sample. 
The placements we propose here (maximum likelihood) agree better with the genomic rRNAs than with the PCR-
derived rRNAs. 
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category Keywords 

terrestrial soil, sediment, garden, forest, grass, rhizosphere, sediments 

aquatic 
water, spring, sea, pond, lake, river, seawater, marine, brackish, lagoon, freshwater, 
ocean 

extreme acid, hydrothermal, thermophilic 

internal 
blood, human, feces, faeces, urine, sputum, tract, intestine, mouth, vagina, lung, stool, 
dental, fecal, rumen, intestine, host, manure, dung, spinal, throat, serological, gastric, 
vaginal, bronchial, mucosa 

foodstuff 
cheese, milk, beer, fruit, vinegar, brewery, meat, food, apple, yoghurt, sausage, 
mushroom, sake, cheddar 

sewage_and_others mud, sludge, sewage, waste, silage, wastewater 

 
 
 
 
 
Table S2: 
Keywords used in assessing the habitats of strains, together with their high-level categorization. The categories 
were used for the actual habitat similarity measure, in order to recognize ‘seawater’ and ‘marine’ as broadly 
similar habitats. 
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acid 14 

acid.mine 12 

activated.sludge 21 

anaerobic.sludge 5 

aquifer 5 

bog 5 

cecum 5 

contaminated.soil 9 

deep.sea 20 

distilled.water 6 

drainage 13 

EBPR 5 

EBPR.sludge 5 

feces 22 

field 12 

forest 5 

freshwater 12 

geothermal 6 

goat 8 

goat.rumen 8 

gold.mine 5 

granular.sludge 7 

grassland 5 

grassland.soil 5 

ground 5 

groundwater 11 

gut 25 

gut.homogenate 6 

hindgut 6 

host 7 

hot.spring 12 

human 24 

human.mouth 6 

hydrothermal 30 

hydrothermal.vent 18 

hypersaline 5 

ice 9 

intestine 14 

Lake 32 

lake.water 7 

landfill 5 

marine 36 

marine.sediment 20 

mine 23 

mine.drainage 13 

mining 10 

mouth 8 

mud 8 

mud.volcano 5 

Ocean 10 

oil 12 

paddy.soil 5 

peat 5 

piglet 6 

plant 10 

pond 7 

reactor 23 

rhizosphere 7 

rice 11 

River 11 

rock 6 

rumen 16 

Sargasso 5 

Sargasso.Sea 5 

Sea 45 

sea.hydrothermal 10 

sea.sediment 7 

Seamount 5 

seawater 9 

sediment 96 

seep.sediment 5 

sludge 54 

soil 84 

sponge 5 

spring 19 

subsurface 10 

termite 19 

termite.gut 12 

terrestrial 5 

treatment.plant 5 

Trough 6 

uranium.mill 6 

uranium.mining 10 

vent 19 

volcano 6 

waste 17 

wastewater 19 

wastewater.treatment 6 

water 63 

waterbath 6 

 
 

 
 
Table S3: 
Keywords used in assessing the habitats of rRNA clones. The keywords were derived by a manual scan of all 
words that were found to be used in the annotation of at least five rRNA isolation experiments. Of those words, 
terms were kept that denote lifestyle or habitat (but not uninformative words such as ‘from’, ‘inside’ or ‘surface’). 
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Figure S1: 
Phylogenetic distribution of communities, separately for each environment. A) Agricultural Soil. B) Surface Ocean 
Water. C) Deep Sea Whale Bone. D) Acidic Mine Drainage. Higher-resolution versions of these images can be 
reached via the Online Supplement. 
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Figure S2: 
Validation, and comparison to BLAST-based mappings. Leave-one-out consistency checks show the performance 
and reliability of the mapping. Arbitrary parts (sub-clades) of the reference tree are removed – and any fragment 
previously placed there should now re-appear at the sister clade, in a basal position. The actual results will 
deviate from this ideal behavior, and the average distance to the ideal position on the tree provides an estimate 
on method error. The genus Ralstonia and its relatives were arbitrarily chosen as a test clade; the data set used 
for this test is the Minnesota farm soil sequence data. BLAST-based methods perform poor by comparison, even 
when restricted to the very same set of marker genes (for BLAST, placements are always at the tip of the tree – at 
the taxon showing the best BLAST score). 
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Figure S3: 
Robustness estimation. A) jackknife testing of the smallest dataset (whale fall sample ‘#agzo’): four independent 
replicates using only 50% of the data were performed, showing good overall agreement but variation in the low 
abundance placements due to undersampling. B) bootstrap analysis. All four datasets used in Figure 2 were 
bootstrapped one hundred times (genes were sampled randomly, with replacement). For the smallest sample, this 
revealed an average relative error of 50.8% for low abundance items (abundance less then 1%), and 30.3% for all 
other items. For the largest sample (ocean water), average errors are as low as 12.5% and 7.4%, respectively. 
Each dot describes one possible clade in the tree, and the broken line is a running average of three. 
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Figure S4: 
Differences in evolutionary rates. This figure is equivalent to Figure 3 of the main text, but sub-samples are shown 
separately here. No sub-sampling is available for agricultural soil and acid mine drainage. For the ocean surface 
sample, assembled contigs were assigned to one of the four samples based on the source that contributed the 
majority of reads to the contig (the original assembly was done by pooling sequence reads from all four samples). 
As elsewhere in the paper, putative contaminants in the ocean water sample #1 were removed prior to analysis. 
 
 
 
 

 


